[image: image28.emf]

ETSI TR 103 386 V1.1.1 (2015-06)
Methods for Testing and Specification (MTS);
Deployment of Model-Based Automated Testing Infrastructure in a Cloud

TECHNICAL REPORT

Reference

DTR/MTS-103386
Keywords

testing, cloud, infrastructure
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Contents (style TT)
If you need to update the Table of Content you would need to first unlock it.
To unlock the Table of Contents: select the Table of Contents, click simultaneously: Ctrl + Shift + F11.
To update the Table of Contents: F9.
To lock it: select the Table of Contents and then click simultaneously: Ctrl + F11.

3Contents (style TT)

Intellectual Property Rights
5
Foreword
5
Modal verbs terminology
5
Executive summary (style H1)
5
Introduction (style H1)
5
1
Scope (style H1)
6
2
References
6
2.1
Normative references
6
2.2
Informative references (style H2)
6
3
Definitions, symbols and abbreviations (style H1)
8
3.1
Definitions (style H2)
8
3.2
Symbols (style H2)
11
3.3
Abbreviations (style H2)
11
4
An integrated framework for testing automation on a cloud infrastructure
13
4.1
Roles, relationships and interactions among TaaS users
13
4.1.1
End user core services
14
5
End user use cases
16
5.1
Direct test execution use case
16
5.1.1
Direct test execution use case TaaS sequence diagram
17
5.2
Manual test design use case
19
5.2.1
Manual test design use case TaaS sequence diagram
20
5.3
Automated test design use case
21
5.3.1
Automated test design use case TaaS sequence diagram
22
6
Representation of test descriptions in TPaaS
23
6.1
MDSL conceptual model
23
6.1.1
Test Planning Concept
24
6.1.2
Test Analysis Concepts
24
6.1.3
Test Design Concepts
26
6.1.4
Test Case Concepts
26
6.1.5
Test Data Concepts
27
6.1.6
Test Derivation Concepts
28
6.1.7
Refined Test Design Concepts
30
6.1.8
Test Scheduling Concepts
31
6.2
Realisation as UML Profiles
33
6.2.1
Test Planning Concepts Implementation
33
6.2.3
Test Requirement Implementation
33
6.2.4
Test Object Implementation
33
6.2.5
Test Component Implementation
34
6.2.6
SUT Implementation
34
6.2.7
Test Configuration Implementation
34
6.2.8
Test Case Implementation
34
6.2.9
Precondition Implementation
34
6.2.10
Postcondition Implementation
34
6.2.11
Parameter Implementation
34
6.2.12
Stimulus Implementation
34
6.2.13
Response Implementation
34
6.2.14
Verdict Implementation
35
6.2.15
Test Design Model Implementation
35
6.2.16
TestData Implementation
35
6.2.17
DataPartition Implementation
35
6.2.18
TestDataValue Implementation
35
6.2.19
DataPool Implementation
35
6.2.20
Test Suite Implementation
36
6.2.21
Test Procedure Implementation
36
6.2.22
Scheduling Specification Implementation
36
6.3
Constraints on the MIDAS DSL
36
6.3.1
TestConfiguration/TestContext Constraints
36
6.3.2
TestCase Constraints
37
6.3.3
TestProcedure Constraints
39
6.4
MDSL Validator
40
6.5
TTCN-3 Generator
40
7
Deployment of the TPaaS on the public cloud infrastructure
42
7.1
Integration of test methods on the TPaaS platform
42
7.1.1
The Database structure for the MIDAS TPaaS
43
7.1.2
The storage file system for MIDAS TPaaS
44
7.2
Implemented facilities
45
7.2.1
Development Environment (devenv_vm)
45
7.2.2
Production Environment (prodenv_multivm)
47
Annex A: Direct Execution Use Case Example – IMS Comformance testing
49
<A.1>
First clause of the annex (style H1)
49
<A.1.1>
First subdivided clause of the annex (style H2)
49
Annex B: Manual test design example - SCM Pilot
50
<B.1>
First clause of the annex (style H1)
50
<B.1.1>
First subdivided clause of the annex (style H2)
50
Annex <C>: Automated test design example - e-Health Pilot
51
<C.1> First clause of the annex
51
Annex <E>: Bibliography (style H9)
52
Annex <F>: Change History (style H9)
53
History (style H1)
54
A few examples:
54

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "may not", "need", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary (style H1)
This unnumbered clause, if present, appears after the "Modal verbs terminology" and before the "Introduction". It is an optional informative element and shall not contain requirements.

The "Executive summary" is used, if required, to summarize the ETSI deliverable. It contains enough information for the readers to become acquainted with the full document without reading it. It is usually one page or shorter.
Introduction (style H1)
This unnumbered clause, if present, appears just before the "Scope". It is an optional informative element and shall not contain requirements.

1
Scope (style H1)
This clause numbered 1 shall start on a new page. More details can be found in clause 2.9 of the EDRs.

The Scope shall not contain requirements. Forms of expression such as the following should be used:

The present document will provide an overview ... of the for the deployment of MBT automated testing infrastructure as TPaaS (Test Platform as a Service); - for the deployment of (3rd-party) test methods for automated test suite generation, scheduling, execution, and test arbitration within TPaaS; - for the definition and use of Domain Specific Language (DSL) for developing SUT models and Test models that are compliant with the test methods used within TPaaS.

2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

2.1
Normative references
The following referenced documents are necessary for the application of the present document.

Not applicable.

2.2
Informative references (style H2)
Clause 2.2 shall only contain informative references, which are cited in the document itself.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references, see clause 6.9.2: "Sequence numbering") (see example).

EXAMPLE:

[i.1][tab]
<Standard Organization acronym> <document number>: "<Title>".
[i.2][tab]
<Standard Organization acronym> <document number>: "<Title>".
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]
ETSI ES 202 951: "Methods for Testing and Specification (MTS); Model-Based Testing (MBT); Requirements for Modelling Notations".
[i.2]
ETSI ES 203 119: "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Specification of the Abstract Syntax and Associated Semantics".
[i.3]
MIDAS Deliverable D2.2.WP2: "Architecture and specifications of the MIDAS framework and platform", 2013.
[i.4]
MIDAS Deliverable D3.6.WP3: "Generating TTCN-3 from PIM UML SAUT Specifications", 2014.
[i.5]
MIDAS Deliverable D6.1.WP6: " Analysis of required functionalities and available public Cloud services", 2014.
[i.6]
MIDAS Deliverable D6.2.WP6: "Specification and design of the basic MIDAS platform as a service on the Cloud", 2014.
[i.7]
MIDAS Deliverable D6.3.WP6: "The basic MIDAS platform and the integrated test evaluation, planning and scheduling macro-component", 2014.
[i.8]
ISO 9126
[i.9]
ISO 9000
[i.10]
International Organisation for Standardisation (ISO): ISO/IEC 29119, Software Testing Standard, http://www.softwaretestingstandard.org
[i.11]
UTP_1_2 (2013). UML testing profile (UTP) version 1.2. Tech. Rep. formal/2013-04-03, Object Management Group.
[i.12]
International Software Testing Qualifications Board (ISTQB): ISTQB/GTB standard glossary for testing terms. http://www.software-tester.ch/PDF-Files/CT_Glossar_DE_EN_V21.pdf.
[i.13]
 Object Management Group (OMG): Business Motivation Model (BMM). http://www.omg.org/spec/BMM
[i.14]
IEEE Std. 610-12
[i.15]
NIST
3
Definitions, symbols and abbreviations (style H1)
Delete from the above heading the word(s) which is/are not applicable, (see clause 2.11 of EDRs).

Definitions and abbreviations extracted from ETSI deliverables can be useful when drafting documents and can be consulted via the Terms and Definitions Interactive Database (TEDDI) (http://webapp.etsi.org/Teddi/).
3.1
Definitions (style H2)
Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
The following text block applies. More details can be found in clause 2.11.1 of the EDRs.

For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

· Use the Normal style.

· The term shall be in bold, and shall start with a lower case letter (unless it is always rendered with a leading capital) followed by a colon, one space, and the definition starting with a lower case letter and no ending full‑stop.

<defined term>: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.
For the purposes of the present document, the following terms and definitions apply:

Accuracy: the capability of the software product to provide the right or agreed results or effects with the needed degree of precision. (ISO 9126)

Black-box testing: testing, either functional or non-functional, without reference to the internal structure of the component or system. (ISTQB Glossary)

Cloud computing: a computing model for enabling ubiquitous, convenient, on-demand network access to a shared pool of conﬁgurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. (NIST)

Cloud provider: is a (service) provider that offers customers storage or software services available via a private (private cloud) or public network (public cloud). The storage and software are available for access via the Internet and the cloud provider manages the infrastructure and platforms on which the applications run.

Coverage: the degree, expressed as a percentage, to which a specified coverage item has been exercised by a test suite. (ISTQB Glossary)

Equivalence partitioning: a black box test design technique in which test cases are designed to execute representatives from equivalence partitions. In principle test cases are designed to cover each partition at least once. (ISTQB Glossary)

Event: an observable action of a software that is characterized by its type and its target, e.g., a user interaction with a system with the type mouse click and the target Ok button.
Failure: deviation of the component or system from its expected delivery, service or result. (ISTQB Glossary)
Functional testing: testing based on an analysis of the specification of the functionality of a component or system. See also black-box testing. (ISTQB Glossary)

Fuzzing: see Fuzz testing
Fuzz testing: technique for intelligently and automatically generating and passing into a target system valid and invalid message sequences to see if the system breaks, and if it does, what it is that makes it break. (ETSI MTS Security Testing Terminology, Concepts and Lifecycle)

Graphical user interface: a type of user interface that allows users to interact with electronic devices using images rather than text commands. (http://en.wikipedia.org/wiki/Graphical_user_interface)

Hypervisor: also called virtual machine monitor (VMM), is a computer software, firmware or hardware that creates and runs system virtual machines. A computer on which a hypervisor is running one or more virtual machines is a host machine. Each of those virtual machines is called a guest machine. The hypervisor presents to the guest operating systems a virtual operating platform and manages the execution of the guest operating systems. Multiple instances of a variety of operating systems may share the virtualized hardware resources.

Infrastructure as a Service (IaaS): a cloud service model, in which cloud providers offer processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, and deployed applications; and possibly limited control of select networking components. (NIST)

Interface: a hardware or software component that connects two or more other components for the purpose of passing information from one to the other. (IEEE Std. 610-12)

Loosely coupled (systems): systems whose components have a minimum of interdependencies to prevent that changes in one component require adaptations in another component.

Middleware: software that mediates between applications and operating systems, consisting of a set of services that enable interoperability in support of distributed architectures by passing data between applications. So, for example, the data in one database can be accessed through another database.
Model-based testing: An umbrella of techniques that use (semi-)formal models as engineering artefacts in order to specify and/or generate test-relevant artefacts, such as test cases, test scripts, reports etc. (UTP)

Model checking: given a model of a system, exhaustively and automatically check whether this model meets a given property or satisfies a specification (e.g a safety property).

Monitor: a software tool or hardware device that runs concurrently with the component or system under test, and supervises, records and/or analyses the behaviour of the component or system. (IEEE Std. 610-12)

Oracle: see test oracle

Public cloud: a cloud deployment model where the infrastructure is provisioned for open use by the general public. It may be owned, managed, and operated by a business, academic, or government organization, or some combination of them. It exists on the premises of the cloud provider. (NIST)

Regression testing: selective retesting of a system or component to verify that modiﬁcations have not caused unintended effects and that the system or component still complies with its speciﬁed requirements. (IEEE Std. 610-12)

Security testing: a process to determine that an information system protects data and maintains functionality as intended. The six basic security concepts that need to be covered by security testing are: (i) confidentiality, (ii) integrity, (iii) authentication, (iv) availability, (v) authorization and (vi) non-repudiation. Security testing is challenging the security related aspects of the application.

Service: an activity that has an effect in the real/digital world, carried out by a system acting as a service provider for or on behalf of another system acting as a service consumer.
Service oriented architecture (SOA): a paradigm for organizing and utilizing distributed capabilities that may be under the control of different ownership domains. SOA is an architectural paradigm for defining how people, organizations, and systems provide and use services to achieve results.

Software as a Service (SaaS): a cloud service model in which cloud providers offer to use the provider’s applications running on a cloud infrastructure. The applications are accessible from various client devices through either a thin client interface, such as a web browser (e.g., web-based email), or a program interface. The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings. (NIST)

Software quality: the degree to which a software product fulfils its functional and non-functional requirements (IEEE Std. 610-12 under the term quality)
Software testing: the process consisting of all lifecycle activities, both static and dynamic, concerned with planning, preparation and evaluation of software products and related work products to determine that they satisfy specified requirements, to demonstrate that they are fit for purpose and to detect defects. (ISTQB Glossary under the term testing)
System under test: the real open system in which the implementation under test resides (ETSI ES 202 951).

Test arbitration: testing activity that assigns a test verdict to a test execution run. Requires a test oracle.

Test case: a set of input values, execution preconditions, expected results and execution post conditions, developed for a particular objective or test condition, such as to exercise a particular program path or to verify compliance with a specific requirement. (IEEE Std. 610-12) Test cases are owned by test contexts.

Test case generator: a software tool that accepts as input source code, test criteria, specifications, or data structure definitions; uses these inputs to generate test input data; and, sometimes, determines expected results. (IEEE Std. 610-12)

Test component: test components are part of a test configuration and are used to communicate with the system under test (SUT) and other test components.

Test configuration: The collection of test component objects and of connections between the test component objects and to the SUT. The test configuration defines both (1) test component objects and connections when a test case is started (the initial test configuration) and (2) the maximal number of test component objects and connections during the test execution. (UTP)

Test environment: environment containing hardware, instrumentation, simulators, software tools, and other support elements needed to conduct a test (IEEE Std. 610-12).

Test execution: the process of running a test on the component or system under test, producing actual result(s). (ISTQB Glossary)

Test generation: automated activity for deriving test-relevant artifacts such as test cases, test data, test oracle test code.
Test log: a chronological record of relevant details about the execution of tests [IEEE 829]. (ISTQB Glossary)
Test model: a model that specifies various testing aspects, such as test objectives, test plans, test architecture, test cases, test data, test directives etc. (UTP)
Test requirement: an item or event of a component or system that could be verified by one or more test cases, e.g. a function, transaction, feature, quality attribute, or structural element. (ISTQB Glossary)

Test run: execution of a test on a specific version of the test object. (ISTQB Glossary)

Test schedule: a list of activities, tasks or events of the test process, identifying their intended start and finish dates and/or times, and interdependencies. (ISTQB Glossary)

Test suite: a set of several test cases for a component or system under test, where the post condition of one test is often used as the precondition for the next one. (ISTQB Glossary)
Testing as a Service (TaaS): a cloud service that offers functionality for software testing in form of a Web service.

Testing Platform as a Service (TPaaS): an integrated testing platform available on demand (i.e. on a self-provisioning, pay-per-use, elastic basis) that is deployed on a public Cloud and accessible over the Internet as a multi-tenancy SaaS from an end-user perspective.

Validation: confirmation by examination and through provision of objective evidence that the requirements for a specific intended use or application have been fulfilled. (ISO 9000)
Virtual Machine (VM): a software implementation of a machine (i.e., a computer) that executes programs like a physical machine. It can be seen as a simulation of a machine (abstract or real) that is usually different from the target machine (where it is being simulated on). Virtual machines are separated into two major categories: system and process virtual machines.

Virtual Machine Image (VMI): a software application combined with just enough operating system for it to run optimally in a virtual machine. VMIs are intended to eliminate the installation, configuration and maintenance costs associated with running complex stacks of software.

Virtualization: a means of uncoupling the execution of a software environment from the underlying physical resources (CPUs, Storage, networking, etc.) and their location, by presenting them as logical resources to applications. Virtualization technologies create and perform a mapping between physical and logical resources.
3.2
Symbols (style H2)
Symbols should be ordered alphabetically. Clause numbering depends on applicability.

The following text block applies. More details can be found in clause 2.11.2 of the EDRs.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

· Use the EW style and separate this from the definition with a tab. Use the EX style for the last term.

<1st symbol> [tab]<1st Explanation> (style EW)
<2nd symbol> [tab]<2nd Explanation> (style EW)
<3rd symbol> [tab]<3rd Explanation> (style EX)
3.3
Abbreviations (style H2)
Abbreviations should be ordered alphabetically. Clause numbering depends on applicability.

The following text block applies. More details can be found in clause 2.11.2 of the EDRs.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

· Use the EW style and separate this from the definition with a tab. Use the EX style for the last term.

<1st ACRONYM> [tab]<Explanation> (style EW)
<2nd ACRONYM> [tab]<Explanation> (style EW)
<3rd ACRONYM> [tab]<Explanation> (style EX)
For the purposes of the present document, the following abbreviations apply:

API

Application Program Interface
DSL

Domain Specific Language
IaaS
Infrastructure as a Service
ISTQB
International Software Testing Qualifications Board
MBT
Model-Based Testing
MDSL
MIDAS DSL
OMG
Object Management Group

RDBMS
Relational Data Base Management System

SaaS
Software as a Service
SLA
Service Level Agreement
SOA
Service Oriented Architecture

SOAP
Service Oriented Architecture Protocol

SUT
System - Under Test
TaaS
Test as a Service

TDD
Test Driven Development
TDL
Test Description Language
TMD
Test Method Developer

TPaaS
Testing Platform as a Service
TTCN-3
Testing and Test Control Notation (version 3)
UML
Unified Modeling Language

UTP
UML Testing Profile

VM
Virtual Machine
VMI
Virtual Machine Image
XML
eXtended Markup Language
WSDL
Web Service Definition Language
4
An integrated framework for testing automation on a cloud infrastructure
The present document provides an overview of the approach taken within the EU-funded research project called MIDAS to design, build and deploy an integrated framework for testing automation that will be available as a Test as a Service (TaaS) on a Cloud infrastructure, and which covers key testing activities: test suite generation, test execution, scheduling, evaluation and test results arbitration. Although, MIDAS is focused on the test automation for Service Oriented Architecture (SOA), the testing methods and technologies that are investigated and prototyped within the project, particularly on model-based test design and test suite generation, model checking of choreographies for sound interaction of test scenarios, fuzzing for security testing, usage-based testing, probabilistic inference reasoning for test evaluation and scheduling, can be generalized to a great degree and can be applied not only to SOA System - Under Test (SUT), but also to SUTs in other domains, e.g. Automotive, Telecommunications, Machine-to-Machine services, etc.

The MIDAS test automation approach is model-based, as defined in [ETSI TR 102 840]. The user specifies structural, functional and behavioural models of the SUT and testing models that specify the test domain (e.g. functional testing, security testing, usage-based testing) and the specific testing methods, practices and strategies to be applied. The test model structure and semantics applied in MIDAS project rely on the extension of the UML Testing Profile (UTP) [i.11].
The TaaS integrated test automation facility is designed and provided as an integrated Testing Platform as a Service (TPaaS) framework available on demand, i.e. on a self-provisioning, pay-per-use, elastic basis. For this reason, the TPaaS is deployed on a public cloud infrastructure and accessible over the Internet as a multi-tenancy Software as a Service (SaaS) from an end user perspective. TPaaS provides companies and end users with services to design, deploy and run their test cases without disclosing any information to the cloud provider, and without having to program the whole test procedures from scratch. The costs saving and easy accessibility of cloud's extremely large computing resources makes testing facility usage available to geographically distributed users, executing wide varieties of user scenarios, with a scalability range previously unattainable in traditional testing environments.
4.1
Roles, relationships and interactions among TaaS users

Designed integrated TaaS framework has four classes of users, each one playing different roles in interacting with the TPaaS platform:

1. End users: they consist of users responsible for planning, designing, and conducting test campaigns on service architectures, and users responsible for the creation, administration, and deployment of the service architecture under test.
2. Test method developers: they consist of users responsible for designing and implementing test methods to be used for conducting test campaigns.

3. Administrators: they consist of users responsible for managing both the identification and authentication of end users and test method developers, and the TaaS facilities used by the administered users, including the accounting and billing of these facilities.

4. TaaS administrator: it is the responsible entity for the entire TaaS platform, and for managing any interaction with the selected cloud provider of the Infrastructure as as service (IaaS) platform for the TaaS development and operation. As such, he/she is responsible for the dynamic provisioning of all TaaS public functionalities and for configuring the underlying cloud resources and services for TaaS users, and for any interaction with the cloud IaaS provider.

End users and test method developers are conceptually grouped in logical facilities called respectively tenancies and labs that are users computing spaces managed by tenancy/lab administrators. Tenancies and labs are unit of:

· end users identification and authentication;

· cloud resources allocation, accounting and billing;

· data and services ownership and access.

Each tenancy/lab must be able to deal with its own cloud users, cloud resources, data and services in a private, sandboxed way.

The composition of relationships and interactions among users and facilities of the TPaaS are shown in Figure 1. As shown, the TPaaS may contain several tenancies (resp. labs), each one composed of several end users (resp. test method developers). Each tenancy (resp. lab) is managed by a tenancy admin (resp. lab admin) that interacts with the respective users, and it is responsible for creating user accounts and credentials for them.

It is assumed that the underlying cloud infrastructure/middleware is completely transparent to end users, while tenancy/lab administrators are aware only of cloud resources usage and billing, but they are not involved in their management or/and allocation.

[image: image1.png]User

Test Method
Developer

- — - <interacts> - _ _

Tenancy
Admin

T
|
<interacts>
)

TAAS
Admin

<speio>
|

Cloud
Provider

Admin

T
|
<interacts>
)

Lab
Admin

Figure 1: Composition relationships and interactions among TaaS users.
The TPaaS is provided and managed by a single entity, the TaaS admin, also known as the TPaaS provider. It is the only one responsible for:

· creating, deploying, managing, and disposing tenancies/labs on the TPaaS,
· interacting with the provider of the underlying cloud infrastructure,

· establishing and enforcing the rules of configuration of cloud resources and services for each tenancy/lab,

· monitoring the deployment of the TaaS services (end user, core and admin services) for each tenancy/lab.

All the cloud infrastructure features are completely hidden behind the TPaaS provider. All TaaS users just interact with the respective public APIs and services, published on the Internet through the TPaaS by the TaaS admin. The TaaS admin, in general, fixes the rules to use the TPaaS underlying resources and monitor their usage by the user applications.

It is assumed that before the creation of a tenancy/lab, the TaaS admin interacts with the tenancy/lab administrators to establish service level agreements (SLAs), i.e. legal contracts, between himself, as the TaaS service provider, and the tenancy/lab administrators as TaaS services consumers, where regulations, duties, payment policies concerning the usage of TaaS services and computing resources are stated. The TaaS offers one or a small number of “standard contracts”. Hence, we envision a contract template as a pricing mechanism (how the tenancy/lab pays for the TaaS services) coupled with a resource allocation policy (how the TaaS admin pays the cloud provider). Conversely, the resource allocation policy may depend on the cloud provider.
In the rest of the document, we will concentrate mainly on the end users use cases and end user core services.

4.1.1
End user services

The main functionalities of end users are offered by three end user services, depicted in Figure 2, that are able to support all the end user use cases, which are described in more detailed in section 5
End user use cases. These functionalities are:

· Test Gen&Run Service, which allows to asynchronously start the execution of a test task (either a test generation or a test execution task), and to actively poll it to inspect the status and the resulting output of any started test task;

· Test Method Query Service, which allows end users to list the test methods currently part of the MIDAS portfolio, and to retrieve the properties of any method in the MIDAS portfolio; all its methods are synchronous;

· File Management Service, which offers access to the file system private to the tenancy the end user belongs to, and to perform the usual operations supported by a file system.

[image: image29.emf][image: image2.png]Tdentity &
Authentication
Servics
WboetemE || MIDAS TaaS
Admin APIs Accounting &
Billing Service
Tenancy Admin
T services Tost
Service
Test Gonsun |9 Arvivation
Sovdce || f Service
ot 3o Schaduer
Run ES—8 serviee
Endser || [File Managoment Sorvice
‘Apis Service
— Executor
Sarvico
Tost Mothod o
Query Service "
End User

Services.

Figure 2: Test as a Service framework as designed and build in MIDAS project.

The TPaaS architecture also provides the Application Program Interfaces (APIs) for the implementation of the Test Method Query Service and the File Management Service.

The Test Gen&Run Service is composed of several services, also referred to as the TaaS core services that contribute to the implementation of the end user test generation and execution functionalities. The core services are not exposed by the TPaaS, but they allow test method developers to implement specific test methods. The Test Gen&Run Service implementations allow end users to use these test methods.

The core services are organised in two levels, as depicted in Figure 2. The first level distinguishes the Test Generation Service from the Test Run Service. While the first service is responsible for automatically generating test cases, test scripts and model transformations for testing, the second service coordinates the run of a specific test cycle, organized in three phases: an optional scheduling phase, a mandatory execution phase, and an optional arbitration phase.

The Test Generation Service is provided by a Test Generation Container. Each container can include different modules as plug-ins, each of them implementing a specific test generation capability, with the same interface of the test generation service. Both Test Gen and Run Services are invoked asynchronously, and their outcome is notified to the Test Gen&Run Service through a notification, whose listener is provided by the Test Gen&Run Service.

The second level of the Test Gen&Run Service architecture concerns the Test Run Service. It includes three independent services: the Test Arbitration Service, the Test Scheduling Service, and the Test Executor Service. These services are provided by a corresponding container, as for the Test Generation Service and the Run Service. Also for these services, each container can include different modules as plug-ins, each of them implementing a specific capability, with the same interface of the corresponding service. All services in the second level expose just two methods, one to initialise the corresponding service, and one to actually execute the provided service. Both methods of the three services are invoked asynchronously, and their outcome is notified to the Test Run Service through a notification, whose listener is provided by the Test Run Service.
5
End user use cases
In a deeper manner, the core TaaS functionalities can be described through end user use cases, specifically:

· Direct Test Execution, consisting in the execution of TaaS-compliant legacy TTCN-3 (Testing and Test Control Notation) test suites;

· Manual Test Design, consisting in the execution of test cases and data provided in a non-executable and platform independent model;

· Automated Test Design, consisting in the automatic generation of test cases and data, and their execution.

They are sketched briefly in Figure 3 with the additional use case Identity & Authentication used to check that each end user is a registered user of that tenancy, and it is authenticated before invoking the capabilities of that tenancy. The authentication, in general, will be propagated to the whole TaaS architecture to identify and authenticate the end users with the other tenancy services, as well as with TaaS core services. As this aspect represents a cross-cutting concern among all TaaS services, it is included and used automatically in all end user use cases.

[image: image3.wmf]

Figure 3: End user main use cases.
5.1
Direct test execution use case

Figure 4 depicts the most basic end user use case of the TaaS. The end user invokes the execution of a test run task with the TTCN-3 test suite to be executed on the TaaS as argument. The test suite and the target SUT must be compatible with TaaS-requirements. Within the MIDAS project, TaaS requirements have been extensively defined to the SOA based SUT [ref required]. The TaaS test execution system executes the TTCN-3 test suite, i.e. establishes the connection with the deployed SUT, runs the executable test cases and data, and produces the test log.
[image: image4.emf]
Figure 4: Direct Test Execution use case.

Direct execution use case can be applied, when the TTCN-3 test suits already exists. For example, ETSI has produced a number of TTCN-3 Abstract Test Suites that can be executed within TPaaS platform. In addition to TTCN-3 test suites, the tester must provide/upload the test adapter and codec/decodec files to TPaaS. In order the test cases are executed remotely from within TPaaS, the SUT must be configured in a way, that it allows the remote execution of test cases from the remote TPaaS test environment. The demonstration of the direct execution use cases with the existing TTCN-3 test suite is further demonstrated in Annex A.
5.1.1
Direct test execution use case TaaS sequence diagram

The goal of this use case is to execute a TaaS-compatible TTCN-3 test suite. TaaS allows access to users that are able to write TTCN-3 code, i.e., there are test methods that accept TTCN-3 code as an input. In order to execute a TaaS-compatible TTCN-3 test suite, end user and core services have to be orchestrated according to the interactions reported in the sequence diagram in Figure 5.

[image: image5.wmf]
Figure 5: Direct Test Execution sequence diagram.

The steps of the sequence diagram are:

1. The end user (mediated, if necessary, by the TaaS gateway/portal) uploads to the tenancy file system a file fid1 containing TaaS-compliant TTCN-3 code.

2. A success/failure response is returned to the end user.

3. The end user (mediated, if necessary, by the TaaS gateway/portal) invokes the Test Gen&Run Service to request the execution of test method id, using as input the file fid1 and with additional information encoded as meta objects.

4.
A success/failure response is returned to the end user containing the test method request task_id identifying its request, that will be used (step 27) to poll the status of the execution request.

5.
The Test Gen&Run Service invokes the Test Method Query Service on test method id properties.

6.
A success/failure response is returned to the Test Gen&Run Service containing, among other information, the web service endpoint wse1 of the Run Manager Service for test method id.

7.
The Test Gen&Run Service invokes the Run Manager Service using wse1 to contact it, to request the execution of a run instance of task_id, using as input the file fid1, with additional information encoded as meta objects.

8.
A success/failure response is returned to the Test Gen&Run Service containing the run_id identifying its test run instance of task_id, currently in the system that will be used to track the status of the running instance request (step 25).

9.
The Run Manager Service interrogates the Test Method Query Service on test method id properties. The method identifier id is contained in the test method request task_id.

10.
A success/failure response is returned to the Run Manager Service containing, among other information, the web service endpoint wse2 of the Executor Service.

11.
If necessary, the Run Manager Service invokes the Executor Service using wse2 to perform test initialization procedures of the test method request task_id of the test method id, using as input the file fid1 (if interactions with the File Management Service is required), and with additional information encoded as meta objects.

12.
If necessary, a success/failure response is returned to the Run Manager Service containing the init_id identifying its test initialisation request, currently in the system that will be used to track the status of the initialization request.

13.
The Executor Service performs initialization.

14.
The Executor Service invokes the Run Manager Service to communicate that the initialization procedure identified by init_id for the test method request task_id is done.

15.
A response is returned to the Executor Service.

16.
The Run Manager Service invokes the Executor Service using wse2 to perform test execution of the test method request task_id of the test method id, initialized by the procedure identified by init_id and using as input the file fid1, and with additional information encoded as meta objects.

17.
A success/failure response is returned to the Executor Service containing the exec_id identifying its test execution request, referring to the corresponding task_id, currently in the system that will be used to track the status of the execution request.

18. – 22. The Executor Service performs execution, using fid1 as input and producing fid2 as output.

23. The Executor Service invokes the Run Manager Service to communicate that the execution of the procedure exec_id, initialized by init_id, for the test method request task_id, is done, and the results are store in the file fid2.

24.
A response is returned to the Executor Service.

25. The Run Manager Service invokes the Test Gen&Run Service to communicate that the run of the instance run_id of the test method id, identified internally by task_id, is done, and the results are stored in the file fid2.

26. A response is returned to the Run Manager Service.

27. The end user (mediated, if necessary, by the MIDAS gateway/portal) polls for the test status and outcomes of the test method id, identified internally by task_id.

28. The Test Gen&Run Service returns to the end user the status and the outcome file fid2 of the request identified internally by task_id.

Note that in this use case (and in the following ones) we assumed that any data exchange among web services would be performed through the shared file system.

Particular care must be taken in the Executor Service implementation on the Cloud, as two subsequent invocations, for initialisation and execution, cannot be assumed to be received by the same running instance of the Executor Service. Two different copies of the same instance could be contacted, due to failure or automatic load balancing. A simple solution consists in using the shared file system to synchronise, allowing the two different Executor Service instances to communicate (not shown in the sequence diagram).
5.2
Manual test design use case
Figure 6 shows an extended scenario of the Use Case Direct Test Execution, i.e., the end user does not make use of the test generation capabilities of the TPaaS in order to generate executable test cases and data, but rather supplies these test cases and data in a platform independent, non-executable representation (model).
[image: image6.emf]
Figure 6: Manual Test Design use case.
The end user invokes the execution of a test generation and run task with a platform independent non executable representation of the test cases and data as arguments and references them in a TaaS test model. The test cases and data representation and the target SUT must be compatible with the model representation requirements used within TaaS. The TaaS test model is then passed to the TaaS that generates the executable representation of the test cases and data, establishes the connection with the deployed SUT and executes the generated representation of the test cases and data.
As shown in Figure 7, in this end user scenario, mapping rules used to develop System models are drafted manually. The generation of formal test scripts generated in TTCN-3 language from system models may be supported by data, behavioural fuzzing and/or with the behaviour specifications in terms of sequence of logical messages to (inbound) and from (outbound) the test interface. In addition, test planning and scheduling models can further refine the generation of the test case sequences. Once the TTCN-3 test cases are generated, the further procedures are equal to direct test execution use case.

[image: image7]

Figure 7: Overview of the Manual test design use case workflow.

5.2.1
Manual test design use case TaaS sequence diagram

The goal of this use case is to execute test cases and data that are provided in a non-executable and platform independent model. The test cases and data representation (and the target SUT) must be TaaS-compatible. As shown in Figure 8, this TaaS-compatible test model is first processed to generate executable representations of the test cases and data, and then it is directly executed as in the Direct Test Execution use case.
[image: image8.emf]
Figure 8: Manual Test Design use case sequence diagram.

The steps of the sequence diagram are:
1. The end user (mediated, if necessary, by the TPaaS gateway/portal) uploads to the tenancy file system a file fid1 containing a test suite as UML sequence diagrams (MDSL).

2. A response is returned to the end user.

3. The end user (mediated, if necessary, by the TPaaS gateway/portal) invokes the Test Gen&Run Service to request the execution of test method id, using as input the file fid1, and with additional information encoded as meta objects.

4. A success/failure response is returned to the end user containing the test method request task_id identifying its request, currently in the system that will be used (step 17) to poll the status of the execution request.

5. The Test Gen&Run Service invokes the Test Method Query Service on test method id properties.

6. A success/failure response is returned to the Test Gen&Run Service containing, among other information, the web service endpoint wse3 of the Test Gen Service for test method id.

7. The Test Gen&Run Service invokes the Test Gen Service (e.g., for Model-to-TTCN-3 transformation) using wse3 to contact it, to request the execution of a gen instance of task_id, using as input the file fid1, and with additional information encoded as meta objects.

8. A success/failure response is returned to the Test Gen&Run Service containing the gen_id identifying its test gen instance of task_id, currently in the system that will be used to track the status of the running instance request (step 14).

9. -13. The Test Gen Service performs test generation, using fid1 as input and producing fid2 as output.

14. The Test Gen Service invokes the Test Gen&Run Service to communicate that the test gen instance gen_id of the test method id, identified internally by task_id, is done, and the results are stored in the file fid2.

15. A success/failure response is returned to the Test Gen Service.

16. The Direct Test Execution is performed, using test method request task_id; the file fid2 will be used as input, and the file fid3 will be generated as output.

17. The end user (mediated, if necessary, by the TPaaS gateway/portal) actively asks for the test status and outcomes of the test method id, identified internally by task_id.

18. The Test Gen&Run Service returns to the end user the status and the outcome file fid3 of the test method request identified internally by task_id.
5.3
Automated test design use case
Figure 6 shows the “complete” Use Case of the TaaS, i.e., the use of all its capabilities. The Use Case Automated Test Design is also the main Use Case within the MIDAS project. The end user utilizes the entire test generation and execution capabilities of the MIDAS platform.
[image: image9.emf]
Figure 9: Automated Test Design use case.

The main difference of this end user scenario with respect to the manual test design user scenario is in the process of generation of system models. In this case, system models are generated from Implementation Under Test (IUT) by

[image: image10]
Figure 10: Automated test design use case workflow.
gathering design and behaviour information and data structures from the existing implementation as a part of the SUT.

In addition, usage profiles in terms of recorded traces of sequences of logical messages to (inbound) and from (outbound) the test interface can be feeded into modelling tool which automatically generate the system models.
5.3.1
Automated test design use case TaaS sequence diagram

The goal of this use case is to automatically generate test cases and data, and to execute them on the TPaaS. The end user supplies models for test generation (e.g., structural, functional, behavioural models), and the TPaaS firstly generates test cases and data in a non-executable platform independent model format. UTP modelling description, which is used as non-executable platform independent model format within the MIDAS project, is further described in Section 6.2. Secondly, this output is processed as in the previous use case. As shown in Figure 11, the steps of this use case are, with the adequate adjustments, identical to the Manual Test Generation use case (see Figure 8).
[image: image11.emf]
Figure 11: Automated Test Design use case sequence diagram.
Both end users uses cases, manual test design and automated test design are inline with the process for model-based testing with system models as defined in [ETSI TR 102 840 V1.2.1]. In both cases, the generation of executable test cases is generated from System models, which can either be developed manually based on the system requirements or automatically generated from the implementation under test.
[image: image12.emf]
Figure 12: Process for model-based testing with system models.
6
Representation of System models in TPaaS
This section describes a central part of the TPaaS platform with respect to handle test descriptions.

There are several ways to formalize test descriptions. ETSI is currently developing Test description Language (TDL) [i.2] that supports the design and documentation of formal test descriptions that can be the basis for the implementation of executable tests in a given test framework, such as TTCN-3. Application areas of TDL that will benefit from this homogeneous approach to the test design phase include:

· Manual design of test descriptions from a test purpose specification, user stories in test driven development (TDD) or other sources.

· Representation of test descriptions derived from other sources such as Model-Based Testing (MBT) test generation tools, system simulators, or test execution traces from test runs.

TDL supports the design of black-box tests for distributed, concurrent real-time systems. It is applicable to a wide range of tests including conformance tests, interoperability tests, tests of real-time properties and security tests based on attack traces.
Taking into consideration, that the model-based methods have been an important development in helping organizations build software with higher quality, and that the Unified Modeling Language (UML) is the most popular modeling language, the Object Management Group (OMG) is standardizing the UTP, which provides extensions to UML to support the design, visualization, specification, analysis, construction, and documentation of the artifacts involved in testing. Similar to TDL, it is independent of implementation languages and technologies, and can be applied in a variety of domains of development.
TDL and UTP are representative cases of approaches to formal test descriptions. Irrespectively, whether TDL or UTP is used to provide formal test description and test models, the generic TaaS work flows for manual and/or automatic test design use cases, as described in Section 5, remains the same. Depending on the chosen description language, the TaaS Test Method Query Service will return the status of available test methods for test generation, scheduling, execution and arbitration, and the TestGen&Run invokes appropriate test methods based on the initial test descriptions.

Within the MIDAS project, the System models are based on the UML-based Domain Specific Language (DSL), as an extension of the UTP. The mail reason for the selection of the UML-based approach within the MIDAS project lies in the wish to align to the degree possible the design and implementation of the IUT and the generation of the test suites for the IUT. In contrast of the conformance testing, where the System test models are primarily derived manually from system requirements, the goal of the MIDAS project was mainly to support functional, usage based and security testing of the existing SOA implementations, and to provide to the degree possible test automation, which relies in the automatic generation of System models and test suites directly from machine readable implementations of SUT. Additional test generation setting and rules which direct the test suites generation such as usage profiles (e.g. recorded traces), data and behaviour fuzzing, automated test planning and scheduling algorithms, have been developed, prototyped and used within the MIDAS project.
For clarity, in the rest of this document we will use MDSL (as MIDAS DSL) abbreviation to distinguish project specific implementation from any other, standardized test description language (e.g. TDL, UTP).
In addition, MDSL specifies the constraints DSL-compliant models that have to abide by. Both the MDSL and the model constraints are essential for TPaaS user that want to use UML as their modelling language.

For completeness of description provided within this technical Report, the used MDSL is briefly described.

6.1
MDSL conceptual model

This section discusses the relevant concepts of a canonical test model (henceforth called test model). The test model represents the canonical data model for the integration of the services of the TPaaS. The deployed TPaaS services interoperate in a loosely coupled manner by exchanging information via the test model.

The conceptual model concentrates on the mere information pertinent to specifying test models without dealing with issues that are related to the actual implementation of the concepts defined in the conceptual model.

The outline of the section is slightly aligned with the phases of a test process, inspired by the International Software Testing Qualifications Board (ISTQB) fundamental test process.
6.1.1
Test Planning Concept

The section describes concepts required to structure and plan test activities within the dynamic test process as shown in Figure 13.
[image: image13.jpg](15029119]
TestPlan

decomposed into sub test plans

0..* test types

managed by paren test plan

0..* test level

[15029119)
TestType

[15029119]
TestLevel

Figure 13: Conceptual test planning model.

A TestPlan is an organizational unit that comprises test artifacts and testing activities for a certain test sub-process, usually in the context of an overall test process of a test project [Figure 13]. A TestPlan usually targets TestTypes or TestLevels. A TestType represents a feature of a certain software quality model (e.g., Functionality). A TestLevel indicates that coherent testing activities of a phase in the overall test process are channeled towards one or more compositional boundaries of a TestObject. Examples of well-known test levels are component testing, integration testing and system testing.

A TestPlan might be decomposed into sub-process plans, each of which targeting a different TestType and/or TestLevel. The semantics of this is that the activities identified for this TestPlan are further distinguished. The parent test plan is supposed to manage its sub test plans. Any TestLevel or TestType specified by a parent test plan are taken over by the sub test plans. A test plan might be structured in different ways, but among others either as sub-structured test plan,

· Test Plan A, testLevel := System testing

· Test Plan A1, testType := Functionality

· Test Plan A2, testType := Performance

or as a flat test plan,
· Test Plan B, testType := Accuracy, testLevel := Component testing

· Test Plan B, testType := Security, testLevel: Acceptance testing
6.1.2
Test Analysis Concepts
Test analysis activities have to be carried out for each test plan. They are preparatory for the test design phase. The test analysis phase is about identifying, classifying, describing and preparing the input artifacts relevant to the respective test plan for later test design activities. A fundamental activity of test analysis is to evaluate whether the input artifacts are appropriate and suffice for the activities to be carried out in the current test plan.

[image: image14.jpg][15029119]
TestCondition

[15029119]
TestRequirement

Requirement

UseCase

identified for

makes testable

derived from

[15029119]
TestBasis

[15029119, test item]
TestObject

expected behavior of

Figure 14:Test Analysis Concepts.

The most important input in order to start the test design activities is the TestObject. A TestObject (or test item) is a work product that is the object of testing. In static testing, such as inspections, walkthroughs or reviews, the TestObject represents the requirements specification, a detailed design specification, the ultimate source code, manuals or anything else that can be validated without executing the TestObject. In dynamic testing, the TestObjects represents the actual system or parts of it that can be tested separately. The extent of the TestObject is often predefined by the TestLevel for a given test plan, thus, if the TestLevel refers to component testing, the TestObjects are supposed to be components of the actual system. The identification of the TestObject’s interfaces is necessary in order to determine how the TestObject needs to be connected with the test execution system. Since the TestObject merely specifies (parts of) the actual system, the actual (technical and implemented) interfaces does not have to correspond necessarily with the logical one. Abstracting from technical details helps to focus on what actually matters for the given test plan.

The second important body of knowledge for later test design is the TestBasis. The TestBasis comprises any information that helps inferring the expected behavior of the TestObject. As shown in Figure 13, the TestBasis might be represented by the requirements specification, uses cases, usage scenarios, design specification, or even the experiences from users of system – in which case the TestBasis would be imprecise and imperfect, but nevertheless available. The concrete representation of a TestBasis is, of course, project-specific and cannot be further refined on the conceptual level.

The identification and preparation of the TestBasis leads to the definition of TestConditions. A TestCondition is a “testable aspect of a component or system, such as a function, transaction, feature, quality attribute, or structural element identified as a basis for testing” [i.10] Figure 12. It derived from the TestBasis and the knowledge about the TestObject. TestConditions are the objectives for design and executing test cases (see TestObjective [i.10]). As with the TestBasis, the nature, extent and manifestation of TestConditions is project- and methodology-specific. For example, if the requirements specification is sufficiently subtle and detailed, the requirements themselves may assume the role of a TestCondition. In most development projects, however, the requirement specification needs further amendments in order to be unambiguous, which is a prerequisite for a testable requirement. Thus, the notion of TestRequirement is introduced in this conceptual model. A synonym for TestRequirement is TestPurpose (which is used by ETSI’s testing methodology). It has to be said that both ISO 29119 and ISTQB treat TestRequirement and TestCondition as synonyms. This is also covered in the conceptual model (), for a TestRequirement is a TestCondition, whereas the TestCondition might be a TestRequirement but does not necessarily have to. We wanted to emphasize that there might be additional information required in order to have a satisfying collection of sufficiently precise test conditions available for test design. Thus, TestRequirements turn the TestBasis into a testable TestBasis if required. Please consider the following example:

Assume there is the following functional requirement for a login behavior that states:

F-Req 1: “A registered user shall

be able to login into the system.”

Although this requirement seems to clearly state the expected functionality that has to be provided by the actual implementation, the information is barely usable for testing. What does it mean that a user has to be registered? What is expected if a non-registered user tries to log in into the system?

Thus, TestRequirements might be defined that are derived from the functional requirement, but turn it into testable requirements (or in short: TestRequirement):

F-TReq 1 (F-Req 1): “Ensure that a user with a valid username and password combination is able to login into the system. A valid username is defined as string with a length of 3 to 10 characters which are allowed to be lower case and upper case letters and digits. A valid password is defined as a string with a length of 6 to 15 characters which are allowed to be upper case letters, lower case letters and digits. The first character of must be an upper case letter. Usernames and passwords are obtained from a dedicated data source that contains all registered user for the system.”
F-TReq 2 (F-Req 1): “Ensure that a user with a valid username, but invalid password is not able to login into the system. The message ‘Invalid password for that username’ shall be displayed to the user.”

F-TReq 3 (F-Req 1): “Ensure that three invalid attempts to login for a valid username within a period of 3 minutes ban the username for further request for a period of 5 minutes. The message ‘You entered an invalid password for that username three times in a row. The username is banned for 5 minutes.’”

F-TReq 4 (F-Req 1): “Ensure that a banned username is not able to login into the system within the ban period, even though the valid password for that username was provided. The message ’That username is banned. Further login attempts are not possible. Please retry later.”
F-TReq 5 (F-Req 1): “Ensure that an unknown user, i.e., a username that is not registered in the dedicated data source, is not able to login into the system. The message ‘Username unknown’ shall be displayed to the user.”
These 5 TestRequirements elicit the information required for the testers to handle both the expected and unexpected behavior of the single requirement.

6.1.3
Test Design Concepts

Test design activities aiming at “… transforming general testing objectives into tangible test conditions and test cases” [i.12] by applying test design techniques which are deemed suitable for the given test object. This transformation (often called test derivation) can be carried out manually or automated, which case it is often called test generation.

Regardless whether being performed in a manual or automated manner, the outcome of the test design phase heavily depends on the knowledge built during and eventually obtained from the test analysis phase. Most evidently, test design activities deal with the design of test cases. Even though often not mentioned, but implicitly addressed, the design of test data and the test configuration is a crucial task of the test design phase without a later execution of test cases is not possible at all. Consequently, test design concepts are further sub-structured into test case, test configuration and test data design concepts.
6.1.4
Test Case Concepts

The most obvious outcome of a test design process of a TestPlan are TestCases. TestCases are either derived manually or generated automatically from an appropriate input source (such as a formal or semi-formal model). Figure

[image: image15.jpg][1509646-1]
Verdict

[15029119) [15029119)
results in Rl objective of testing | TestCondition
parametrizable by
requires [15024765) guarantees
Parameter
(1s7Q8] (isTa8)
Precondition Postcondition
represents
sends test orcale
[uTP] [uTP]
stimulus Response

Figure 15: Test Case Concept.

A TestCase is kind of a function that always produces a Verdict. A Verdict is a statement of "pass", "fail" or "inconclusive" concerning the conformance of an SUT with respect to the expected responses defined in test case when it is executed. [ISO9646-1, adapted]. Some test execution system provide a further Verdict called “error” to indicate that something technically went wrong while executing a test case (like the breakdown of network connection or similar).

TestCases are designed for a certain objective (see TestObjective [i.12]) of testing. This objective is given by the previously identified TestConditions. A TestCase may be restricted to realize only one TestCondition or it may realize a set of interrelated TestConditions. This is specific to the testing methodology the test design activities have to adhere to. In practice, TestCase may either refer directly to e.g., requirements as their objective of testing (in case the requirement is testable) or to TestRequirements. The fact that the objective of testing is a TestCase is actually a TestCondition allows for both ways.

TestCases are usually built on the assumption that the SUT or the test environment is in a certain condition. These conditions that need to be met before being able to execute a test case are called Preconditions. For a TestCase is supposed to change the conditions of the SUT or the test environment during the execution, it guarantees a certain Postcondition the SUT or test environment will be in if the SUT behaves as expected.

The fundamental means of TestCases are Stimulus and Response. A Stimulus represents input to the SUT, sent by TestComponents, in order to stimulate the SUT and provoke a reaction from the SUT corresponding to that (or multiple) Stimulus. A Response represents the provoked reaction of the SUT according to previous Stimuli. The Response represents the so called TestOracle [i.12] that allows determining whether the actual reaction of the SUT during test execution complies with the Response. A Response always represents the expected reaction of the SUT in a TestCase, since a TestCase simply specifies how the SUT is supposed to behave, but does not tell anything whether it actually behaved as expected. This information can only be given after or during test execution.

Stimuli and Responses describe, thus, the information exchange between the SUT and the TestComponents (or the test environment), however, they abstract from the actual technical representation of how the information exchange will be realized. They are just placeholder for a concrete information exchange measure like synchronous calls, asynchronous messages, continuous signals, a user’s interactions with a graphical user interface, or even a physical object provided into any kind of mechanical SUT (like can into a scrap press).

TestCases are often parameterised, especially in data-driven test execution. A parameterised TestCase allows for reuse of its semantics with different sets of TestData. This gives rise to capability to separate TestData from the TestCase. Such TestCases are often called abstract TestCase, whereas the term abstract simply refers to the omittance of concrete Stimuli and Responses in the actual implementation of TestCase. Instead, the Parameters of a TestCase are used to specify the Stimuli and Responses. A TestCase that omits (parts of) its TestData can only be executed when the omitted parts are eventually provided.
6.1.5
Test Data Concepts
Test data represents “data created or selected to satisfy the pre-conditions for test execution, which may be defined in the test plan, Test Case or Test Procedure.” Pre-condition for test execution in terms of test data means that all the data required for actually executing a test case is available and accessible. In that sense, the absence of test data for the test execution would consequently mean that a test case cannot be executed. This understanding of pre-condition is slightly different from how pre-condition is usually understood (i.e., as a logical constraint on the values of data that is going to be feed into a method, for example). Usually, adherence to a pre-condition of a method or contract determines and assures a certain post-condition. On the contrary, the availability of test data for test execution (which is the pre-condition) does not assure that the expected behavior of the SUT actually complies with actual behavior, nor that the post-condition after execution is fulfilled.

It has to be said that the understanding of test data is not unified. For example, ISTQB defines test data as “data that exists (for example, in a database) before a test is executed, and that affects or is affected by the component or system under test.” That definition does not refer to the data used to stimulate the SUT or evaluate its actual response, but to the data (potentially within the SUT) that is affected by the execution of a test case.

Figure 15 shows the model for the test data concepts.

[image: image16.jpg](1sTa8] described byl 115029119]
Response TestData
(e} describes set of
fnstance of

[ute)
TestDataValue

described by

[1sTQ8]
Stimulus

[ute]
DataPool

Specifies source of

Figure 16:Test Data Concepts.
In this conceptual model, we stick with the definition from ISO 29119, but adjust it slightly. TestData is used either for stimulating the SUT or evaluating whether the actual responses complies with the actual one during the execution of TestCase. TestData is either a concrete value (e.g., a number, literal or instance of a complex data type) or a logical partition that describes (potentially empty) sets of concrete values.

The first one is referred to as TestDataValue. It stands for concrete and deterministic values used for stimulating the SUT. This follows a certain best practices in the testing domain, namely that the stimulation of an SUT has to be deterministic and identical regardless how often the test case is going to be executed. This can be easily assured, for the TestComponents that actually stimulate the SUT, is under fully control of the SUT and, thus, predictable in terms of what they are supposed to send. Non-deterministic and varying stimuli for the very same test case in subsequent executions do not help whatsoever from a tester’s point of view.

DataPartitions are means to specify sets of TestDataValues. Usually, DataPartition are constructed by means of logical predicates over the DataPartition or fields of it, in case of complex types. DataPartitions are heavily used in the testing domain, e.g., for the specification of equivalence classes etc. DataPartitions are means to data generation, for they logically (must not necessarily mean formally) specify sets of data either being used as stimulus or response.

In opposite to a Stimulus, which only uses TestDataValues, a Response can be also described by a DataPartition. Such Responses might be realized as allowed range values for integers, regular expression for strings or collections of allowed values.

A DataPool specifies an explicit container for TestDataValues without prescribing the technical characteristics, location or kind of that container. A DataPool may represent a model, relational database, text file, eXtended Markup Language (XML) file or anything that is deemed suitable for retrieving concrete TestDataValues.
6.1.6
Test Derivation Concepts
Even though the TestBasis and TestConditions provides information about the expected behavior of the TestObject and the TestCases refer to TestConditions as their objectives of testing, the actual process of deriving test cases (and all related aspects like test data and test configuration) from the TestConditions has to be explicitly carried out. The test derivation process is maybe the most time-consuming and error prone task in the entire test process. Figure 16 shows the conceptual model of the test derivation activities.

[image: image17.jpg][15029119]
Test Condition obtained from
determines
fulfl ;
115029119, test completion criteria] | "1 [15029119] lappropriate for 15029119, test model]
Test Coverage Goal Test Design Technique takes asinput| Test Design Model
produces erives
[15029119) covers [15029119]
Specifies | Test Coverage Item realizedby TestCase

Figure 17: Test Derivation Concepts.

In order to finally design TestCases, a TestDesignTechnique has to be applied. A TestDesignTechnique is a method or a process, often supported by dedicated test design tools, to derive a set of TestCoverageItems from an appropriate TestDesignModel. A TestDesignModel refers to a model that is specified either as

· mental, (i.e., a model within a tester’s mind solely or sketched using a non-digital medium like a traditional notepad),

· informal (i.e., a model expressed as plain text or natural language but in a digital format),

· semi-formal (i.e., a model with formal syntax but informal semantics like UML), or

· formal (i.e., a model has both a formal and unambiguous, hence automatically interpretable semantics and syntax)

models.

The TestDesignModel is obtained from the TestConditions, since the TestConditions contain the information about the expected behavior of the TestObjects. Thus, a tester utilizes the information given by the TestConditions to construct the TestDesignModel in whatever representation. This is the reason for Robert Binder’s famous quote that testing is always model-based.

As always with models, the TestDesignModel must be appropriate for the applied or decided to be applied TestDesignTechnique. An inappropriate model might not be able to produce an optimal result, though. There is a correlation between the TestDesignTechnique and the TestDesignModel, however, since both are determined or influenced by the TestConditions. For example, if the TestCondition indicated that the TestObject might assume different states while operating, the TestDesignModel may result in a State-Transition-System. Consequently, a TestDesignTechnique (like state-based test design) ought to be applied.

A TestDesignTechnique tries to fulfill a certain coverage goal (the term used by ISO 29119 is Suspension Criteria, which is actually not that commonly understood). A TestCoverageGoal declares what kind of TestCoverageItems are to be produced and subsequently covered by TestCases. The actual test design process might be carried out manually or in an automated manner.

A TestCoverageItem is an “attribute or combination of attributes to be exercised by a test case that is derived from one or more test conditions by using a test design technique”. The term TestCoverageItem has been newly introduced by ISO 29119, thus, it is expected not to be fully understood at first sight. A TestCoverageItem is a certain item that has been obtained from the TestCondition, but made been explicit through a TestDesignTechnique.

The following example discusses the differences between TestCondition, TestDesignModel and TestCoverageItem:

Let us assume there is a functional requirement that says the following, where the bold words indicate the TestObject, the italic words potential states the TestObject shall assume und the underlined word an action that triggers a state change:

F-Req 1: “If the On-Button is pushed and the system is off, the system shall be energized.”

According to ISO 29119, all the identifiable states (and the transitions and the events) encoded in the functional requirement represent the TestConditions for that TestObject. A modeled State-Transition-System according to the TestCondition represents the TestDesignModel. The TestDesignTechnique would be “State-based test derivation”. The TestCoverageGoal would represent a certain Suspension Criteria like full 1-Switch-Coverage (or transition-pair coverage). The TestCoverageItems would be represented by all transition pairs that have been derived by the TestDesignTechnique, which are finally covered by TestCases.

There are certain inaccuracies in the ISO 29119’s test design concepts. At first, the actual test coverage, defined by ISO 29119 as the “degree, expressed as a percentage, to which specified coverage items have been exercised by a test case or test cases”, does not take the actual number of potentially available TestCoverageItems into account. In the above mentioned example, the requirement could have mentioned a third state the system might assume, but which had not been produced by the TestDesignTechnique due to either an incorrect derivation or explicit statement in the TestCoverageGoal to spare that particular TestCoverageItem (i.e., state). Regardless, if the TestCase covered all produced TestCoverageItems, the actual test coverage (according to ISO 29119) would be 100%. What is missing is a coverage definition of covered TestConditions. Otherwise, it would be possible to state that 100% test coverage has been achieved, even though merely 10% of all TestConditions were actually covered. Therefore, we identified the following three issues with the ISO 29119 test design conceptual model:

1. Test coverage need to take into account all possibly available Test Coverage Items encoded in the Test Design Model, and not only those Test Coverage Items that have eventually been produced. This is in particular relevant for model-based approaches to test design, for the TestCoverageItems are not explicitly stored for further TestCase derivation, but rather automatically transformed into TestCases by the test generator on the fly. This means that in a model-based test design process the TestCases always cover 100% of the produced TestCoverageItems. This is just consequent, since the TestCoverageItems were produced according to a specific TestCoverageGoal, thus, the TestDesignTechnique only selected those TestCoverageItems (out of all potentially identifiable TestCoverageItems) that are required to fulfill the TestCoverageGoal. Ending up in a situation where the eventually derived TestCases does not cover 100% of the produced TestCoverageItems would violate the TestCoverageGoal and consequently not fulfill the suspension criteria of the actual derivation process.
2. TestDesignTechniques does not only derive TestCases, but also TestData and/or TestConfigurations. The test design process deals with the derivation of all aspects that are relevant for finally executing TestCases. The TestConfiguration (i.e., the identification of the SUT, its interfaces and the communication channels among the test environment and the SUT) is a crucial part of each TestCase, when it comes down to execution. Same, of course, holds true for TestData.
3. The concept of a TestDesignTechnique, as defined and described by ISO 29119, needs to be further differentiated. In relevant, yet established standards for industrial software testing (such as ISO 29119, IEEE:829 and even ISTQB) a TestDesignTechnique is regarded as a monolithic and isolated concept. This, however, is not the case, because the actual test derivation process consists of a number of separate strategies that represent dedicated and distinguished course of actions towards the TestCoverageGoal. These course of actions operate in combination to eventually produce the TestCoverageItems. Thus, those strategies contribute their dedicated semantics to the overall test derivation process for a given TestDesignModel they are involved in. Examples for well-known strategies are classic test design techniques like structural coverage criteria or equivalence partitioning, but also less obvious and rather implicit parameters like the naming of Test Cases or the final structure or representation format of Test Cases. For example, the so called State-Transition-TestDesignTechnique might be based on an Extended Finite State Machine (EFSM), so that solely applying structural coverage criteria (like all-transition-coverage etc.) do not suffice, for the strategy how to treat the TestData-relevant information of that EFSM are not defined. By adding also a TestData-related strategy (such as equivalence partitioning), it is possible to explore and unfold the EFSM into an FSM that represents the available TestCoverageItems for ultimately deriving TestCases. So, the discussion gives rise to the result that the conceptual model of ISO 29119 needs to be be augmented with the notion of TestDesignStrategies that are governed by TestDesignDirectives.
6.1.7
Refined Test Design Concepts

This section mitigates the conceptual imprecisions of the ISO 29119’s test design concepts by further differentiating the TestDesignTechnique into TestDesingDirectives and TestDesignStrategies. These notions are adopted from the OMG Business Motivation Model [i.13] which actually could have also been named Endeavour Motivation Model, for it provides a fine-grained conceptual model to analyze the visions, reasons, influencers of a business’ (or endeavor’s) in order to deduce its overall motivation.

[image: image18.jpg][15029119, test model] | context

Test Design Model

[

(15029119, suspension criteria]

Test Coverage Goal

aiming to fulfill

addresses

sub directive

TestDesignDirective

governs at least one

provide results to

i M

TestConfigurationDirective TestCaseDirective TestDataDirective
produces produces produces
[ute] [15029119] [15029119]
TestConfiguration TestCase TestData

TestDesignStrategy

sub strategy

produces

[15029119]
Test Coverage Item

Figure 18: Redefined Test Derivation Concepts.

Figure 17 shows the redefined test derivation conceptual model in which the monolithic TestDesignTechnique concepts is split up into TestDesignStrategy and TestDesignDirective.

A TestDesignStrategy describes a single, yet combinable (thus, not isolated) technique to derive TestCoverageItems from a certain TestDesignModel either in an automated manner (i.e., by using a test generator) or manually (i.e., performed by a test designer). A TestDesignStrategy represents the semantics of a certain test design technique (such as structural coverage criteria or equivalence partitioning) in a platform- and methodology-independent way and are understood as logical instructions for the entity that finally carries out the test derivation process. TestDesignStrategies are decoupled from the TestDesignModel, since the semantics of a TestDesignStrategy can be applied to various TestDesignModels. However, the intrinsic semantic of a TestDesignStrategy needs to be interpreted and applied to a contextual TestDesignModel. This gives rise to the fact that TestDesignStrategies can be reused for different TestDesignModel, though a concept is needed that precisely identifies that TestDesignModels and governs the interaction of TestDesignStrategies. According to and slightly adapted from the BMM, this concept is called TestDesignDirective.
A TestDesignDirective governs an arbitrary number of TestDesignStrategies that a certain test derivation entity has to obey to, and channels their intrinsic semantics towards the contextual TestDesignModel. A TestDesignDirective is in charge of fulfilling the TestCoverageGoal. Therefore, it assembles appropriately deemed TestDesignStrategies to eventual fulfil the TestCoverageGoal. The assembled TestDesignStrategies, however, addresses the TestCoverageGoal by being configured in the context of particular TestDesignDirective. A TestDesignDirective is an abstract concept that is further specialized for the derivation of TestConfigurations, TestCases or TestData. The semantics of a TestDesignDirective in the entire test derivation process with respect to its relationship to the TestDesignStrategies, however, remains the same for all specialized TestDesignDirectives.

The TestCoverageItems that are produced by TestDesignStrategies are always fully covered by the produced TestConfigurations, TestCases or TestData. Thus, they reduced to a pure implicit concept. That is the reason why they are shaded grey.

6.1.8
Test Scheduling Concepts
The organization and scheduling of test cases by virtue of specific conditions, interdependencies or optimization properties (e.g., priority of test cases or test conditions) has to be done prior to the execution. The term “Test Schedule” as defined by ISTQB as “a list of activities, tasks or events of the test process, identifying their intended start and finish dates and/or times, and interdependencies” has a broader scope than what is supposed to be described in this section, for it address all activities that have to be carried out sometime during the entire test process. However, the concepts identified from ISO 29119 and mentioned in this section merely focus the (hopefully optimized) grouping an ordering of test cases for the test execution. Figure 18 shows the conceptual model pertinent to establish a test schedule for execution.

[image: image19.jpg]subTestSuite

15029119 test set] runs againts re]
TestSuite sut
has execution order assembles
orders|
115029119] for executi (15029119] applies to
TestProcedure TestCase
determines execution has single
order of (15029119, pass/fail criteria]
Ar
has single Spec
[MIDAS] results in
Scheduling
Specification (UTP, 1S09646-1]
Verdict decides on

Figure 19: Test Scheduling Concepts.

A TestSuite is a “set of one or more test cases with a common constraint on their execution (e.g. a specific test environment, specialized domain knowledge or specific purpose)”. Thus, TestSuites are defined in order to channel the execution TestCases they assemble towards a certain purpose. The fundamental idea of organizing TestCases in TestSuites is to rely on the very same conditions, restrictions, technologies, etc. for all TestCases, so that the execution of these TestCases is hopefully carried out rather homogeneously. Homogeneously in this context means that it is expected to have little logical or technical (better, no) disturbance during the execution of the TestSuite.

TestSuites assemble TestCases, however, TestCases can be assembled by more than one TestSuite. This makes perfectly sense, since a TestCase for functional system testing might be selected also for functional acceptance or regression testing. Taken the definition of TestSuite from ISTQB into account (“A set of several test cases for a component or system under test, where the post condition of one test case is often used as the precondition for the next one.”) it is obvious that TestCases need being organized within the TestSuite in order to optimize the test execution. Again, the main goal for optimizing the test execution order is to have little (better, no) disturbance during the execution of the TestSuite.

The test execution order of a TestSuite is described by the TestProcedure. A TestProcedure describes a “sequence of test cases in execution order, and any associated actions that may be required to set up the initial preconditions and any wrap up activities post execution”, where it is common that they “include detailed instructions for how to run a set of one or more test cases selected to be run consecutively, including set up of common preconditions, and providing input and evaluating the actual result for each included test case.” Thus, the TestProcedure concept reflects the overall goal of building TestSuites as mentioned before.

The execution order of TestProcedures is either once identified and afterwards immutable, or can be changed during test execution. In order to continually optimize the execution order, it might be possible to re-schedule or re-order TestProcedures during test execution based on actual results of executed TestCases. For example, if one TestCase is supposed to establish with its post-condition the pre-condition for a subsequent TestCase and that first TestCase fails, it does not make sense to execute the subsequent TestCase. Thus, TestProcedure possess a (mostly static and implicitly given by the ordered list of TestCases itself) certain SchedulingSpecification. This concept is not part of MIDAS, but was introduced in and for the EU MIDAS project. A SchedulingSpecification of a TestProcedure specifies the execution order of TestCases organized in the TestProcedure either dynamically or statically. The actual realization or implementation or interpretation of the specified scheduling is not determined or prescribed by a SchedulingSpecification.

As said before, the execution order of TestCases within a TestProcedure might be re-scheduled because of the execution result of TestCase. The result of a TestCase is represented by a Verdict (as already explained in section (6.1.4). Verdicts needed to be calculated while executing a TestCase, e.g., by evaluating whether an actual Response from the SUT complies with the expected one. The calculation of and final decision on A TestCase’s Verdict is done by a so called Arbiter. An Arbiter is a (often implicit) part of the TestExecutionSystem that ultimately returns the Verdict. Whereas the arbiter is part of the text execution system, the specification of how the final Verdict has to be decided on belongs to the TestCase. This is called ArbitrationSpecification and has to been seen as synonym for the ISO29119’s pass/fail criteria, which is defined as “decision rules used to determine whether a test item has passed or failed a test.” Similar to the SchedulingSpecification, the ArbitrationSpecification merely specifies the rules to determine whether a TestCase has passed or failed, but does not prescribe a certain implementation of the Arbiter. An ArbitrationSpecification can be represented as simple as an identifier specifying a concrete Arbiter implementation, or as complex as a precise and formal or executable specification (e.g., expressed with executable UML, Java or formulae).
6.2
Realisation as UML Profiles

This section specifies how the conceptual model defined in section [i.12] “Conceptual Model” is implemented as a dedicated MIDAS UML profile. The implementation incorporates the UTP as starting point in order to assure standard compliance. If improvements to the current UTP are identified or extensions are required, the MIDAS profile will deviate from UTP. Deviations that are unspecific to MIDAS, but rather dedicated to unsatisfactory or insufficient applicability or adequacy of a UTP concept, are good candidates for change request for the UTP.

[image: image20.jpg]<<implements>>

[]

MIDAS DSL
conceptual model

“\ <<implements>>

<<profile>>

utp

<<profile>>
midas

Figure 20: Implementation of the MIDAS DSL as complementary UML profiles.
The implementation of the conceptual model distinguishes three different kinds of implementations:

1. Direct implementation: A direct implementation is given if a concept of the conceptual model has a dedicated counterpart in the profile implementation. For example, the conceptual TestCase has a direct counterpart on UTP, i.e., the stereotype <<TestCase>>

2. Indirect implementation: An indirect implementation is given if a concept from the conceptual model has no direct counterpart in UTP, but can be expressed with UML. E.g., the TestObject can be represented by ordinary UML classifier, whereas it is neither known a priori nor restricted what classifier ought to be used to represent the TestObject.

3. Part implementation: A part implementation is given if a concept from the conceptual model represents a part of a metaclass or stereotype of broader scope. For example, the Precondition is a part implementation of UML::Operation, since UML::Operation is able to express preconditions. TestConfiguration is a part implementation of UTP::TestContext, since UTP::TestContext implements the concept TestConfiguration as its composite structure.
6.2.1
Test Planning Concepts Implementation

Test planning concepts are not relevant for the MIDAS scope.
6.2.3
Test Requirement Implementation

The TestRequirement concept is directly implemented by UTP 1.2. See stereotype <<TestObjectiveSpecification>> for further information.

6.2.4
Test Object Implementation

The TestObject concept is indirectly implemented by UML. Since the TestObject assumes the role of an SUT within a TestConfiguration this gives rise to the fact that a TestObject might be represented by any UML::Type subclass.

Due to the fact that the black-box character of MBT requires well defined interfaces and dedicated points of communication of the SUT with its environment, the TestObject is required to be a subclass of UML::EncapsulatesClassifier, which is restricted to be one of the following: Class, Component, and Node.

6.2.5
Test Component Implementation

The TestComponent concept is directly implemented by UTP 1.2. See stereotype <<TestComponent>> for further information.

6.2.6
SUT Implementation

The SUT concept is directly implemented by UTP 1.2. See stereotype <<SUT>> for further information.

In addition to what is given by UTP 1.2, the type of a <<SUT>> property has to be compliant with the restriction on the TestObject.
6.2.7
Test Configuration Implementation

The TestConfiguration concept is a part implementation of the UTP 1.2 stereotype <<TestContext>>. See stereotype <<TestContext>> for further information.
6.2.8
Test Case Implementation

The TestCase concept is directly implemented by UTP 1.2. See stereotype <<TestCase>> for further information.

A <<TestCase>> Operation and its method have to be owned by <<TestContext>> classifier (see BehavioredClassifier.ownedBehavior and Class.ownedOperation). The <<TestComponent>> parts and <<SUT>> parts that are involved in a <<TestCase>> have to be parts of the TestConfiguration (i.e., the composite structure) of the surrounding <<TestContext>> classifier.

6.2.9
Precondition Implementation

The Precondition concept is indirectly implemented by UML (i.e., Operation.precondition). See metaclass Operation for further information.

6.2.10
Postcondition Implementation

The Precondition concept is indirectly implemented by UML (i.e., Operation.postcondition). See metaclass Operation for further information.
6.2.11
Parameter Implementation

The Parameter concept is indirectly implemented by UML (i.e., Operation.ownedParameter). See metaclass Operation for further information.
6.2.12
Stimulus Implementation

The Stimulus concept is indirectly implemented by Message (i.e., Interaction.message). See metaclass Interaction and Message for further information.

A Stimulus is given if the message’s sending end covers a Lifeline that represents a <<TestComponent>> part and the receiving end covers a <<SUT>> part of the TestConfiguration (i.e., the composite structure of the <<TestContext>> classifier).

6.2.13
Response Implementation

The Response concept is indirectly implemented by Message (i.e., Interaction.message). See metaclass Interaction and Message for further information.

A Response is given if the message’s sending end covers a Lifeline that represents a <<SUT>> part and the receiving end covers a <<TestComponent>> part of the TestConfiguration (i.e., the composite structure of the <<TestContext>> classifier).

6.2.14
Verdict Implementation

The Verdict concept is directly implemented by UTP 1.2. See enumeration Verdict for further information.

6.2.15
Test Design Model Implementation

The TestDesignModel concept is indirectly implemented by UML. Potential candidates for TestDesingModel implementations are the behavioral descriptions Interactions, StateMachines, Activties (or InstanceSpecification thereof) or structural specifications like Interfaces, Types and Constraints.

6.2.16
TestData Implementation

The concept TestData is not supposed to be implemented. It is part of the conceptual model merely to distinguish between either DataPartitions or concrete TestDataValues.

6.2.17
DataPartition Implementation

The concept DataPartition is indirectly implemented by UML and directly implemented by UTP 1.2.

See UML::Interval and the UTP stereotypes <<DataPartition>>, <<LiteralAny>> and <<LiteralAnyOrNull>> for further information.

The MIDAS profile contributes two further DataPartition implementations to the already given implementations of UTP. These are called RegularExpression and SetExpression (see Figure 20).

[image: image21.jpg]«metaclass»

«metaclass»

OpaqueExpression Expression
«stereotype» «stereotypen

RegularExpression

SetExpression

Figure 21: Abstract syntax of MIDAS extensions for the DataPartition concept.
A RegularExpression is an Expression that allows for specifying a pattern (either for test generation or Response comparison) a string must abide by. OpaqueExpression.language is supposed to contain the name of the format of the applied regular expression (e.g., PSOIX, TTCN-3 etc.) and OpaqueExpression.body contains the actual regular expression. A <<RegularExpression>> OpaqueExpression must have at least one language-body-pair.

A SetExpression specifies a set of single values, each of which are separately used for either comparison of responses or test generation. A SetExpression is not be interpreted as a collection of values in a native sense such as OCL Collections or Java List. A SetExpression resembles Enumerations, however, it is more expressive than an Enumeration for it might use UML::Intervals and UML::InstanceSpecification to describe the set of single values. If a SetExpression is utilized by a Response, the comparison evaluates to true if at least one value in the set of single values is compliant with the actual data conveyed by the Response.

6.2.18
TestDataValue Implementation

The TestDataValue concept is indirectly implemented by UML::ValueSpecification, UML::InstanceSpecification and OCL.

6.2.19
DataPool Implementation

The concept DataPool is directly implemented by UTP 1.2. See the UTP stereotypes <<DataPool>> for further information.

6.2.20
Test Suite Implementation

The concept TestSuite is a part implementation of UTP 1.2. See stereotype <<TestContext>> for further information.

6.2.21
Test Procedure Implementation

The concept TestProcedure is a part implementation of UTP 1.2. See stereotype <<TestContext>> for further information.

6.2.22
Scheduling Specification Implementation

The concept SchedulingSpecification is a direct implementation provided by the MIDAS profile.

[image: image22.jpg]«metaclass»
Behavior

«stereotype»
SchedulingSpecification

Figure 22:Abstract syntax of MIDAS extensions for the TestScheduling concept.
The SchedulingSpecification is a behavioral description that specifies the logic of the Scheduler during test execution. Even though possible, it is not required to provide a precise and executable implementation of the Scheduler’s algorithm. Since the SchedulingSpecification is (transitively via its base metaclass Behavior) a UML::NamedElement, the name of the SchedulingSpecification can be used to indicate and identify a certain Scheduler implementation within or provided for the TestExecutionSystem.

6.3
Constraints on the MIDAS DSL

The section specifies the modeling methodology-specific constraints a MIDAS test model must abide by. They are written in natural language and going to supposed to be implemented for the MIDAS modeling environment Papyrus, so that an automated validation of these constraints can be realized.

Whenever a term starts with an upper case, it refers to a metaclass of the UML superstructure. Whenever a term is surrounded by guillemots (i.e., <<,>>) it represents a stereotype defined by the UML Testing Profile. In case other UML profiles are used, a qualifying prefix such as <<SysML::Verifies>> is used.

6.3.1
TestConfiguration/TestContext Constraints

The following list of constraints is defined for the TestConfiguration/TestContext scope.

Constraints
1 <<TestContext>> is only applicable to Component

2 <<TestComponent>> is only applicable to Component

3 There has to be at least one <<TestComponent>> and <<SUT>> part contained in a test configuration.

4 Any two connected Ports have to be different.

5 There has to be at least one Connector that connects a Port of a <<TestComponent>> part with a Port of a <<SUT>> part. The connected Ports need to be compatible with each other. Compatibility of Ports is defined in the UML Superstructure.
6 Connectors are always binary.

7 Connectors may connect only UML::Ports.

8 The type of a Port is either an Interface or a Component.

6.3.2
TestCase Constraints

The following list of constraints is defined for the TestCase scope. The section uses a few newly defined terms for the sake of shortness, which are:

· <<SUT>>/<<TestComponent>> Lifeline: A Lifeline within a test case that represents an <<SUT>> or <<TestComponent>> part

· <<TestCase>> Behavior: A Interaction that is referenced by <<TestCase>> Operation.method

· IN-kind parameter: A Parameter with the ParameterDirectionKind in or inout.

· OUT-kind parameter: A Parameter with the ParameterDirectionKind out, inout or return.
· return parameter: A Parameter with the ParameterDirectionKind return.

· signature: The signature of a Message, which is either an Operation or a Signal.

· Request-Message: A Message of MessageKind asynchCall, asynchSignal or synchCall (see UML Superstructure 2.5
).

· Reply-Message: A Message of MessageKind reply (see UML Superstructure 2.5
)

· Stimulus-Message: A Message that has as its sending end a <<TestComponent>> Lifeline and as receiving end a <<SUT>> Lifeline.

· Response-Message: A Message that has as its receiving end a <<TestComponent>> Lifeline.

Constraints

1 <<TestCase>> shall be only applicable to Operation.

2 A <<TestCase>> Operation refers to exactly one Interaction as its method.

3 A <<TestCase>> Behavior shall contain at least two Lifelines, one representing a <<TestComponent>> part, the other representing a <<SUT>> part.

4 Lifelines shall not be decomposed.

5 Lifelines shall not specify a selector (see Lifeline.selector).

6 As InteractionOperator of a CombinedFragment only the InteractionOperatorKinds alt, opt, loop and <<determAlt>> alt shall be used.

7 The specification of an InteractionConstraints shall either be empty (assuming a specification that always evaluates to true), or be represented by a LiteralString.

8 The specification of an InteractionConstraint of the last and only the last InteractionOperand in a CombinedFragment with InteractionOperatorKind alt or <<determAlt>> may have a LiteralString with value ‘else’ specified.

9 The first InteractionFragment of any <<TestComponent>> Lifeline that is covered by an <<determAlt>> CombinedFragment must be either the receiving end of a Message or a <<TimeOut>>StateInvariant.

10 Messages shall always be of MessageKind complete.

11 Messages can only be established between any two Lifelines that represent parts which are connected by a Connector.

12 The Message shall always specify over which Connector it was sent (i.e., Message.viaConnector shall not be empty).

13 The MessageSort of a Message shall always be one asynchCall, synchCall, reply or asynchSignal.

14 In case the MessageKind is set to asynchCall, the corresponding signature may not have any Out-kind parameters other than ParameterDirectionKind inout.

15 The arguments of a Message shall only be instances of LiteralString, LiteralBoolean, LiteralReal, LiteralInteger, LiteralNull, <<LiteralAny>> LiteralNull, <<LiteralAnyOrNull>> LiteralNull, <<testingmm::RegularExpression>> OpaqueExpression, <<testingmm::SetExpression>> Expression, InstanceValue, Interval or Expression.

16 In case the corresponding signature Parameter or Property is type-compliant with Integer, the argument is restricted to be represented by LiteralInteger, Interval, LiteralNull <<LiteralAny>> LiteralNull, <<LiteralAnyOrNull>> LiteralNull or <<SetExpression>>Expression. In case of the <<SetExpression>>Expression the values of the Expression can be any of the above mentioned ValueSpecifications.

17 In case the corresponding signature Parameter or Property is type-compliant with String or any user-defined PrimitiveType that is not type-compliant with one of the default PrimitiveTypes of UML the argument is restricted to be represented by LiteralString, <<RegularExpression>>OpaqueExpression, LiteralNull <<LiteralAny>> LiteralNull, <<LiteralAnyOrNull>> LiteralNull or <<SetExpression>>Expression. In case of the <<SetExpression>>Expression the values of the Expression can be any of the above mentioned ValueSpecifications.
18 In case the corresponding signature Parameter or Property is type-compliant with Real, the argument is restricted to be represented by LiteralReal, Interval, LiteralNull <<LiteralAny>> LiteralNull, <<LiteralAnyOrNull>> LiteralNull or <<SetExpression>>Expression. In case of the <<SetExpression>>Expression the values of the Expression can be any of the above mentioned ValueSpecifications.

19 In case the corresponding signature Parameter or Property is type-compliant with Boolean, the argument is restricted to be represented by LiteralBoolean, LiteralNull <<LiteralAny>> LiteralNull, <<LiteralAnyOrNull>> LiteralNull or <<SetExpression>>Expression. In case of the <<SetExpression>>Expression the values of the Expression can be any of the above mentioned ValueSpecifications.

20 In case the corresponding signature Parameter or Property is a Class, Signal, DataType or Enumeration, the argument is restricted to be represented by InstanceValue that refers to an InstanceSpecification that has exactly one classifier that is type-compliant with the type of corresponding signature Parameter or Property. Furthermore, LiteralNull <<LiteralAny>> LiteralNull, <<LiteralAnyOrNull>> LiteralNull or <<SetExpression>>Expression are allowed. In case of the <<SetExpression>>Expression the values of the Expression can be any of the above mentioned ValueSpecifications.
21 Expressions without any further Stereotype applied shall only be used in case the upper bound value of a signature Parameter or Properties is greater than 1. The values of that Expression represent the actual data that is exchanged for that signature Parameter or Property and has to abide by the above mentioned constraints with respect to the type of the signature Parameter or Property.
22 In case the MessageKind is either set to asynchCall, synchCall or reply, the Message shall contain arguments for every Parameter of the signature.

23 The ValueSpecifications Interval, <<LiteralAny>> LiteralNull, <<LiteralAnyOrNull>> LiteralNull, <<RegularExpression>> OpaqueExpression or <<SetExpression>> Expression shall only be used as argument for Response-Messages.

24 In case of a Request-Message, the arguments for OUT-kind Parameters of the signature shall be set LiteralNull (meaning, there is no value set at all for these Parameters).

25 In case of a Reply-Message, the arguments for IN-kind Parameters of the signature shall be set to LiteralNull (meaning, there is no value set at all for these Parameters).

26 In case of a Message with MessageKind synchCall, the corresponding Reply-Message shall be received by the same Lifeline from which the call was sent.

27 Removed.

28 The two constrainedElements of a DurationConstraint must point to a sending MessageEnd and receiving MessageEnd of a <<TestComponent>> Lifeline.

29 The expression of a Duration that is referred to as specification of a DurationConstraint shall always be an Interval. As min and max values for the Interval, either LiteralString or LiteralReal shall be used. The min value of the Interval shall be greater equals 0 and lower equals max value.

30 In case the first constrainedElement points to a receiving or sending MessageEnd and the second constrainedElement points to a sending MessageEnd, the Interval of a DurationConstraints shall have min equals max value. This resembles the semantics of Quiescence.

31 In case the first constrainedElement points to a sending MessageEnd and the second constrainedElement points to a receiving MessageEnd, semantics of a Timer is resembled. In case the min value of the DurarionConstraints is greater than 0, it means that the receiving Message is expected to be received after the minimum amount of time units being passed.

32 ExecutionSpecifications are not evaluated.

33 StateInvariants that are not stereotyped by <<ValidationAction>>, <<TimeStart>>, <<TimerStop>> or <<TimeOut>> are prohibited.

34 The use of InteractionUse is not allowed.

35 The use of Gates is not allowed.
6.3.3
TestProcedure Constraints

The following list of constraints is defined for the TestProcedure scope.

1 A TestProcedure is represented as ownedBehavior of a Componen with <<TestContext>> applied.

2 Absence of a TestProcedure Activity means that the execution order of the <<TestCase>> Operations of a <<TestContext>> Component is not specified.

3 Only CallOperationAction and ControlFlow, a single InitialNode and a signle FinalNode are allowed to be used within a TestProcedure Activity.

4 CallOperationAction shall only invoke <<TestCase>> Operations that are contained in the same <<TestContext>> Component of the TestProcedure Activity.

6.4
MDSL Validator

The MDSL Model Validator implements the constraints specified for the MDSL as described above.

The MIDAS Model Validator component is realized as separate GenService of the MIDAS platform. As such the model validation service can be invoked on any UML model that is accessible by the MIDAS platform. It is possible to integrate the MIDAS model validator in a dynamic orchestration specification. However, there is currently no way to interrupt a service execution if the validation fails. Subsequent services are nonetheless executed with incorrect models.

Listing 2 shows the SOAP message that invoked the MIDS model validator within the platform.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header xmlns:SOAP-ENV=" http://schemas.xmlsoap.org/soap/envelope/"/>

<soap:Body>

<TestGenIn xmlns="http://www.midas-project.eu/Core/API/TestGenTypes" xmlns:ns2="http://www.midas-project.eu/Core/API/TestGenInstantiatedTypes">

<methodId>FF-DSlValidation</methodId>

<metadata>

<sourceFileId>
StopWatchExample.uml
</sourceFileId>

</metadata>

</TestGenIn>

</soap:Body>

</soap:Envelope>
Listing 2: XML file for calling the MIDAS Model Validator service.
6.5
TTCN-3 Generator
The TTCN-3 generator generates executable TTCN-3 scripts from any MDSL. The mapping of the two concepts are subsequently summarized:

	MDSL Concept
	TTCN-3 Concept

	TestContext
	Module

	TestContext’s Propety
	Module Parameters, Constants

	TestComponent
	Component (assuming the role of a tester in a test configuration)

	SUT
	Component (assuming the role of the System Interface component in TTCN-3)

	TestCase Operation
	Test Case

	TestConfiguration
	Test Configuration

	TestCase Operation Parameter
	Test Case Parameter

	Test Case Method
	Functions that runs on Components assuming the role of a Test Component

	Primitive Type
	Basic Type and facets thereof

	Data Type
	record

	Enumeration
	Enumerated

	Signal
	record

	InstanceSpecification
	template

	LiteralSpecification
	Primitive Type Literal

	InstanceValue
	Reference to template

	DataPartition
	-

	Interface Component
	Port Type

	Port
	Component Port

	Connector
	Map/Connect

	Interval
	Range/Length

	SetExpression
	List of templates

	Property
	Field (of a record)

	Test Configuration Part
	Instance of a Component in a Test Configuration

	Message Asynchronous Signal
	Non-blocking send-/receive-Message

	Message SynchCall
	call/getcall-Aufruf

	Message Reply
	Reply-/getreply-Aufuruf

	Message AsyncCall
	Non-Blocking call

	DetermAlt
	Altstep

	Loop
	do … while, for, while … do

	Optional CombinedFragment
	If () then

	Alternative CombinedFragment
	If .. else if … else

	DurationConstraint
	timer start (duration), timer stop, timer timeout

	InteractionUse
	Function call

The TTCN-3 test case generator service takes as input a MIDAS DSL compliant model, which is created by a test engineer. The output of the generator is executable ttcn-3 test code, which can be executed on the Workbench. At this version all test cases which are specified in the model will be used by the ttcn-3 test case generator. Listing 1 shows a complete XML for execution the ttcn-3 test case generator from usage a MIDAS DSL compliant model.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"/>

<soap:Body>

<TestGenIn
xmlns="http://www.midas-project.eu/Core/API/TestGenTypes" xmlns:ns2="http://www.midas-project.eu/Core/API/TestGenInstantiatedTypes">

<taskId>TTCN-3Generation</taskId>

<methodId>TTCN-3Generation</methodId>

<metadata>

<sourceFileId> StopWatchExample.uml</sourceFileId>

</metadata>

</TestGenIn>

</soap:Body>

</soap:Envelope>
7
Deployment of the TPaaS on the public cloud infrastructure
Within the MIDAS project, the TPaaS has been designed, architected, and implemented according to a SOA-based paradigm, and provided as an integrated Testing as a Service framework available on demand, i.e., on a self-provisioning, pay-per-use, elastic basis.
More specifically, to allow the test method developer partners (is short TMD Partner) to integrate their methods in the developed TPaaS platform, they have been provided with a seamless, loosely coupled development and integration platform adopting a virtualization approach. The TMD partners have been equipped with an environment relying on open-source and stable virtualization technologies to deploy all the TPaaS components in a consolidated virtual machine. The selected tools
 used to set up the virtual machine allow their users to create and configure lightweight, reproducible, and portable virtual machine environments. The Virtual Box plays the role of the virtual machine hypervisor. This virtual machine includes standard hardware architecture, operating system, developer tools, application containers, web servers, and libraries shared among all partners as a Virtual Machine Image (VMI). The VM software tools are also used to deploy the TPaaS platform on the Cloud infrastructure with all the added components integrated in it (e.g. the TPaaS Production Environment). In such an environment, all TPaaS components, together with a basic TPaaS user front-end, are deployed on the Cloud by exploiting all the Cloud building blocks , such as Cloud Computing resources, Auto Scaling, Storage, Elastic Load Balancing, and so on.

7.1
Integration of test methods on the TPaaS platform

To allow the TMD Partners to integrate their methods in the TPaaS platform, it has been provided them with a seamless, loosely coupled development and integration platform adopting a virtualization approach.

The integration platform supports developer partners in their implementation, debugging and testing activities.

More specifically, the TMD Partners are equipped with a TPaaS Development Environment (in short, devenv_vm). The Development Environment is deployed on a local machine by each developer partner, so allowing to locally provide the basic TPaaS platform by emulating the main building blocks that are available on the TPaaS platform deployed on the Cloud. TPaaS DevE allows TDM Partners the twofold benefits: a) to avoid using Cloud resources in the TPaaS development phase, so allowing for a cost-effective strategy to develop and deploy the TPaaS platform on the Cloud without wasting Cloud resources; b) to guarantee the interoperability of the independently developed components since they are released only once they are stable and run on the same shared development environment aligned among TMD Partners.

The VM software tools are also used to deploy the TPaaS platform on the Cloud infrastructure with all the added components integrated in it. We refer to the TPaaS platform deployed on the Cloud as the Production Environment (in short, prodenv_vm).
In order to allow a complete and easy integration of the software modules into the integrated TPaaS prototype, all the partners develop each module by implementing the correspondent service interface (WSDL) and providing a single Java .war file that includes all the necessary resources (configuration, properties and XML files) and dependencies (.jar and resource files) inside the .war file. In such a way, the Tomcat7 service container can deploy specific class loaders (one per .war) to resolve all dependencies without any external configuration setup.

Beside end user services, which have been described in Section 4.1.1, additional tenancy administration functionalities are offered by two tenancy admin services:

· Identity & Authentication Service: the service implementation exposes APIs to manage the end users of a single tenancy. The tenancy admins will have access to secure mechanism to register, inspect and delete tenancy end users. Registered tenancy end users will be able to access all tenancy services and test methods with transparent secure mechanisms. This service is one of the crosscutting services of the TPaaS platform since it is used by all TPaaS services requiring authentication of end users before they perform any operation. The implemented APIs are used to store structured information (database table), and are built on top of the MySQL Relational Data Base Management System (RDBMS) engine.

· Accounting & Billing Service: this API allows reporting the Cloud resources consumption and usage of a single tenancy. The tenancy admins will have access to secure mechanism to inspect the usage and costs of the tenancy Cloud resources, upgraded regularly according to the Cloud provider accounting and billing policies.
7.1.1
The Database structure for the MIDAS TPaaS
Each tenancy has its own database containing all the tables that are used for the implementation of the Tenancy Admin Services and the End User Services. The database name is the same as the tenancy name. The tables created within the database are:

· user: the table stores the information about the end users belonging to a tenancy. The Identity & Authentication Service provides APIs allowing the tenancy admin to create and delete tenancy end users, as well as to list current members of a tenancy, and to verify that each member of a tenancy is authenticated before invoking the facilities of that tenancy. The table is depicted in Figure 22. The username and password fields are the ones used for the login access to the TPaaS Portal or to authenticate end users before invoking the facilities of that tenancy. The password field is stored by using the BCrypt java library that implements OpenBSD-style Blowfish password hashing.
	[image: image23.png]user table

usemname.

password

Tulname

email

admin

secret

fullname

‘admin@midas.eu

alberto

secret

aberto df

alb df@midas.eu

Figure 23: The user table.

· test_method and test_method_endpoints: they are the tables implemented for the Test Method Query Service. In such tables, the information about the available test methods is stored. The test_method table contains the unique identifiers of the symbolic names of the test methods, the test_method_endpoints table instead stores the information, for each unique symbolic name, about the type of the test component (endpoint_type), and the respective endpoint url (endpoint_url) of the web service implementation. The test components are the service implementations of the WSDL interface related to the Core Services. The database tables are shown in the Figure 23.

	[image: image24.png]]
Testetnodt
Tosthetnod2

TesiMethodUPNC
TostMethodFF 1
TosiMethodSEF T

TostMetnodUGOET

test_method_endpoints table

method_1d ondpoint_type ondpoint_ur
TestMethod! testGen ip:/uiApifesiGenUGOE T
TestMethod tostAun i /utApiesiRUNSEF T
TestMethod tostExoc o /urApiteSIEXGESEF T
TestMethod! testSched g urApLTestSchoaUPHIGT
TestMethod testA Hip:/utApITeStAUGOE |
TostMathod! | testGenAndRun | hitpiuriApitesiGenAndRunUGOET
TostMathod2 tesiGen it /uriApi esiGenUGOE T
TestMathod2 testRun it /urApitestRunCNRT
Tosthiathod2. testExec Tip:/urApiteSIEXOcONT
TestMathod2 tosiSched NpurADRGSISChBdUPMGT
TostMathod2 tostAtt i /tApIeSIATBUGOET
TostMathod2 | tostGenAndun | itpiuriApitestGenAndRunUPMCT

Figure 24: The test_method and test_method_endpoints tables.

· test_task_status: the table represents the structured information for the Test Status Service, a service that keeps trace of the user testing activities carried out within a tenancy. Each test task launched by a user of the tenancy will have a unique identifier and the service keeps trace of the user that launched the test task, the status of the task (running, completed, failed) and the invocation time and completion time. In Figure 24 we show the structure of the test_task_status table.
	[image: image25.png]test_task_status table

status

invocation tme

‘completion time-

completed

2014-07-28 15:56:39

2014-0728 1557:22

completed

2014-07-28 18:1321

2014-0728 18:41:33

Figure 25: The test_task_status table.

7.1.2
The storage file system for MIDAS TPaaS
The storage file system is a flat file system based on S3 storage server. When a new tenancy is instantiated, a new bucket in the S3 storage server is created. The bucket namespace is tied to the name of the tenancy.

The bucket will store all the files used or created by the users of a tenancy for testing activities. All the information stored is sandboxed with respect to the other tenancies. At actual implementation status, the users of such a tenancy do not store the information in specific directory namespaces inside the buckets. Only the test results are stored in a directory named testResults within the bucket.

7.2
Implemented facilities
7.2.1
Development Environment (devenv_vm)
The Development Environment is the facility provided to the TMD partners where all services are deployed in the same virtual machine. The Figure 25 shows a high level picture of the environment. More specifically, the Tenancy Admin Services, the End User Services and the Core Services are contained in only one virtual machine. The partners are enabled to deploy in their personal computer the TPaaS platform, by using the VirtualBox VMM as the provider.

The virtual machine is composed of:

· TPaaS Portal: it is a basic web portal that allows human end users to log-in the TPaaS testing platform, to manage the end users in the tenancy (only the tenancy admin can access this utility), to access the storage service that provides users with a tool to upload their files (e.g., the TTCN-3 test campaign files), and to invoke the Test Generation and Execution upon these files, and last, a web page that informs the user about the state of his/her submitted tasks.

· TPaaS: this is built on top of an Apache Tomcat service container in which all the TPaaS services are deployed.

· TTCN-3 ExecEngine: TTCN-3 software tool to compile and execute the TTCN-3 scripts. In case, the commercial tool is used, the License Server, that is the license manager for the TTCN-3 ExecEngine software tool, is installed on a server outside the virtual machine used for the Development Environment.

· DB I&AS Table: it is the database table containing the identifiers of the tenancy users managed by the Identity & Authentications Service, described in 7.1.1. This database is built on top of a MySQL server instance.

· DB Test Method Table: it is the database table containing the Test MethodId, managed by the Test Method Query Service and described in 7.1.1. This database is built on top of a MySQL server instance.

· S3 Storage: it contains all files the users of a tenancy have uploaded (e.g. test models, TTCN-3 scripts, so on) or generated (test results, TTCN-3 script generated by model, and so on) for their testing activities.The S3 and DB facilities are provided in the Development Environment respectively by installing the Little S3 server (an emulation of the Amazon S3 server service) and the MySQL engine server.
[image: image26.png]MIDAS
Developer

Monitor test tasks
execution

TTCON-3 Test

MIDAS Portal

N\ campaign e

Wysq DB

Y VirtualBox

MIDAS

VM DevEnv

End User Sevices
Tenancy Admin Services
Core Services

Utless | ——
Storage

TTman

Wrapper
TTman + TTihree

TTworkbench

+ TTthree

Check
license

SOAP.
response

SOAP
request

Gain
Access

Figure 26: The Development Environment.

The System Under Test, that represents the target of the testing activity, resides outside the Development Environment.

In the Development Environment Auto Scaling and Elastic Load Balancing facilities offered by the Cloud environment are not available and not simulated, since they are not required to test the TPaaS components during their development. Furthermore, the VM computing resources are limited by local computing resources, while on the Cloud both the number of VMs to be used and the appropriate dimension of the computing resources are selected.

To provide the partners with an easy way to update the test components developed and make them available on the MIDAS Portal as test methods, an sql script (testmethod.sql) is used. This script file enables the developer partners to update the tables of the Test Method Query Service in independent and autonomous way when they develop their test components.
7.2.2
Production Environment (prodenv_multivm)
The adopted strategy is one of the possible deployment strategies can be used for the deployment of the MIDAS platform on the Cloud, as described in [i.5]
[image: image27.png]SRR TTON-3 Test

campaign fle
Monitor test tasks
exceution
MIDAS Portal
ARDS MIDAS TaaS
18AS
Table
ARDS A-EC2 VM1 (EndUser)
Test Method End User Services -
Table Tenancy Admin Services
AS3 - 1
Storage
AEC2 VM2 (Core)
__ Core Services _
Virapper
TTman + TTinree
TTworkbench
TTman + TTthree Check
08P iicense

response

soAP

request Gain
Access

Figure 27: The Production Environment.
The deployment strategy for TPaaS Production Environment consists in using two VMs for each tenancy. In fact, it takes into account that most of the workload is expected from the use of the Core Services, that host the executor engines, the compiler of TTCN-3 scripts and the other engines (e.g. inference, and so on) developed by the TMD partners. The End User Services, the Tenancy Admin Services and the TPaaS Portal is aggregated in one VM (VM1), and the Core Services in another VM (VM2). The resource allocation strategy is fine-grained with the Auto Scaling and Elastic Load Balancing facilities that will allow the TPaaS platform to scale when the workload on the VMs increases.

The TPaaS platform on Cloud is composed by:

· the TPaaS Portal: it is a web portal. It is the same introduced in the previous subsection and that was detailed in the subsection in [i.7]. This component is deployed in the VM1 together with the Tenancy Admin Services and the End User Services.
· TaaS: it is the set of services of the platform that are split between two VMs, where in each VM the Apache Tomcat7 service container is setup. The End User Services and Tenancy Admin Services are deployed in the VM1 (see Figure 26), the Amazon EC2 instance selected for this VM is m1.small; the Core Services instead are deployed in the VM2, the Amazon EC2 instance selected for this VM is m1.small
 (different computing resources for each Amazon EC2 instances can be selected once computing requirements will be collected from the pilots usage of the platform).
· TTCN-3 ExecutionEngine: TTCN-3 software tool to execute the TTCN-3 scripts.

· DB I&AS Table: it is the database table containing the identifiers of the tenancy users managed by the Identity & Authentications Service. This functionality uses the Public Cloud provider RDS for MySQL as structured storage service.
· DB Test Method Table: it is the database table containing the Test Method Ids, managed by the Test Method Query Service. This functionality uses the Public Cloud provider RDS for MySQL as structured storage service.
· S3 Storage: it contains all files the users of a tenancy have uploaded (e.g., test models, TTCN-3 scripts, so on) or generated (test results, TTCN-3 script generated by model, and so on); the content is stored in Public Cloud provider S3.
When the MIDAS platform is deployed on the Cloud, the storage needs for S3 and DB facilities are provided by the Amazon Web Services, respectively the Public Cloud provider S3 and Public Cloud provider RDS. This allows relying on Public Cloud provider AWS that makes it easy to set up, operate, and scale a relational database and persistent storages in the Cloud. It provides cost-efficient and resizable capacity while managing time-consuming database administration tasks and storage backups/replications.
The License Server is the license manager for the TTCN-3 Execution engine software tool that is installed on a server outside the Cloud.
In the Production Environment the TPaaS platform is exploiting Auto Scaling and Elastic Load Balancing facilities offered by the underlying Cloud infrastructure. Furthermore, the VMs computing resources can be resized to fit the CPUs, RAM, network I/O requirements of the TPaaS components.

Annex A: Direct Execution Use Case Example – IMS Comformance testing

Sintesio
<A.1>
First clause of the annex (style H1)
<Text>.

<A.1.1>
First subdivided clause of the annex (style H2)
<Text>.

Annex B: Manual test design example - SCM Pilot

Itannova
<B.1>
First clause of the annex (style H1)
<Text>.

<B.1.1>
First subdivided clause of the annex (style H2)
<Text>.

Annex <C>: Automated test design example - e-Health Pilot
Dedalus
<C.1> First clause of the annex
The TTCN.MP representation corresponding to this ATS is contained in an ASCII file (<any_name>.MP contained in archive <Shortfilename>.ZIP) which accompanies the present document.

<PAGE BREAK>

Annex <E>:
Bibliography (style H9)
This optional informative clause shall start on a new page and be the last annex of an ETSI deliverable or the last but one if followed by the "Change history/Change request history" annex, if any. The Bibliography shall not contain requirements.

The Bibliography identifies additional reading material not mentioned within the document. Those publications might or might not be publicly available (no check is made by the ETSI Secretariat).

The Bibliography shall include list of standards, books, articles, or other sources on a particular subject which are not referenced in the document.

The Bibliography shall not include references mentioned in the deliverable.
· Use Heading 9 style for the "Bibliography" annex, see clause 2.13 for examples.

· For the listed material use the Normal style or bulleted lists (e.g. B1+), do not use numbered references.

<Publication>: "<Title>".

OR

· <Publication>: "<Title>".

<PAGE BREAK>

Annex <F>:
Change History (style H9)
The informative clause shall start on a new page and be the last annex before the "History" clause. It is an optional, informative element and shall not contain requirements.

If it is desired to keep a detailed record of the changes implemented in a new version it is recommended that this is done by inserting a "Change history/Change request" annex, see clause 2.15.

It shall be presented as a table. Apply the normal style format for tables (see clause 5.2.2 of the EDRs).
	Date
	Version
	Information about changes

	October 2011
	1.1.1
	First publication of the TS after approval by TC SPAN at SPAN#19
(30 September - 2 October 2011; Prague)

	February 2012
	1.2.1
	Implemented Change Requests:

SPAN(12)20_019 Error message information clarifications

SPAN(12)20_033 Revised error message information

SPAN(12)20_046 update of figure 3 clause 9.2

These CRs were approved by TC SPAN#20 (3 - 5 February 2012; Sophia)

Version 1.2.1 prepared by the Rapporteur

	July 2013
	1.3.1
	Implemented Changes:

Correction needed because the previously approved version did not contain the last version of the ASN.1 and XML attachments.

Version 1.3.1 prepared by the Rapporteur

<PAGE BREAK>

History (style H1)
This unnumbered clause shall start on a new page and be the last clause of an ETSI deliverable. It is a required informative element and shall not contain requirements.

The "History" identifies the major milestones in the life of an ETSI deliverable through the means of a table. The history box shall be provided by the ETSI Secretariat (all additional information will be removed at the publication stage).
	Document history

	<Version>
	<Date>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

A few examples:

	Document history

	V1.1.1
	April 2001
	Publication

	V1.3.1
	June 2011
	Pre-Processing done before TB approval
e-mail: mailto:edithelp@etsi.org

	V2.0.0
	March 2013
	Clean-up done by editHelp!
e-mail: mailto:edithelp@etsi.org

	
	
	

	
	
	

TaaS

Execution

Environment

Java

TTCN

-

3

Executable

SOA System

Adapter

CoDec

Data &

Behavioural

Fuzzing

External

Functions

Generation

Generation

Combination

of

UBT &

Fuzzing

Running

Input

validation

Usage

SYSTEM

Models

Generated

T

est Scripts

testcase

tc_2() …

{

var

TC

tc_Property

;

connect

((..);

tc_Property.start

(…);

tc_Property.done

;

…

}

Planning

&

Scheduling

Models

:

TMScheduler

Generation

Generation

TTCN

-

3

MDSL

M DSL

Manual

Test (Case)

Specification

Execution

Environment

Java

TTCN

-

3

Executable

SOA System

Adapter

CoDec

Data &

Behavioural

Fuzzing

External

Functions

Inputs from

IUT

Design &

Behaviour

Infos

WSDL

Generation

Generation

Usage

Profiles

Combination

of

UBT &

Fuzzing

Running

Input

validation

Usage

MIDAS

Models

Generated

T

est Scripts

testcase

tc_2() …

{

var

TC

tc_Property

;

connect

((..);

tc_Property.start

(…);

tc_Property.done

;

…

}

Planning

&

Scheduling

Models

:

TMScheduler

Generation

Generation

Generation

Import

Import

Generation

TTCN

-

3

MIDAS DSL

MIDAS DSL

� The selected tools used to set up the virtual machine are Vagrant and Ansible.

�the m1.small EC2 instance configuration is the one reported in http://aws.amazon.com/ec2/previous-generation/

�Green field ABBR are explained in TErms and Definitions Database Interactive (TEDDI) @ ETSI

�Blue field ABBR are not present in TErms and Definitions Database Interactive (TEDDI)@ETSI

�Note: Just to note that you can use shall in the following as they are citations.

�Not incorrect to use must here but I have changed the ‘must’ to ‘shall’ to be consistent with F-TReq 2 and 5. Alternatively you could use ‘must’ in all three cases.

�This sentence needs some clarification – the meaning is not clear. Anyway, the shall needs to be changed.

�Check carefully that my edits do not change the semantics of this section. Alternatively, keep the original wording and make this a citation (e.g., from Midas documentation (which would then need to be publicly available)

�

�

�See 6.3.1!

�See 6.3.1

[image: image30.emf][image: image31.emf][image: image32.emf][image: image33.emf][image: image34.emf][image: image35.emf][image: image36.emf][image: image37.emf][image: image38.emf][image: image39.emf][image: image40.emf][image: image41.emf][image: image42.emf][image: image43.emf][image: image44.emf][image: image45.emf][image: image46.emf][image: image47.emf][image: image48.emf][image: image49.emf][image: image50.emf][image: image51.emf][image: image52.emf][image: image53.emf][image: image54.emf][image: image55.emf][image: image56.emf][image: image57.emf][image: image58.emf][image: image59.emf][image: image60.emf][image: image61.emf][image: image62.emf][image: image63.emf][image: image64.emf][image: image65.emf][image: image66.emf][image: image67.emf][image: image68.emf][image: image69.emf][image: image70.emf][image: image71.emf][image: image72.emf][image: image73.emf][image: image74.emf][image: image75.emf][image: image76.emf][image: image77.emf][image: image78.jpg]

