ETSI ES 201 873-5 V4.6.21 (2014-1206)
6

ETSI ES 201 873-5 V4.6.21 (2014-1206)
Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 5: TTCN-3 Runtime Interface (TRI)

ETSI Standard
[image: ETSI_BG_final_new]

Reference
RES/MTS-201873-5 T3ed461
Keywords
interface, methodology, runtime, testing, TRI, TTCN-3

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification
[bookmark: CleanupToDelete]No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
[bookmark: _Toc406750680]
Contents
Intellectual Property Rights	8
Foreword	8
Introduction	8
1	Scope	9
1.1	Compliance	9
2	References	9
2.1	Normative references	9
2.2	Informative references	10
3	Definitions and abbreviations	10
3.1	Definitions	10
3.2	Abbreviations	11
4	General Structure of a TTCN3 Test System	11
4.1	Entities in a TTCN3 Test System	12
4.1.1	Test Management and Control (TMC)	12
4.1.1.1	Test Management (TM)	12
4.1.1.2	Test Logging (TL)	12
4.1.1.3	Coding and Decoding (CD)	12
4.1.1.4	Component Handling (CH)	12
4.1.2	TTCN3 Executable (TE)	12
4.1.2.1	Executable Test Suite (ETS)	12
4.1.2.2	TTCN3 Runtime System (T3RTS)	13
4.1.2.3	Encoding/Decoding System (EDS)	13
4.1.2.4	Timers in the TTCN3 Executable	13
4.1.3	SUT Adaptor (SA)	13
4.1.4	Platform Adaptor (PA)	14
4.2	Interfaces in a TTCN3 Test System	14
4.3	Execution requirements for a TTCN3 test system	14
5	TTCN3 Runtime Interface and operations	14
5.1	Overview of the TRI	14
5.1.1	The triCommunication Interface	15
5.1.2	The triPlatform Interface	15
5.1.3	Correlation between TTCN3 and TRI Operation Invocations	15
5.2	Error handling	16
5.3	Data interface	17
5.3.1	Connection	17
5.3.2	Communication	18
5.3.3	Timer	18
5.3.4	Miscellaneous	18
5.4	Operation descriptions	19
5.5	Communication interface operations	19
5.5.1	triSAReset (TE SA)	19
5.5.2	Connection handling operations	20
5.5.2.1	triExecuteTestCase (TE SA)	20
5.5.2.2	triMap (TE SA)	20
5.5.2.3	triMapParam (TE SA)	20
5.5.2.4	triUnmap (TE SA)	21
5.5.2.5	triUnmapParam (TE SA)	21
5.5.2.6	triEndTestCase (TE SA)	21
5.5.3	Message based communication operations	22
5.5.3.1	triSend (TE SA)	22
5.5.3.2	triSendBC (TE SA)	22
5.5.3.3	triSendMC (TE SA)	23
5.5.3.4	triEnqueueMsg (SA TE)	23
5.5.4	Procedure based communication operations	24
5.5.4.1	triCall (TE SA)	24
5.5.4.2	triCallBC (TE SA)	25
5.5.4.3	triCallMC (TE SA)	26
5.5.4.4	triReply (TE SA)	27
5.5.4.5	triReplyBC (TE SA)	28
5.5.4.6	triReplyMC (TE SA)	29
5.5.4.7	triRaise (TE SA)	29
5.5.4.8	triRaiseBC (TE SA)	30
5.5.4.9	triRaiseMC (TE SA)	30
5.5.4.10	triEnqueueCall (SA TE)	31
5.5.4.11	triEnqueueReply (SA TE)	31
5.5.4.12	triEnqueueException (SA TE)	32
5.5.5	Miscellaneous operations	32
5.5.5.1	triSUTactionInformal (TE SA)	32
5.6	Platform interface operations	32
5.6.1	triPAReset (TE PA)	32
5.6.2	Timer operations	33
5.6.2.1	triStartTimer (TE PA)	33
5.6.2.2	triStopTimer (TE PA)	33
5.6.2.3	triReadTimer (TE PA)	33
5.6.2.4	triTimerRunning (TE PA)	34
5.6.2.5	triTimeout (PA TE)	34
5.6.3	Miscellaneous operations	35
5.6.3.1	triExternalFunction (TE PA)	35
5.6.3.2	triSelf (PA TE)	35
5.6.3.3	triRnd (PA TE)	35
6	Java language mapping	36
6.1	Introduction	36
6.2	Names and scopes	36
6.2.1	Names	36
6.2.2	Scopes	36
6.3	Type mapping	36
6.3.1	Basic type mapping	36
6.3.1.1	Boolean	36
6.3.1.1.1	Methods	37
6.3.1.2	String	37
6.3.2	Structured type mapping	37
6.3.2.1	TriPortIdType	37
6.3.2.1.1	Methods	37
6.3.2.2	TriPortIdListType	37
6.3.2.2.1	Methods	38
6.3.2.3	TriComponentIdType	38
6.3.2.3.1	Methods	38
6.3.2.4	TriComponentIdListType	38
6.3.2.4.1	Methods	38
6.3.2.5	TriMessageType	39
6.3.2.5.1	Methods	39
6.3.2.6	TriAddressType	39
6.3.2.6.1	Methods	39
6.3.2.7	TriAddressListType	40
6.3.2.7.1	Methods	40
6.3.2.8	TriSignatureIdType	40
6.3.2.8.1	Methods	40
6.3.2.9	TriParameterType	41
6.3.2.9.1	Methods	41
6.3.2.10	TriParameterPassingModeType	41
6.3.2.10.1	Constants	42
6.3.2.11	TriParameterListType	42
6.3.2.11.1	Methods	42
6.3.2.12	TriExceptionType	42
6.3.2.12.1	Methods	42
6.3.2.13	TriTimerIdType	43
6.3.2.13.1	Methods	43
6.3.2.14	TriTimerDurationType	43
6.3.2.14.1	Methods	43
6.3.2.15	TriFunctionIdType	43
6.3.2.15.1	Methods	44
6.3.2.16	TriTestCaseIdType	44
6.3.2.16.1	Methods	44
6.3.2.17	TriActionTemplateType	44
6.3.2.18	TriStatusType	44
6.3.2.18.1	Methods	44
6.4	Constants	45
6.5	Mapping of interfaces	45
6.5.1	Out and InOut Parameter Passing Mode	45
6.5.2	triCommunication - Interface	46
6.5.2.1	triCommunicationSA	46
6.5.2.2	triCommunicationTE	47
6.5.3	triPlatform - Interface	47
6.5.3.1	TriPlatformPA	47
6.5.3.2	TriPlatformTE	48
6.6	Optional parameters	48
6.7	TRI initialization	48
7	ANSI C language mapping	48
7.1	Introduction	48
7.2	Names and scopes	49
7.2.1	Abstract type mapping	49
7.2.2	ANSI C type definitions	50
7.2.3	IDL type mapping	50
7.2.4	TRI operation mapping	51
7.3	Memory management	53
8	C++ language mapping	53
8.1	Introduction	53
8.2	Names and scopes	53
8.3	Memory management	53
8.4	Void	53
8.5	Type mapping	53
8.5.1	Encapsulated C++ types	53
8.5.2	Abstract data types	54
8.5.2.1	QualifiedName	54
8.5.2.1.1	Methods	54
8.5.2.2	TriAddress	54
8.5.2.2.1	Methods	54
8.5.2.3	TriAddressList	55
8.5.2.3.1	Methods	55
8.5.2.4	TriComponentId	56
8.5.2.4.1	Methods	56
8.5.2.5	TriComponentIdList	56
8.5.2.5.1	Methods	57
8.5.2.6	TriException	57
8.5.2.6.1	Methods	57
8.5.2.7	TriFunctionId	58
8.5.2.7.1	Methods	58
8.5.2.8	TriMessage	58
8.5.2.8.1	Methods	58
8.5.2.9	TriParameter	59
8.5.2.9.1	Methods	59
8.5.2.10	TriParameterList	59
8.5.2.10.1	Methods	60
8.5.2.11	TriParameterPassingMode	60
8.5.2.12	TriPortId	60
8.5.2.12.1	Methods	60
8.5.2.13	TriPortIdList	61
8.5.2.13.1	Methods	61
8.5.2.14	TriSignatureId	62
8.5.2.14.1	Methods	62
8.5.2.15	TriStatus	62
8.5.2.16	TriTestCaseId	62
8.5.2.16.1	Methods	62
8.5.2.17	TriTimerDuration	63
8.5.2.17.1	Methods	63
8.5.2.18	TriTimerId	63
8.5.2.18.1	Methods	63
8.6	Mapping of interfaces	64
8.6.1	TriCommunicationSA	64
8.6.2	TriCommunicationTE	65
8.6.3	TriPlatformPA	66
8.6.4	TriPlatformTE	66
9	C# language mapping	66
9.1	Introduction	66
9.2	Names and scopes	67
9.2.1	Names	67
9.2.2	Scopes	67
9.3	Null value mapping	67
9.4	Type mapping	67
9.4.1	Basic type mapping	67
9.4.1.1	Boolean	67
9.4.1.1.1	Members	67
9.4.1.2	String	67
9.4.2	Structured type mapping	68
9.4.2.1	IQualifiedName	68
9.4.2.1.1	Members	68
9.4.2.2	TriPortIdType	68
9.4.2.2.1	Members	68
9.4.2.3	TriPortIdListType	68
9.4.2.3.1	Members	69
9.4.2.4	TriComponentIdType	69
9.4.2.4.1	Members	69
9.4.2.5	TriComponentIdListType	69
9.4.2.5.1	Members	69
9.4.2.6	TriMessageType	70
9.4.2.6.1	Members	70
9.4.2.7	TriAddressType	70
9.4.2.7.1	Methods	70
9.4.2.8	TriAddressListType	71
9.4.2.8.1	Members	71
9.4.2.9	TriSignatureIdType	71
9.4.2.10	TriParameterPassingModeType	71
9.4.2.11	TriParameterType	71
9.4.2.11.1	Members	72
9.4.2.12	TriParameterListType	72
9.4.2.12.1	Members	72
9.4.2.13	TriExceptionType	72
9.4.2.13.1	Methods	72
9.4.2.14	TriTimerIdType	73
9.4.2.14.1	Members	73
9.4.2.15	TriTimerDurationType	73
9.4.2.15.1	Members	73
9.4.2.16	TriFunctionIdType	73
9.4.2.17	TriTestCaseIdType	73
9.4.2.18	TriStatusType	73
9.5	Mapping of interfaces	74
9.5.1	Out and inout parameter passing mode	74
9.5.2	triCommunication interface	74
9.5.2.1	ITriCommunicationSA	74
9.5.2.2	ITriCommunicationTE	75
9.5.2.3	ITriPlatformPA	76
9.5.2.4	ITriPlatformTE	76
9.6	Optional parameters	76
B.1	First scenario	81
B.1.1	TTCN3 fragment	81
B.1.2	Message sequence chart	83
B.2	Second scenario	84
B.2.1	TTCN3 fragment	84
B.2.2	Message sequence chart	85
B.3	Third scenario	86
B.3.1	TTCN3 fragment	86
B.3.2	Message sequence chart	87
History	89

[bookmark: _Toc390248633][bookmark: _Toc406750681]
Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
[bookmark: _Toc390248634][bookmark: _Toc406750682]Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
The present document is part 5 of a multi-part deliverable. Full details of the entire series can be found in part 1 [2].
[bookmark: _Toc390248635][bookmark: _Toc406750683]Introduction
The present document consists of two distinct parts, the first part describing the structure of a TTCN3 test system implementation and the second part presenting the TTCN3 Runtime Interface specification.
The first part introduces the decomposition of a TTCN3 test system into four main entities: Test Management (TM), TTCN3 Executable (TE), SUT Adaptor (SA), and Platform Adaptor (PA). In addition, the interaction between these entities, i.e. the corresponding interfaces, is defined.
The second part of the present document specifies the TTCN3 Runtime Interface (TRI). The interface is defined in terms of operations, which are implemented as part of one entity and called by other entities of the test system. For each operation, the interface specification defines associated data structures, the intended effect on the test system and any constraints on the usage of the operation. Note that this interface specification only defines interactions between the TSI and the SUT as well as timer operations.
[bookmark: _Toc390248636][bookmark: _Toc406750684]
1	Scope
The present document provides the specification of the runtime interface for TTCN3 test system implementations. The TTCN3 Runtime Interface provides a standardized adaptation for timing and communication of a test system to a particular processing platform and the system under test, respectively. The present document defines the interface as a set of operations independent of target language.
The interface is defined to be compatible with the TTCN3 standard (see ES 201 873-1 [2]). The present document uses the CORBA Interface Definition Language (IDL) to specify the TRI completely. Clauses 6, 7 and 8 present language mappings for this abstract specification to the target languages Java, ANSI C, and C++. A summary of the IDL based interface specification is provided in annex A.
[bookmark: _Toc390248637][bookmark: _Toc406750685]1.1	Compliance
The requirement for a TTCN3 test system to be TRI compliant is to adhere to the interface specification stated in the present document as well as to one of the target language mappings included.
EXAMPLE:	If a vendor supports Java, the TRI operation calls and implementations, which are part of the TTCN3 executable, have to comply with the IDL to Java mapping specified in the present document.
[bookmark: _Toc390248638][bookmark: _Toc406750686]2	References
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
[bookmark: _Toc390248639][bookmark: _Toc406750687]2.1	Normative references
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ITU_TX290][1]	Recommendation ITU-T X.290: "OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications - General concepts".
NOTE:	The corresponding ISO/IEC standard is ISO/IEC 9646-1: "Information technology -- Open Systems Interconnection -- Conformance testing methodology and framework; Part 1: General concepts".
[bookmark: REF_ES201873_1][2]	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[bookmark: REF_ES201873_4][3]	ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".
[bookmark: REF_CORBA30][4]	CORBA 3.0: "The Common Object Request Broker: Architecture and Specification", OMG Formal Document (specifies IDL).
[bookmark: REF_SUNMICROSYSTEMS][5]	Sun Microsystems: "Java™ Language Specification".
NOTE:	See at http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html.
[bookmark: REF_ISOIEC9899][6]	ISO/IEC 9899: "Information technology -- Programming Languages -- C".
[bookmark: REF_ISOIEC14882][7]	ISO/IEC 14882: "Information technology -- Programming Languages -- C++".
[bookmark: REF_ECMA_334][8]	ECMA-334: "C# Language Specification".
NOTE:	See at http://www.ecma-international.org/publications/standards/Ecma-334.htm.
[bookmark: _Toc390248640][bookmark: _Toc406750688]2.2	Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
Not applicable.
[bookmark: _Toc390248641][bookmark: _Toc406750689]3	Definitions and abbreviations
[bookmark: _Toc390248642][bookmark: _Toc406750690]3.1	Definitions
For the purposes of the present document, the terms and definitions given in ES 201 8731 [2] and the following apply:
Abstract Test Suite (ATS): See Recommendation ITU-T X.290 [1].
communication port: abstract mechanism facilitating communication between test components
NOTE:	A communication port is modelled as a FIFO queue in the receiving direction. Ports can be messagebased, procedurebased or a mixture of the two.
Executable Test Suite (ETS): See Recommendation ITU-T X.290 [1].
explicit timer: timer that is declared in a TTCN3 ATS and that can be accessed through TTCN3 timer operations
Implementation eXtra Information for Testing (IXIT): See Recommendation ITU-T X.290 [1].
implicit timer: system timer that is created by the TTCN3 Executable to guard a TTCN3 call or execute operation
NOTE:	Implicit timers are not accessible to the TTCN3 user.
Platform Adaptor (PA): entity that adapts the TTCN3 Executable to a particular execution platform
NOTE:	The Platform Adaptor creates a single notion of time for a TTCN3 test system, and implements external functions as well as explicit and implicit timers.
SUT Adaptor (SA): entity that adapts the TTCN3 communication operations with the SUT based on an abstract test system interface and implements the real test system interface
System Under Test (SUT): See Recommendation ITU-T X.290 [1].
NOTE:	All types are known at compile time, i.e. are statically bound.
test case: See Recommendation ITU-T X.290 [1].
test event: either sent or received test data (message or procedure call) on a communication port that is part of the test system interface
Test Management (TM): entity that provides a user interface and administers the TTCN3 test system
test system: See Recommendation ITU-T X.290 [1].
test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN3 test system to those offered by a real test system
Timer IDentification (TID): unique identification for explicit or implicit timer instances that is generated by the TTCN3 Executable
TTCN3 Control Interface (TCI): four interfaces that define the interaction of the TTCN3 Executable with the test management, the coding and decoding, the test component handling, and the logging in a test system
TTCN3 Executable (TE): part of a test system that deals with interpretation or execution of a TTCN3 ETS
TTCN3 Runtime Interface (TRI): two interfaces that define the interaction of the TTCN3 Executable between the SUT and the Platform Adapter (PA) and the System Adapter (SA) in a test system
[bookmark: _Toc390248643][bookmark: _Toc406750691]3.2	Abbreviations
For the purposes of the present document, the following abbreviations apply:
ADT	Abstract Data Type
ANSI	American National Standards Institute
ASN.1	Abstract Syntax Notation One
ATS	Abstract Test Suite
CD	(External) Coding/Decoding
CH	Component Handling
CORBA	Common Object Request Broker Architecture
EDS	(Internal) Encoding/Decoding System
ETS	Executable Test Suite
FIFO	First-In-First-Out (Scheduling Discipline)
IDL	Interface Definition Language
IXIT	Implementation eXtra Information for Testing
MSC	Message Sequence Chart
MTC	Main Test Component
OMG	Object Management Group
PA	Platform Adaptor
SA	SUT Adaptor
STL	Standard Template Library of C++
SUT	System Under Test
T3RTS	TTCN3 RunTime System
TCI	TTCN3 Control Interface
TE	TTCN3 Executable
TID	Timer IDentification
TL	Test Logging
TM	Test Management
TMC	Test Management and Control
TRI	TTCN3 Runtime Interface
TSI	Test System Interface
TTCN	Testing and Test Control Notation
TTCN3	Tree and Tabular Combined Notation version 3
[bookmark: _Toc390248644][bookmark: _Toc406750692]4	General Structure of a TTCN3 Test System
A TTCN3 test system can be thought of conceptually as a set of interacting entities where each entity corresponds to a particular aspect of functionality in a test system implementation. These entities manage test execution, interpreting or executing compiled TTCN3 code, realize proper communication with the SUT, implement external functions, and handle timer operations.
[image:]
Figure 1: General Structure of a TTCN3 Test System
[bookmark: _Toc390248645][bookmark: _Toc406750693]4.1	Entities in a TTCN3 Test System
The structure of a TTCN3 test system implementation is illustrated in figure 1. It should be noted that the further refinement of TM into smaller entities, as shown in figure 1 and used in the following clauses of the present document, is purely an aid to define TTCN3 test system interfaces.
The part of the test system that deals with interpretation and execution of TTCN3 modules, i.e. the Executable Test Suite (ETS), is part of the TTCN3 Executable (TE). This corresponds either to the executable code produced by a TTCN3 compiler or a TTCN3 interpreter in a test system implementation. It is assumed that a test system implementation includes the ETS as derived from a TTCN3 ATS.
The remaining part of the TTCN3 test system, which deals with any aspects that cannot be concluded from information being present in the original ATS alone, can be decomposed into Test Management (TM), SUT Adaptor (SA), and Platform Adaptor (PA) entities. In general, these entities cover a test system user interface, test execution control, test event logging, as well as communication with the SUT and timer implementation.
[bookmark: _Toc390248646][bookmark: _Toc406750694]4.1.1	Test Management and Control (TMC)
In the TMC entity, we can distinguish between functionality related to management of test execution, test event logging, external coding and decoding, and component handling.
[bookmark: _Toc390248647][bookmark: _Toc406750695]4.1.1.1	Test Management (TM)
The TM entity is responsible for overall management of the test system. After the test system has been initialized, test execution starts within the TM entity. The entity is responsible for the proper invocation of TTCN3 modules, i.e. propagating module parameters and/or IXIT information to the TE if necessary. Typically, this entity would also implement a test system user interface.
[bookmark: _Toc390248648][bookmark: _Toc406750696]4.1.1.2	Test Logging (TL)
The TL entity is responsible for maintaining the test log. It is explicitly notified to log test events by the TE. The TL entity has a unidirectional interface where any entity part of the TE may post a logging request to the TL entity. A TM internal interface may also be used to record test management information generated by the TE.
[bookmark: _Toc390248649][bookmark: _Toc406750697]4.1.1.3	Coding and Decoding (CD)
The CD entity is optionally responsible for the external encoding and decoding data associated with message based or procedure based communication within the TE. The external codecs can be used in parallel with, or instead of, the builtin codecs associated with the TE. Unlike the built-in codecs the external codecs have a standardized interface which makes them portable between different TTCN3 systems and tools.
[bookmark: _Toc390248650][bookmark: _Toc406750698]4.1.1.4	Component Handling (CH)
The CH entity is responsible for distributing parallel test components. This distribution might be across one or many physical systems. The CH entity allows the test management to create and control distributed test systems in a manner which is transparent and independent from the TE.
[bookmark: _Toc390248651][bookmark: _Toc406750699]4.1.2	TTCN3 Executable (TE)
The TE entity is responsible for the interpretation or execution of the TTCN3 ATS. Conceptually, the TE can be decomposed into three interacting entities: an ETS, TTCN3 Runtime System (T3RTS), and an optional internal Encoding/Decoding System (EDS) entity. Note that this refinement of the TE into smaller entities is purely a conceptual aid to define TTCN3 test system interfaces there is no requirement for this distinction to be reflected in TRI implementations.
The following clauses define the responsibilities of each entity and also discuss the handling of timers in the TRI.
[bookmark: _Toc390248652][bookmark: _Toc406750700]4.1.2.1	Executable Test Suite (ETS)
The ETS entity handles the execution or interpretation of test cases, the sequencing and matching of test events, as defined in the corresponding TTCN3 modules ES 201 8731 [2]. It interacts with the T3RTS entity to send, attempt to receive (or match), and log test events during test case execution, to create and remove TTCN3 test components, as well as to handle external function calls, action operations, and timers. Note that the ETS entity does not directly interact with the SA via the TRI.
[bookmark: _Toc390248653][bookmark: _Toc406750701]4.1.2.2	TTCN3 Runtime System (T3RTS)
The T3RTS entity interacts with the TM, SA and PA entities via TCI and TRI, and manages ETS and EDS entities. The T3RTS initializes adaptors as well as ETS and EDS entities. This entity performs all the actions necessary to properly start the execution of a test case or function with parameters in the ETS entity. It queries the TM entity for module parameter values required by the ETS and sends logging information to it. It also collects and resolves associated verdicts returned by the ETS entity as defined in ES 201 8731 [2].
The T3RTS entity implements the creation and removal of TTCN3 test components, as well as the TTCN3 semantics of message and procedure based communication, external function calls, action operations and timers. This includes notifying the SUT Adaptor (SA) which message or procedure call is to be sent to the SUT, or the Platform Adaptor (PA) which external function is to be executed or which timers are to be started, stopped, queried, or read. Similarly, the T3RTS notifies the ETS entity of incoming messages or procedure calls from the SUT as well as timeout events.
Prior to sending or receiving messages and procedure calls to or from the SA, or handling function calls and action operations in the PA for the ETS entity, the T3RTS invokes the EDS entity for their encoding or decoding. The T3RTS entity should implement all message and procedure based communication operations between test components, but only the TTCN3 semantics of procedure based communication with the SUT, i.e. the possible blocking and unblocking of test component execution, guarding with implicit timers, and handling of timeout exceptions as a result of such communication operations. All procedure based communication operations with the SUT are to be realized and identified (in the case of a receiving operation) in the SA as they are most efficiently implemented in a platform specific manner. Note that the timing of any procedure call operation, i.e. implicit timers, is implemented in the Platform Adaptor (PA).
The TTCN3 Executable is required to maintain its own port queues (distinct from those which may be available in the SA or PA) for input test events to perform snapshots for receiving operations as defined in ES 201 8731 [2]. Timeout events, which are generated by TTCN3 timer, call timer, or test case timer implementations, are to be kept in a timeout list as defined in ES 201 8731 [2]. In figure B.1, all of this functionality has been assigned to the T3RTS entity. It is responsible to store events that the SA or PA has notified the TE entity of, but which have yet to be processed.
[bookmark: _Toc390248654][bookmark: _Toc406750702]4.1.2.3	Encoding/Decoding System (EDS)
The EDS entity is responsible for the internal encoding and decoding of test data, which includes data used in communication operations with the SUT, as specified in the executing TTCN3 module. If no encoding has been specified for a TTCN3 module the encoding of data values is tool specific. This entity is invoked by and returns to the T3RTS entity. Note that the EDS entity does not directly interact with the SA via the TRI.
[bookmark: clause_Timers_In_Executable][bookmark: _Toc390248655][bookmark: _Toc406750703]4.1.2.4	Timers in the TTCN3 Executable
Timers that have been declared and named in the TTCN3 ATS can be conceptually classified as explicit in the TE. Timers that are created by the TE for guarding TTCN3 procedure calls or execute operations are known in the TE as implicit timers. Explicit as well as implicit timers are both created within the TE but implemented by the Platform Adaptor (PA). This is achieved by generating a unique Timer IDentification (TID) for any timer created in the TE. This unique TID should enable the TE to differentiate between different timers. The TID is to be used by the TE to interact with corresponding timer implementation in the PA.
Note that it is the responsibility of the TE to implement the different TTCN3 semantics for explicit and implicit timers correctly as defined in ES 201 8731 [2], e.g. the use of keywords any and all with timers only applies to explicit timers. In the PA all timers, i.e. implicit and explicit, are treated in the same manner.
[bookmark: _Toc390248656][bookmark: _Toc406750704]4.1.3	SUT Adaptor (SA)
The SA adapts message and procedure based communication of the TTCN3 test system with the SUT to the particular execution platform of the test system. It is aware of the mapping of the TTCN3 test component communication ports to test system interface ports and implements the real test system interface as defined in ES 201 8731 [2]. It is responsible to propagate send requests and SUT action operations from the TTCN3 Executable (TE) to the SUT, and to notify the TE of any received test events by appending them to the port queues of the TE.
Procedure based communication operations with the SUT are implemented in the SA. The SA is responsible for distinguishing between the different messages within procedurebased communication (i.e. call, reply, and exception) and to propagate them in the appropriate manner either to the SUT or the TE. TTCN3 procedure based communication semantics, i.e. the effect of such operation on TTCN3 test component execution, are to be handled in the TE.
The SA has an interface with the TE, which is used to send SUT messages (issued in TTCN3 SUT action operations) to the SA and to exchange encoded test data between the two entities in communication operations with the SUT.
[bookmark: _Toc390248657][bookmark: _Toc406750705]4.1.4	Platform Adaptor (PA)
The PA implements TTCN3 external functions and provides a TTCN3 test system with a single notion of time. In this entity, external functions are to be implemented as well as all timers. Notice that timer instances are created in the TE. A timer in the PA can only be distinguished by its Timer IDentification (TID). Therefore, the PA treats both explicit and implicit timers in the same manner.
The interface with the TE enables the invocation of external functions and the starting, reading, and stopping of timers as well as the inquiring of the status of timers using their timer ID. The PA notifies the TE of expired timers.
[bookmark: _Toc390248658][bookmark: _Toc406750706]4.2	Interfaces in a TTCN3 Test System
As previously depicted in figure 1, a TTCN3 test system has two interface sets, the TTCN3 Control Interface (TCI) and the TTCN3 Runtime Interface (TRI), which specify the interface between Test Management (TM), Test Logging (TL), Component Handling (CH), Encoding/Decoding (CD) and TTCN3 Executable (TE) entities, and the TE, SUT Adaptor (SA) and Platform Adaptor (PA) entities, respectively.
The present document defines the TRI. The interaction of the TE with SA and PA are defined in terms of TRI operations.
[bookmark: _Toc390248659][bookmark: _Toc406750707]4.3	Execution requirements for a TTCN3 test system
Each TRI operation call shall be treated as an atomic operation in the calling entity. The called entity, which implements a TRI operation, shall return control to the calling entity as soon as its intended effect has been accomplished or if the operation cannot be completed successfully. The called entity shall not block in the implementation of procedurebased communication. Nevertheless, the called entity shall block after the invocation of an external function implementation and wait for its return value. Notice that depending on the test system implementation failure to return from an external function implementation may result in the infinite blocking of test component execution, the TTCN3 executable, the Platform Adaptor, or even of the entire test system.
The execution requirements stated above can be realized in a tightly integrated test system implementation. Here, the entire TTCN3 test system is implemented in a single executable or process where each test system entity is assigned at least one thread of execution. TRI operations can be implemented here as procedure calls.
Note that a looser integration of a test system implementation is still possible, e.g. an implementation of a TTCN3 test system with multiple SUT Adaptors in a distributed computing environment. In this case only a small part of the SUT Adaptor is tightly integrated with the remainder of the TTCN3 test system whereas actual SA Adaptors may be realized in separate processes. That small part of SA may then only implement a routing of information provided by TRI operations to the desired SUT Adaptor processes, possibly being executed on remote hosts, and vice versa.
[bookmark: clause_TRI_Interfaces_And_Operations][bookmark: _Toc390248660][bookmark: _Toc406750708]5	TTCN3 Runtime Interface and operations
This clause defines TRI operations in terms of when they are to be used and what their effect is intended to be in a TTCN3 test system implementation. Also a set of abstract data types is defined which is then used for the definition of TRI operations. This definition also includes a more detailed description of the input parameters required for each TRI operation call and its return value.
[bookmark: _Toc390248661][bookmark: _Toc406750709]5.1	Overview of the TRI
The TRI defines the interaction between the TTCN3 Executable (TE), SUT Adaptor (SA), and Platform Adaptor (PA) entities within a TTCN3 test system implementation. Conceptually, it provides a means for the TE to send test data to the SUT or manipulate timers, and similarly to notify the TE of received test data and timeouts.
The TRI can be considered to consist of two subinterfaces, a triCommunication and a triPlatform interface. The triCommunication interface addresses the communication of a TTCN3 ETS with the SUT, which is implemented in the SA. The triPlatform interface represents a set of operations, which adapt an ETS to a particular execution platform.
Table 1: Interface Overview
	Interface
	Direction (calling entity called entity)

	Name
	TE SA or PA
	SA or PA TE

	triCommunication
	TE SA
	SA TE

	triPlatform
	TE PA
	PA TE

Both interfaces are bidirectional so that calling and called parts reside in the TE, SA, and PA entities of the test system. Table 1 shows in more detail the caller/callee relationship between the respective entities. Notice that this table only shows interactions visible at the TRI. Internal communication between parts of the same entity is not reflected as the internal structure of the TE, SA, or PA may differ in a TTCN3 test system implementation.
[bookmark: _Toc390248662][bookmark: _Toc406750710]5.1.1	The triCommunication Interface
This interface consists of operations that are necessary to implement the communication of the TTCN3 ETS with the SUT. It includes operations to initialize the Test System Interface (TSI), establish connections to the SUT, and handle message and procedure based communication with the SUT. In addition, the triCommunication interface offers an operation to reset the SUT Adaptor (SA).
[bookmark: _Toc390248663][bookmark: _Toc406750711]5.1.2	The triPlatform Interface
This interface includes all operations necessary to adapt the TTCN3 Executable to a particular execution platform. The triPlatform interface offers means to start, stop, read a timer, enquire its status and to add timeout events to the expired timer list. In addition, it offers operations to call TTCN3 external functions and to reset the Platform Adaptor (PA). Notice that there is no differentiation between explicit and implicit timers required at the triPlatform Interface. Instead each timer shall be addressed uniformly with its Timer IDentifier (TID).
[bookmark: _Toc390248664][bookmark: _Toc406750712]5.1.3	Correlation between TTCN3 and TRI Operation Invocations
For some TTCN3 operation invocations there exists a direct correlation to one TRI operation invocation (or possibly two in the case of TTCN3 execute and call operations), which is shown in table 2. For all other TRI operation invocations there may be no direct correlation.
The shown correlation for TTCN3 communication operations (i.e. send, call, reply, and raise) only holds if these operations are invoked on a test component port, which is mapped to a TSI port. Nevertheless, this correlation holds for all such operation invocations if no system component has been specified for a test case, i.e. only the MTC test component is created for a test case and no other test components.
Table 2: Correlation between TTCN3 and TRI Operation Invocations (* = if applicable)
	TTCN3 Operation Name
	TRI Operation Name
	TRI Interface Name

	execute
	triExecuteTestCase
triStartTimer
triEndTestCase
	TriCommunication
TriPlatform
TriCommunication

	map
	triMap (see note 1)
	TriCommunication

	
	triMapParam (see note 2)
	

	unmap
	triUnmap (see note 1)
	TriCommunication

	
	triUnmapParam (see note 2)
	

	send
	triSend (see note 3)
	TriCommunication

	
	triSendBC (see note 4)
	

	
	triSendMC (see note 5)
	

	call
	triCall (see note 3)
	TriCommunication

	
	triCallBC (see note 4)
	

	
	triCallMC (see note 5)
	

	
	triStartTimer*
	TriPlatform

	reply
	triReply (see note 3)
	TriCommunication

	
	triReplyBC (see note 4)
	

	
	triReplyMC (see note 5)
	

	raise
	triRaise (see note 3)
	TriCommunication

	
	triRaiseBC (see note 4)
	

	
	triRaiseMC (see note 5)
	

	action
	triSUTactionInformal
	TriCommunication

	start (timer)
	triStartTimer
	TriPlatform

	stop (timer)
	triStopTimer
	TriPlatform

	read (timer)
	triReadTimer
	TriPlatform

	running (timer)
	triTimerRunning
	TriPlatform

	TTCN3 external function
	triExternalFunction
	TriPlatform

	self
	triSelf
	TriPlatform

	rnd
	triRnd
	TriPlatform

	NOTE 1:	For statement without configuration parameter.
NOTE 2:	For statement with configuration parameter.
NOTE 3:	For unicast communication.
NOTE 4:	For broadcast communication.
NOTE 5:	For multicast communication.

Note that all of the TRI operations listed in table 2 are used by the TE and that the TE may implement the invocation of these operations differently when evaluating a TTCN snapshot within the TTCN3 ETS.
[bookmark: clause_TRI_Error_Handling][bookmark: _Toc390248665][bookmark: _Toc406750713]5.2	Error handling
Error handling is specified for TRI operations called by the TTCN3 Executable (TE): The SA or PA reports the status of a TRI operation in the return value of a TRI operation. The status value can either indicate the local success (TRI_OK) or failure (TRI_Error) of the TRI operation. Therefore, the TE may react to an error that occurred either within the SA or PA and issue, e.g. a test case error.
The SA or PA can in addition provide notifications about unrecoverable error situations by use of the operations triSAErrorReq and triPAErrorReq, respectively.
For TRI operations called by the SA or PA no explicit error handling is required since these operations are implemented in the TE. Here, the TE is in control over the test execution in the case that an error occurs in such a TRI operation.
Notice that specific error codes as well as the detection and handling of errors in any of the test system entities are beyond the scope of the current TRI specification.
[bookmark: clause_TRI_Data_Interface]5.2.1	triSAErrorReq (SA TE)
	Signature
	void triSAErrorReq(in string message)

	In Parameters
	message			A string value, i.e. the error phrase describing the problem.

	Return Value
	void

	Constraint
	Shall be called whenever an error situation has occurred in the SA with the exception of errors occurring when processing SA calls initiated by the TE. These errors are reported in the operation return.

	Effect
	The TE will be notified about an unrecoverable error situation within the SA and may forward the error indication to the test management.

5.2.2	triPAErrorReq (PA TE)
	Signature
	void triPAErrorReq(in string message)

	In Parameters
	message			A string value, i.e. the error phrase describing the problem.

	Return Value
	void

	Constraint
	Shall be called whenever an error situation has occurred in the PA with the exception of errors occurring when processing PA calls initiated by the TE. These errors are reported in the operation return.

	Effect
	The TE will be notified about an unrecoverable error situation within the PA and may forward the error indication to the test management.

[bookmark: _Toc390248666][bookmark: _Toc406750714]5.3	Data interface
In the TRI operations only encoded test data shall be passed. The TTCN3 Executable (TE) is responsible for encoding test data to be sent and decoding received test data in the respective TRI operations since encoding rules can be specified for or within a TTCN3 module. Notice that the TE is required to encode test data even if no encoding information has been provided in a TTCN3 ATS. In this case the tool vendor has to define an encoding.
Instead of defining an explicit data interface for TTCN3 and ASN.1 data types, the TRI standard defines a set of abstract data types. These data types are used in the following definition of TRI operations to indicate which information is to be passed from the calling to the called entity, and vice versa. The concrete representation of these abstract data types as well as the definition of basic data types are defined in the respective language mappings in clauses 6, 7 and 8.
Notice that the values for any identifier data type shall be unique in the test system implementation where uniqueness is defined as being globally distinct at any point in time.
The following abstract data types are defined and used for the definition of TRI operations.
[bookmark: _Toc390248667][bookmark: _Toc406750715]5.3.1	Connection
TriComponentIdType	A value of type TriComponentIdType includes an identifier, a name and the component type. The distinct value of the latter is the component type name as specified in the TTCN3 ATS. This abstract type is mainly used to resolve TRI communication operations on TSI ports that have mappings to many test component ports. It is also used to resolve TCI component handling.
NOTE 1:	For the handling of TCI operations on any or all components, the component type name can also be set to "ANY" or "ALL". In that case, both the identifier and the component name are to be ignored.
TriComponentIdListType	A value of type TriComponentIdListType is a list of TriComponentIdType. This abstract type is used for multicast communication in TCI.
TriPortIdType	A value of type TriPortIdType includes a value of type TriComponentIdType to represent the component to which the port belongs, a port index (if present), and the port and port type name as specified in the TTCN3 ATS. The TriPortIdType type is mainly required to pass information about the TSI and connections to the TSI from the TE to the SA.
NOTE 2:	If the port is in an n-dimensional port array of the form "port MyPortType myPort[d1]...[dn]", the port index ind of the port p[i1]...[in] is computed by the following formula:
ind = (∑k=1..n-1 ik*∏ l=k+1..ndl) + in
EXAMPLE:
For a four-dimensional port-array with dimensions [10][10][10][10], the port index ind1 of the port at index [2][3][4][5] is ind1= 2*(10*10*10) + 3*(10*10) + 4*10 + 5 = 2345.
For a three-dimensional port-array with dimensions [2][3][4], the port index ind2 of the port at index [1][2][2] is ind2= 1*(3*4) + 2*4 + 2 = 22.
TriPortIdListType	A value of type TriPortIdListType is a list of TriPortIdType. This abstract type is used for initialization purposes after the invocation of a TTCN3 test case.
[bookmark: _Toc390248668][bookmark: _Toc406750716]5.3.2	Communication
TriMessageType	A value of type TriMessageType is encoded test data that either is to be sent to the SUT or has been received from the SUT. The order of bits in a value of type TriMessagetype corresponds to the order of bits according to the encoding. If the encoded message consists of the bits b0 .. b9, where b0 is the first bit, then the value of type triMessageType contains "b0 b1 b2 b3 b4 b5 b6 b7 b8 b9" in this order. If padding bits are needed then these are added to the right.
TriAddressType	A value of type TriAddressType indicates a source or destination address within the SUT. This abstract type can be used in TRI communication operations and is an open type, which is opaque to the TE.
TriAddressListType	A value of type TriAddressListType is a list of TriAddressType. This abstract type is used for multicast communication in TRI.
TriSignatureIdType	A value of type TriSignatureIdType is the name of a procedure signature as specified in the TTCN3 ATS. This abstract type is used in procedure based TRI communication operations.
TriParameterType	A value of type TriParameterType includes an encoded parameter and a value of TriParameterPassingModeType to represent the passing mode specified for the parameter in the TTCN3 ATS.
TriParameterPassingModeType	A value of type TriParameterPassingModeType is either in, inout, or out. This abstract type is used in procedure based TRI communication operations and for external function calls.
TriParameterListType	A value of type TriParameterListType is a list of TriParameterType. This abstract type is used in procedure based TRI communication operations and for external function calls.
TriExceptionType	A value of type TriExceptionType is an encoded type and value of an exception that either is to be sent to the SUT or has been received from the SUT. This abstract type is used in procedure based TRI communication operations.
[bookmark: _Toc390248669][bookmark: _Toc406750717]5.3.3	Timer
TriTimerIdType	A value of type TriTimerIdType specifies an identifier for a timer. This abstract type is required for all TRI timer operations.
TriTimerDurationType	A value of type TriTimerDurationType specifies the duration for a timer in seconds.
[bookmark: _Toc390248670][bookmark: _Toc406750718]5.3.4	Miscellaneous
TriTestCaseIdType	A value of type TriTestCaseIdType is the name of a test case as specified in the TTCN3 ATS.
TriFunctionIdType	A value of type TriFunctionIdType is the name of an external function as specified in the TTCN3 ATS.
TriStatusType	A value of type TriStatusType is either TRI_OK or TRI_Error indicating the success or failure of a TRI operation.
[bookmark: clause_TRI_Operation_Description][bookmark: _Toc390248671][bookmark: _Toc406750719]5.4	Operation descriptions
All operation definitions are defined using the Interface Definition Language (IDL). Concrete language mappings are defined in clauses 6, 7 and 8.
For every TRI operation call all in, inout, and out parameters listed in the particular operation definition are mandatory. The value of an in parameter is specified by the calling entity. Similarly, the value of an out parameter is specified by the called entity. In the case of an inout parameter, a value is first specified by the calling entity but may be replaced with a new value by the called entity. Note that although TTCN3 also uses in, inout, and out for signature definitions the denotations used in TRI IDL specification are not related to those in a TTCN3 specification.
Operation calls should use a reserved value to indicate the absence of parameters that are defined as optional in the corresponding TRI parameter description. The reserved values for these types are defined in each language mapping and will be subsequently referred to as the null value.
All functions in the interface are described using the following template:
	F.n.m
	Operation Name	calling entity called entity

	Signature
	IDLSignature

	In Parameters
	Description of data passed as parameters to the operation from the calling entity to the called entity

	Out Parameters
	Description of data passed as parameters to the operation from the called entity to the calling entity

	InOutParameters
	Description of data passed as parameters to the operation from the calling entity to the called entity and from the called entity back to the calling entity

	Return Value
	Description of data returned from the operation to the calling entity

	Constraints
	Description of any constraints that apply to calling the operation

	Effect
	Behaviour required of the called entity before the operation may return

[bookmark: clause_TRI_Communication_Interface][bookmark: _Toc390248672][bookmark: _Toc406750720]5.5	Communication interface operations
[bookmark: _Toc390248673][bookmark: _Toc406750721]5.5.1	triSAReset (TE SA)
	Signature
	TriStatusType triSAReset()

	In Parameters
	n.a.

	Out Parameters
	n.a.

	Return Value
	The return status of the triSAReset operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation can be called by the TE at any time to reset the SA.

	Effect
	The SA shall reset all communication means that it is maintaining, e.g. reset static connections to the SUT, close dynamic connections to the SUT, discard any pending messages or procedure calls.
The triResetSA operation returns TRI_OK in case the operation has been successfully performed, TRI_Error otherwise.

[bookmark: _Toc390248674][bookmark: _Toc406750722]5.5.2	Connection handling operations
[bookmark: _Toc390248675][bookmark: _Toc406750723]5.5.2.1	triExecuteTestCase (TE SA)
	Signature
	TriStatusType triExecuteTestCase(
in TriTestCaseIdType testCaseId,
in TriPortIdListType tsiPortList)

	In Parameters
	testCaseId	identifier of the test case that is going to be executed
tsiPortList	a list of test system interface ports defined for the test system

	Out Parameters
	n.a.

	Return Value
	The return status of the triExecuteTestCase operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE immediately before the execution of any test case. The test case that is going to be executed is indicated by the testCaseId. tsiPortList contains all ports that have been declared in the definition of the system component for the test case, i.e. the TSI ports. If a system component has not been explicitly defined for the test case in the TTCN3 ATS then the tsiPortList contains all communication ports of the MTC test component. The ports in tsiPortList are ordered as they appear in the respective TTCN3 component declaration.

	Effect
	The SA can set up any static connections to the SUT and initialize any communication means for TSI ports.
The triExecuteTestCase operation returns TRI_OK in case the operation has been successfully performed, TRI_Error otherwise.

[bookmark: _Toc390248676][bookmark: _Toc406750724]5.5.2.2	triMap (TE SA)
	Signature
	TriStatusType triMap(in TriPortIdType compPortId,
 in TriPortIdType tsiPortId)

	In Parameters
	compPortId	identifier of the test component port to be mapped
tsiPortId	identifier of the test system interface port to be mapped

	Out Parameters
	n.a.

	Return Value
	The return status of the triMap operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 map operation.

	Effect
	The SA can establish a dynamic connection to the SUT for the referenced TSI port.
The triMap operation returns TRI_Error in case a connection could not be established successfully, TRI_OK otherwise. The operation should return TRI_OK in case no dynamic connection needs to be established by the test system.

[bookmark: _Toc390248677][bookmark: _Toc406750725]5.5.2.3	triMapParam (TE SA)
	Signature
	TriStatusType triMapParam(in TriPortIdType compPortId,
 in TriPortIdType tsiPortId,
 in TriParameterListType paramList)

	In Parameters
	compPortId	identifier of the test component port to be mapped
tsiPortId	identifier of the test system interface port to be mapped
paramList	configuration parameter list

	Out Parameters
	n.a.

	Return Value
	The return status of the triMapParam operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 map operation including parameters.

	Effect
	The SA can establish a dynamic connection to the SUT for the referenced TSI port.
The triMapParam operation returns TRI_Error in case a connection could not be established successfully, TRI_OK otherwise. The operation should return TRI_OK in case no dynamic connection needs to be established by the test system. The configuration parameter paramList can be used for setting connection establishment specific parameters.

[bookmark: _Toc390248678][bookmark: _Toc406750726]5.5.2.4	triUnmap (TE SA)
	Signature
	TriStatusType triUnmap(in TriPortIdType compPortId,
in TriPortIdType tsiPortId)

	In Parameters
	compPortId	identifier of the test component port to be unmapped
tsiPortId	identifier of the test system interface port to be unmapped

	Out Parameters
	n.a.

	Return Value
	The return status of the triUnmap operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes any TTCN3 unmap operation.

	Effect
	The SA shall close a dynamic connection to the SUT for the referenced TSI port.
The triUnmap operation returns TRI_Error in case a connection could not be closed successfully or no such connection has been established previously, TRI_OK otherwise. The operation should return TRI_OK in case no dynamic connections have to be closed by the test system.
In case the TTCN-3 unmap operation contains a single parameter or all port notation, the triUnmap operation is called once for each affected pair of mapped ports (and might not be called at all if there are no ports to unmap).

[bookmark: _Toc390248679][bookmark: _Toc406750727]5.5.2.5	triUnmapParam (TE SA)
	Signature
	TriStatusType triUnmapParam(in TriPortIdType compPortId,
in TriPortIdType tsiPortId,
in TriParameterListType paramList)

	In Parameters
	compPortId	identifier of the test component port to be unmapped
tsiPortId	identifier of the test system interface port to be unmapped
paramList	configuration parameter list

	Out Parameters
	n.a.

	Return Value
	The return status of the triUnmapParam operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes any TTCN3 unmap operation including parameters.

	Effect
	The SA shall close a dynamic connection to the SUT for the referenced TSI port.
The triUnmapParam operation returns TRI_Error in case a connection could not be closed successfully or no such connection has been established previously, TRI_OK otherwise. The operation should return TRI_OK in case no dynamic connections have to be established by the test system. The configuration parameter paramList can be used for setting connection teardown specific parameters.
In case the TTCN-3 unmap operation contains a single parameter, the triUnmapParam operation is called once for each existing mapping of the referenced system port. The inout parameter values changed during a single call of the triUnmapParam operation are re-used in the subsequent triUnmapParam calls. The final value of the out parameters is the value obtained during the last triUnmapParam call.

[bookmark: _Toc390248680][bookmark: _Toc406750728]5.5.2.6	triEndTestCase (TE SA)
	Signature
	TriStatusType triEndTestCase()

	In Parameters
	n.a.

	Out Parameters
	n.a.

	Return Value
	The return status of the triEndTestCase operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE immediately after the execution of any test case.

	Effect
	The SA can free resources, cease communication at system ports and to test components.
The triEndTestCase operation returns TRI_OK in case the operation has been successfully performed, TRI_Error otherwise.

[bookmark: _Toc390248681][bookmark: _Toc406750729]5.5.3	Message based communication operations
[bookmark: _Toc390248682][bookmark: _Toc406750730]5.5.3.1	triSend (TE SA)
	Signature
	TriStatusType triSend(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriMessageType sendMessage)

	In Parameters
	componentId	identifier of the sending test component
tsiPortId	identifier of the test system interface port via which the message is sent to the SUT 	Adaptor
SUTaddress	(optional) destination address within the SUT
sendMessage	the encoded message to be sent

	Out Parameters
	n.a.

	Return Value
	The return status of the triSend operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 unicast send operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN3 send operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

	Effect
	The SA can send the message to the SUT.
The triSend operation returns TRI_OK in case it has been completed successfully. Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does not imply that the SUT has received sendMessage.

[bookmark: _Toc390248683][bookmark: _Toc406750731]5.5.3.2	triSendBC (TE SA)
	Signature
	TriStatusType triSendBC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriMessageType sendMessage)

	In Parameters
	componentId	identifier of the sending test component
tsiPortId	identifier of the test system interface port via which the message is sent to the SUT 	Adaptor
sendMessage	the encoded message to be sent

	Out Parameters
	n.a.

	Return Value
	The return status of the triSendBC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 broadcast send operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN3 send operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

	Effect
	The SA can broadcast the message to the SUT.
The triSendBC operation returns TRI_OK in case it has been completed successfully. Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does not imply that the SUT has received sendMessage.

[bookmark: _Toc390248684][bookmark: _Toc406750732]5.5.3.3	triSendMC (TE SA)
	Signature
	TriStatusType triSendMC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses,
 in TriMessageType sendMessage)

	In Parameters
	componentId	identifier of the sending test component
tsiPortId	identifier of the test system interface port via which the message is sent to the 	SUT Adaptor
SUTaddresses	destination addresses within the SUT
sendMessage	the encoded message to be sent

	Out Parameters
	n.a.

	Return Value
	The return status of the triSendMC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 multicast send operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN3 send operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

	Effect
	The SA can multicast the message to the SUT.
The triSendMC operation returns TRI_OK in case it has been completed successfully. Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does not imply that the SUT has received sendMessage.

[bookmark: _Toc390248685][bookmark: _Toc406750733]5.5.3.4	triEnqueueMsg (SA TE)
	Signature
	void triEnqueueMsg(in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriComponentIdType componentId,
in TriMessageType receivedMessage)

	In Parameters
	tsiPortId	identifier of the test system interface port via which the message is enqueued 	by the SUT Adaptor
SUTaddress	(optional) source address within the SUT
componentId	identifier of the receiving test component
receivedMessage	the encoded received message

	Out Parameters
	n.a.

	Return Value
	void

	Constraints
	This operation is called by the SA after it has received a message from the SUT. It can only be used when tsiPortId has been either previously mapped to a port of componentId or has been referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueMsg operation receivedMessage shall contain an encoded value.

	Effect
	This operation shall pass the message to the TE indicating the component componentId to which the TSI port tsiPortId is mapped.
The decoding of receivedMessage has to be done in the TE.

[bookmark: clause_Procedure_Based_Communication][bookmark: _Toc390248686][bookmark: _Toc406750734]5.5.4	Procedure based communication operations
[bookmark: _Toc390248687][bookmark: _Toc406750735]5.5.4.1	triCall (TE SA)
	Signature
	TriStatusType triCall(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList)

	In Parameters
	componentId			identifier of the test component issuing the procedure call
tsiPortId	identifier of the test system interface port via which the procedure call is sent to the SUT Adaptor
SUTaddress	(optional) destination address within the SUT
signatureId	identifier of the signature of the procedure call
parameterList	a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN3 signature declaration

	Out Parameters
	n.a.

	Return Value
	The return status of the triCall operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 unicast call operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN3 call operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can initiate the procedure call corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triCall operation shall return without waiting for the return of the issued procedure call (see note). This TRI operation returns TRI_OK on successful initiation of the procedure call, TRI_Error otherwise. No error shall be indicated by the SA in case the value of any out parameter is nonnull. Notice that the return value of this TRI operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN3 ATS for a call operation, is not included in the triCall operation signature. The TE is responsible to address this issue by starting a timer for the TTCN3 call operation in the PA with a separate TRI operation call, i.e. triStartTimer.

	NOTE:	This might be achieved for example by spawning a new thread or process. This handling of this procedure call is, however, dependent on implementation of the TE.

[bookmark: _Toc390248688][bookmark: _Toc406750736]5.5.4.2	triCallBC (TE SA)
	Signature
	TriStatusType triCallBC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList)

	In Parameters
	componentId	identifier of the test component issuing the procedure call
tsiPortId	identifier of the test system interface port via which the procedure call is sent to the SUT Adaptor
signatureId	identifier of the signature of the procedure call
parameterList	a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN3 signature declaration

	Out Parameters
	n.a.

	Return Value
	The return status of the triCallBC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 broadcast call operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN3 call operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can initiate and broadcast the procedure call corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triCallBC operation shall return without waiting for the return of the issued procedure call (see note). This TRI operation returns TRI_OK on successful initiation of the procedure call, TRI_Error otherwise. No error shall be indicated by the SA in case the value of any out parameter is nonnull. Notice that the return value of this TRI operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN3 ATS for a call operation, is not included in the triCallBC operation signature. The TE is responsible to address this issue by starting a timer for the TTCN3 call operation in the PA with a separate TRI operation call, i.e. triStartTimer.

	NOTE:	This might be achieved for example by spawning a new thread or process. This handling of this procedure call is, however, dependent on implementation of the TE.

[bookmark: _Toc390248689][bookmark: _Toc406750737]5.5.4.3	triCallMC (TE SA)
	Signature
	TriStatusType triCallMC(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressListType SUTaddresses,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList)

	In Parameters
	componentId	identifier of the test component issuing the procedure call
tsiPortId	identifier of the test system interface port via which the procedure call is sent to the SUT Adaptor
SUTaddresses	destination addresses within the SUT
signatureId	identifier of the signature of the procedure call
parameterList	a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN3 signature declaration

	Out Parameters
	n.a.

	Return Value
	The return status of the triCallMC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 multicast call operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN3 call operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can initiate and multicast the procedure call corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triCallMC operation shall return without waiting for the return of the issued procedure call (see note). This TRI operation returns TRI_OK on successful initiation of the procedure call, TRI_Error otherwise. No error shall be indicated by the SA in case the value of any out parameter is nonnull. Notice that the return value of this TRI operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN3 ATS for a call operation, is not included in the triCallMC operation signature. The TE is responsible to address this issue by starting a timer for the TTCN3 call operation in the PA with a separate TRI operation call, i.e. triStartTimer.

	NOTE:	This might be achieved for example by spawning a new thread or process. This handling of this procedure call is, however, dependent on implementation of the TE.

[bookmark: _Toc390248690][bookmark: _Toc406750738]5.5.4.4	triReply (TE SA)
	Signature
	TriStatusType triReply(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
in TriParameterType returnValue)

	In Parameters
	componentId	identifier of the replying test component
tsiPortId	identifier of the test system interface port via which the reply is sent to the SUT Adaptor
SUTaddress	(optional) destination address within the SUT
signatureId	identifier of the signature of the procedure call
parameterList	a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN3 signature declaration
returnValue	(optional) encoded return value of the procedure call

	Out Parameters
	n.a.

	Return Value
	The return status of the triReply operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 unicast reply operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN3 reply operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the parameters specified in the TTCN3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN3 ATS, the distinct value null shall be passed for the return value.

	Effect
	On invocation of this operation the SA can issue the reply to a procedure call corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReply operation will return TRI_OK on successful execution of this operation, TRI_Error otherwise. The SA shall indicate no error in case the value of any in parameter or an undefined return value is different from null.

[bookmark: _Toc390248691][bookmark: _Toc406750739]5.5.4.5	triReplyBC (TE SA)
	Signature
	TriStatusType triReplyBC(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
in TriParameterType returnValue)

	In Parameters
	componentId	identifier of the replying test component
tsiPortId	identifier of the test system interface port via which the reply is sent to the SUT Adaptor
signatureId	identifier of the signature of the procedure call
parameterList	a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN3 signature declaration
returnValue	(optional) encoded return value of the procedure call

	Out Parameters
	n.a.

	Return Value
	The return status of the triReplyBC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 broadcast reply operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN3 reply operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the parameters specified in the TTCN3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN3 ATS, the distinct value null shall be passed for the return value.

	Effect
	On invocation of this operation the SA can broadcast the reply to procedure calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReplyBC operation will return TRI_OK on successful execution of this operation, TRI_Error otherwise. The SA shall indicate no error in case the value of any in parameter or an undefined return value is different from null.

[bookmark: _Toc390248692][bookmark: _Toc406750740]5.5.4.6	triReplyMC (TE SA)
	Signature
	TriStatusType triReplyMC(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressListType SUTaddresses,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
in TriParameterType returnValue)

	In Parameters
	componentId	identifier of the replying test component
tsiPortId	identifier of the test system interface port via which the reply is sent to the SUT Adaptor
SUTaddresses	destination addresses within the SUT
signatureId	identifier of the signature of the procedure call
parameterList	a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN3 signature declaration
returnValue	(optional) encoded return value of the procedure call

	Out Parameters
	n.a.

	Return Value
	The return status of the triReplyMC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 multicast reply operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN3 reply operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the parameters specified in the TTCN3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.
If no return type has been defined for the procedure signature in the TTCN3 ATS, the distinct value null shall be passed for the return value.

	Effect
	On invocation of this operation the SA can multicast the reply to procedure calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReplyMC operation will return TRI_OK on successful execution of this operation, TRI_Error otherwise. The SA shall indicate no error in case the value of any in parameter or an undefined return value is different from null.

[bookmark: _Toc390248693][bookmark: _Toc406750741]5.5.4.7	triRaise (TE SA)
	Signature
	TriStatusType triRaise(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriSignatureIdType signatureId,
in TriExceptionType exc)

	In Parameters
	componentId	identifier of the test component raising the exception
tsiPortId	identifier of the test system interface port via which the exception is sent to the SUT Adaptor
SUTaddress	(optional) destination address within the SUT
signatureId	identifier of the signature of the procedure call which the exception is associated with
exc	the encoded exception

	Out Parameters
	n.a.

	Return Value
	The return status of the triRaise operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 unicast raise operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN3 raise operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can raise an exception to a procedure call corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triRaise operation returns TRI_OK on successful execution of the operation, TRI_Error otherwise.

[bookmark: _Toc390248694][bookmark: _Toc406750742]5.5.4.8	triRaiseBC (TE SA)
	Signature
	TriStatusType triRaiseBC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc)

	In Parameters
	componentId	identifier of the test component raising the exception
tsiPortId	identifier of the test system interface port via which the exception is sent to the SUT Adaptor
signatureId	identifier of the signature of the procedure call which the exception is associated with
exc	the encoded exception

	Out Parameters
	n.a.

	Return Value
	The return status of the triRaiseBC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 broadcast raise operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN3 raise operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can raise and broadcast an exception to procedure calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triRaiseBC operation returns TRI_OK on successful execution of the operation, TRI_Error otherwise.

[bookmark: _Toc390248695][bookmark: _Toc406750743]5.5.4.9	triRaiseMC (TE SA)
	Signature
	TriStatusType triRaiseMC(in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc)

	In Parameters
	componentId	identifier of the test component raising the exception
tsiPortId	identifier of the test system interface port via which the exception is sent to the SUT Adaptor
SUTaddresses	destination addresses within the SUT
signatureId	identifier of the signature of the procedure call which the exception is associated with
exc	the encoded exception

	Out Parameters
	n.a.

	Return Value
	The return status of the triRaiseMC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 multicast raise operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN3 raise operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
The encoding of the exception has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can raise and multicast an exception to a procedure calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triRaiseMC operation returns TRI_OK on successful execution of the operation, TRI_Error otherwise.

[bookmark: _Toc390248696][bookmark: _Toc406750744]5.5.4.10	triEnqueueCall (SA TE)
	Signature
	void triEnqueueCall(in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriComponentIdType componentId,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList)

	In Parameters
	tsiPortId	identifier of the test system interface port via which the procedure call is enqueued by the SUT Adaptor
SUTaddress	(optional) source address within the SUT
componentId	identifier of the receiving test component
signatureId	identifier of the signature of the procedure call
parameterList	a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN3 signature declaration. Description of data passed as parameters to the operation from the calling entity to the called entity

	Out Parameters
	n.a.

	Return Value
	void

	Constraints
	This operation can be called by the SA after it has received a procedure call from the SUT. It can only be used when tsiPortId has been either previously mapped to a port of componentId or referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueCall operation all in and inout procedure parameters contain encoded values.

	Effect
	The TE can enqueue this procedure call with the signature identifier signatureId at the port of the component componentId to which the TSI port tsiPortId is mapped. The decoding of procedure parameters has to be done in the TE.
The TE shall indicate no error in case the value of any out parameter is different from null.

[bookmark: _Toc390248697][bookmark: _Toc406750745]5.5.4.11	triEnqueueReply (SA TE)
	Signature
	void triEnqueueReply(in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriComponentIdType componentId,
in TriSignatureIdType signatureId,
in TriParameterListType parameterList,
in TriParameterType returnValue)

	In Parameters
	tsiPortId	identifier of the test system interface port via which the reply is enqueued by the SUT Adaptor
SUTaddress	(optional) source address within the SUT
componentId	identifier of the receiving test component
signatureId	identifier of the signature of the procedure call
parameterList	a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN3 signature declaration
returnValue	(optional) encoded return value of the procedure call

	Out Parameters
	n.a.

	Return Value
	void

	Constraints
	This operation can be called by the SA after it has received a reply from the SUT. It can only be used when tsiPortId has been either previously mapped to a port of componentId or referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueReply operation all out and inout procedure parameters and the return value contain encoded values.
If no return type has been defined for the procedure signature in the TTCN3 ATS, the distinct value null shall be used for the return value.

	Effect
	The TE can enqueue this reply to the procedure call with the signature identifier signatureId at the port of the component componentId to which the TSI port tsiPortId is mapped. The decoding of the procedure parameters has to be done within the TE.
The TE shall indicate no error in case the value of any in parameter or an undefined return value is different from null.

[bookmark: _Toc390248698][bookmark: _Toc406750746]5.5.4.12	triEnqueueException (SA TE)
	Signature
	void triEnqueueException(in TriPortIdType tsiPortId,
in TriAddressType SUTaddress,
in TriComponentIdType componentId,
in TriSignatureIdType signatureId,
in TriExceptionType exc)

	In Parameters
	tsiPortId	identifier for the test system interface port via which the exception is 	enqueued by the SUT Adaptor
SUTaddress	(optional) source address within the SUT
componentId	identifier of the receiving test component
signatureId	identifier of the signature of the procedure call which the exception
is associated with
exc	the encoded exception

	Out Parameters
	n.a.

	Return Value
	void

	Constraints
	This operation can be called by the SA after it has received a reply from the SUT. It can only be used when tsiPortId has been either previously mapped to a port of componentId or referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueException operation exception shall contain an encoded value.

	Effect
	The TE can enqueue this exception for the procedure call with the signature identifier signatureId at the port of the component componentId to which the TSI port tsiPortId is mapped.
The decoding of the exception has to be done within the TE.

[bookmark: _Toc390248699][bookmark: _Toc406750747]5.5.5	Miscellaneous operations
[bookmark: _Toc390248700][bookmark: _Toc406750748]5.5.5.1	triSUTactionInformal (TE SA)
	Signature
	TriStatusType triSUTactionInformal(in string description)

	In Parameters
	description	an informal description of an action to be taken on the SUT

	Out Parameters
	n.a.

	Return Value
	The return status of the triSUTactionInformal operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN3 SUT action operation, which only contains a string.

	Effect
	On invocation of this operation the SA shall initiate the described actions to be taken on the SUT,
e.g. turn on, initialize, or send a message to the SUT.
The triSUTactionInformal operation returns TRI_OK on successful execution of the operation, TRI_Error otherwise. Notice that the return value of this TRI operation does not make any statement about the success or failure of the actions to be taken on the SUT.

[bookmark: clause_TRI_Platform_Interface][bookmark: _Toc390248701][bookmark: _Toc406750749]5.6	Platform interface operations
[bookmark: _Toc390248702][bookmark: _Toc406750750]5.6.1	triPAReset (TE PA)
	Signature
	TriStatusType triPAReset()

	In Parameters
	n.a.

	Out Parameters
	n.a.

	Return Value
	The return status of the triPAReset operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation can be called by the TE at any time to reset the PA.

	Effect
	The PA shall reset all timing activities which it is currently performing, e.g. stop all running timers, discard any pending timeouts of expired timers.
The triPAReset operation returns TRI_OK in case the operation has been performed successfully, TRI_Error otherwise.

[bookmark: _Toc390248703][bookmark: _Toc406750751]5.6.2	Timer operations
[bookmark: _Toc390248704][bookmark: _Toc406750752]5.6.2.1	triStartTimer (TE PA)
	Signature
	TriStatusType triStartTimer(
in TriTimerIdType timerId,
in TriTimerDurationType timerDuration)

	In Parameters
	timerId	identifier of the timer instance
timerDuration	duration of the timer in seconds

	Out Parameters
	n.a.

	Return Value
	The return status of the triStartTimer operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when a timer needs to be started.

	Effect
	On invocation of this operation the PA shall start the indicated timer with the indicated duration. The timer runs from the value zero (0.0) up to the maximum specified by timerDuration. Should the timer indicated by timerId already be running it is to be restarted. When the timer expires the PA will call the triTimeout() operation with timerId.
The triStartTimer operation returns TRI_OK if the timer has been started successfully, TRI_Error otherwise.

[bookmark: _Toc390248705][bookmark: _Toc406750753]5.6.2.2	triStopTimer (TE PA)
	Signature
	TriStatusType triStopTimer(in TriTimerIdType timerId)

	In Parameters
	timerId	identifier of the timer instance

	Out Parameters
	n.a.

	Return Value
	The return status of the triStopTimer operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when a timer is to be stopped.

	Effect
	On invocation of this operation the PA shall use the timerId to stop the indicated timer instance. The stopping of an inactive timer, i.e. a timer which has not been started or has already expired, should have no effect.
The triStopTimer operation returns TRI_OK if the operation has been performed successfully, TRI_Error otherwise. Notice that stopping an inactive timer is a valid operation. In this case TRI_OK shall be returned.

[bookmark: _Toc390248706][bookmark: _Toc406750754]5.6.2.3	triReadTimer (TE PA)
	Signature
	TriStatusType triReadTimer(
in TriTimerIdType timerId,
out TriTimerDurationType elapsedTime)

	In Parameters
	timerId	identifier of the timer instance

	Out Parameters
	elapsedTime	value of the time elapsed since the timer has been started in seconds

	Return Value
	The return status of the triReadTimer operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation may be called by the TE when a TTCN3 read timer operation is to be executed on the indicated timer.

	Effect
	On invocation of this operation the PA shall use the timerId to access the time that elapsed since this timer was started. The return value elapsedTime shall be provided in seconds. The reading of an inactive timer, i.e. a timer which has not been started or already expired, shall return an elapsed time value of zero.
The triReadTimer operation returns TRI_OK if the operation has been performed successfully, TRI_Error otherwise.

[bookmark: _Toc390248707][bookmark: _Toc406750755]5.6.2.4	triTimerRunning (TE PA)
	Signature
	TriStatusType triTimerRunning(in TriTimerIdType timerId,
out boolean running)

	In Parameters
	timerId	identifier of the timer instance

	Out Parameters
	running	status of the timer

	Return Value
	The return status of the triTimerRunning operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation may be called by the TE when a TTCN3 running timer operation is to be executed on the indicated timer.

	Effect
	On invocation of this operation the PA shall use the timerId to access the status of the timer. The operation sets running to the boolean value true if and only if the timer is currently running.
The triTimerRunning operation returns TRI_OK if the status of the timer has been successfully determined, TRI_Error otherwise.

[bookmark: _Toc390248708][bookmark: _Toc406750756]5.6.2.5	triTimeout (PA TE)
	Signature
	void triTimeout(in TriTimerIdType timerId)

	In Parameters
	timerId	identifier of the timer instance

	Out Parameters
	n.a.

	Return Value
	void

	Constraints
	This operation is called by the PA after a timer, which has previously been started using the triStartTimer operation, has expired, i.e. it has reached its maximum duration value.

	Effect
	The timeout with the timerId can be added to the timeout list in the TE. The implementation of this operation in the TE has to be done in such a manner that it addresses the different TTCN3 semantics for timers defined in ES 201 8734 [3].

[bookmark: _Toc390248709][bookmark: _Toc406750757]5.6.3	Miscellaneous operations
[bookmark: _Toc390248710][bookmark: _Toc406750758]5.6.3.1	triExternalFunction (TE PA)
	Signature
	TriStatusType triExternalFunction(
in TriFunctionIdType functionId,
inout TriParameterListType parameterList,
out TriParameterType returnValue)

	In Parameters
	functionId	identifier of the external function

	Out Parameters
	returnValue	(optional) encoded return value

	InOutParameters
	parameterList	a list of encoded parameters for the indicated function. The parameters in parameterList are ordered as they appear in the TTCN3 function declaration.

	Return Value
	The return status of the triExternalFunction operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a function which is defined to be TTCN3 external (i.e. all nonexternal functions are implemented within the TE).
In the invocation of a triExternalFunction operation by the TE all in and inout function parameters contain encoded values. No error shall be indicated by the PA in case the value of any out parameter is nonnull.

	Effect
	For each external function specified in the TTCN3 ATS the PA shall implement the behaviour. On invocation of this operation the PA shall invoke the function indicated by the identifier functionId. It shall access the specified in and inout function parameters in parameterList, evaluate the external function using the values of these parameters, and compute values for inout and out parameters in parameterList. The operation shall then return encoded values for all inout and out function parameters and the encoded return value of the external function.
If no return type has been defined for this external function in the TTCN3 ATS, the distinct value null shall be used for the latter.
The triExternalFunction operation returns TRI_OK if the PA completes the evaluation of the external function successfully, TRI_Error otherwise.
Note that whereas all other TRI operations are considered to be nonblocking, the triExternalFunction operation is considered to be blocking. That means that the operation shall not return before the indicated external function has been fully evaluated. External functions have to be implemented carefully as they could cause deadlock of test component execution or even the entire test system implementation.

[bookmark: _Toc390248711][bookmark: _Toc406750759]5.6.3.2	triSelf (PA TE)
	Signature
	TriComponentId triSelf()

	In Parameters
	n.a.

	Out Parameters
	n.a.

	Return Value
	The component id of the calling component.

	Constraints
	This operation can be called by the PA during the execution of triExternalFunction.

	Effect
	The TriComponentId identifying the component which issued the external function call is returned.

[bookmark: _Toc390248712][bookmark: _Toc406750760]5.6.3.3	triRnd (PA TE)
	Signature
	TriMessage triRnd(in TriComponentIdType componentId, in TriMessage seed)

	In Parameters
	componentId	identifier of the component for which to generate the random number

	
	seed		the encoded seed to be used for generation of the random number or null

	Out Parameters
	n.a.

	Return Value
	The encoded generated float random number.

	Constraints
	This operation is called by the PA to generate a random number in the context of an external function.

	Effect
	A random number is generated in the scope of the component identified by the given componentId using the given seed (if any) according to the specification of the predefined rnd function defined in ES 201 8731 [2].

[bookmark: clause_Java_Mapping][bookmark: _Toc390248713][bookmark: _Toc406750761]6	Java language mapping
[bookmark: _Toc390248714][bookmark: _Toc406750762]6.1	Introduction
This clause introduces the TRI Java language mapping. For efficiency reasons a dedicated language mapping is introduced instead of using the OMG IDL [4] to Java language [5].
The Java language mapping for the TTCN3 Runtime Interface defines how the IDL definitions described in clause 5 are mapped to the Java language. The language mapping is independent of the used Java version as only basic Java language constructs are used.
[bookmark: _Toc390248715][bookmark: _Toc406750763]6.2	Names and scopes
[bookmark: _Toc390248716][bookmark: _Toc406750764]6.2.1	Names
Although there are no conflicts between identifiers used in the IDL definition and the Java language some naming translation rules are applied to the IDL identifiers:
Java parameter identifiers shall start with a lower case letter, and subsequent part building the parameter identifier start with a capital letter. For example the IDL parameter identifier SUTaddress maps to sutAddress in Java.
Java interfaces or class identifiers are omitting the trailing Type used in the IDL definition. For example the IDL type TriPortIdType maps to TriPortId in Java.
The resulting mapping conforms to the standard Java coding conventions.
[bookmark: _Toc390248717][bookmark: _Toc406750765]6.2.2	Scopes
The IDL module triInterface is mapped to the Java package org.etsi.ttcn3.tri. All IDL type declarations within this module are mapped to Java classes or interface declarations within this package.
[bookmark: _Toc390248718][bookmark: _Toc406750766]6.3	Type mapping
[bookmark: _Toc390248719][bookmark: _Toc406750767]6.3.1	Basic type mapping
Table 3 gives an overview on how the used basic IDL types are mapped to the Java types.
Table 3: Basic type mappings
	IDL Type
	Java Type

	boolean
	org.etsi.ttcn.tri.TriBoolean

	string
	java.lang.String

Other IDL basic types are not used within the IDL definition.
[bookmark: _Toc390248720][bookmark: _Toc406750768]6.3.1.1	Boolean
The IDL boolean type is mapped to the interface org.etsi.ttcn.tri.TriBoolean, so that objects implementing this interface can act as holder objects.
The following interface is defined for org.etsi.ttcn.tri.TriBoolean:
// TriBoolean
package org.etsi.ttcn.tri;
public interface TriBoolean {
	public void setBooleanValue(boolean value);
	public boolean getBooleanValue();
}

[bookmark: _Toc390248721][bookmark: _Toc406750769]6.3.1.1.1	Methods
setBooleanValue
Sets this TriBoolean to the boolean value value.
getBooleanValue
Returns the boolean value represented by this TriBoolean.
[bookmark: _Toc390248722][bookmark: _Toc406750770]6.3.1.2	String
The IDL string type is mapped to the java.lang.String class without range checking or bounds for characters in the string. All possible strings defined in TTCN3 can be converted to java.lang.String.
[bookmark: _Toc390248723][bookmark: _Toc406750771]6.3.2	Structured type mapping
The TRI IDL description defines userdefined types as native types. In the Java language mapping, these types are mapped to Java interfaces. The interfaces define methods and attributes being available for objects implementing this interface.
[bookmark: _Toc390248724][bookmark: _Toc406750772]6.3.2.1	TriPortIdType
TriPortIdType is mapped to the following interface:
// TRI IDL TriPortIdType
package org.etsi.ttcn.tri;
public interface TriPortId {
	public String getPortName();
	public String getPortTypeName();
	public TriComponentId getComponent();
	public boolean isArray();
	public int getPortIndex();
}

[bookmark: _Toc390248725][bookmark: _Toc406750773]6.3.2.1.1	Methods
getPortName
Returns the port name as defined in the TTCN3 specification.
getPortTypeName
Returns the port type name as defined in the TTCN3 specification.
getComponent
Returns the component identifier that this TriPortId belongs to as defined in the TTCN3 specification.
isArray
Returns true if this port is part of a port array, false otherwise.
getPortIndex
Returns the port index if this port is part of a port array starting at zero. If the port is not part of a port array, then 1 is returned.
[bookmark: _Toc390248726][bookmark: _Toc406750774]6.3.2.2	TriPortIdListType
TriPortIdListType is mapped to the following interface:
// TRI IDL TriPortIdListType
package org.etsi.ttcn.tri;
public interface TriPortIdList {
	public int size();
	public boolean isEmpty();
	public java.util.Enumeration getPortIds();
	public TriPortId get(int index);
}

[bookmark: _Toc390248727][bookmark: _Toc406750775]6.3.2.2.1	Methods
size
Returns the number of ports in this list.
isEmpty
Returns true if this list contains no ports.
getPortIds
Returns an Enumeration over the ports in the list. The enumeration provides the ports in the same order as they appear in the list.
get
Returns the TriPortId at the specified position.
[bookmark: _Toc390248728][bookmark: _Toc406750776]6.3.2.3	TriComponentIdType
TriComponentIdType is mapped to the following interface:
// TRI IDL TriComponentIdType
package org.etsi.ttcn.tri;
public interface TriComponentId {
	public String getComponentId();
	public String getComponentName();
	public String getComponentTypeName();
	public TriPortIdList getPortList();
	public boolean equals(TriComponentId component);
}

[bookmark: _Toc390248729][bookmark: _Toc406750777]6.3.2.3.1	Methods
getComponentId
Returns a representation of this unique component identifier.
getComponentName
Returns the component name as defined in the TTCN3 specification. If no name is provided, an empty string is returned.
getComponentTypeName
Returns the component type name as defined in the TTCN3 specification.
getPortList
Returns the component's port list as defined in the TTCN3 specification.
equals
Compares component with this TriComponentId for equality. Returns true if and only if both components have the same representation of this unique component identifier, false otherwise.
[bookmark: _Toc390248730][bookmark: _Toc406750778]6.3.2.4	TriComponentIdListType
TriComponentIdListType is mapped to the following interface:
// TRI IDL TriComponentIdListType
package org.etsi.ttcn.tri;
public interface TriComponentIdListType {
	public int size();
	public boolean isEmpty();
	public java.util.Enumeration getComponents();
	public TriComponentId get(int index);
	public void clear();
	public void add(TriComponentId comp);
}
[bookmark: _Toc390248731][bookmark: _Toc406750779]6.3.2.4.1	Methods
size
Returns the number of components in this list.
isEmpty
Returns true if this list contains no components.
getComponents
Returns an Enumeration over the components in the list. The enumeration provides the components in the same order as they appear in the list.
get
Returns the TriComponentId at the specified position.
clear
Removes all components from this TriComponentIdList.
add
Adds comp to the end of this TriComponentIdList.
[bookmark: _Toc390248732][bookmark: _Toc406750780]6.3.2.5	TriMessageType
TriMessageType is mapped to the following interface:
// TRI IDL TriMessageType
package org.etsi.ttcn.tri;
public interface TriMessage {
	public byte[] getEncodedMessage();
	public void setEncodedMessage(byte[] message);
 public int getNumberOfBits();
 public void setNumberOfBits(int amount);
	public boolean equals(TriMessage message);
}

[bookmark: _Toc390248733][bookmark: _Toc406750781]6.3.2.5.1	Methods
getEncodedMessage
Returns the message encoded according the coding rules defined in the TTCN3 specification.
setEncodedMessage
Sets the encoded message representation of this TriMessage to message.
getNumberOfBits
Returns the amount of bits of the message.
setNumberOfBits
Sets the amount of bits in the message.
equals
Compares message with this TriMessage for equality. Returns true if and only if both messages have the same encoded representation, false otherwise.
[bookmark: _Toc390248734][bookmark: _Toc406750782]6.3.2.6	TriAddressType
TriAddressType is mapped to the following interface:
// TRI IDL TriAddressType
package org.etsi.ttcn.tri;
public interface TriAddress {
	public byte[] getEncodedAddress();
	public void setEncodedAddress(byte[] address);
 public int getNumberOfBits();
 public void setNumberOfBits(int amount);
	public boolean equals(TriAddress address);
}
[bookmark: _Toc390248735][bookmark: _Toc406750783]6.3.2.6.1	Methods
getEncodedAddress
Returns the encoded address.
setEncodedAddress
Sets the encoded address of this TriAddress to address.
getNumberOfBits
Returns the amount of bits of the address.
setNumberOfBits
Sets the amount of bits in the address.
equals
Compares address with this TriAddress for equality. Returns true if and only if both addresses have the same encoded representation, false otherwise.
[bookmark: _Toc390248736][bookmark: _Toc406750784]6.3.2.7	TriAddressListType
TriAddressListType is mapped to the following interface:
// TRI IDL TriAddressListType
package org.etsi.ttcn.tri;
public interface TriAddressListType {
	public int size();
	public boolean isEmpty();
	public java.util.Enumeration getAddresses();
	public TriAddress get(int index);
	public void clear();
	public void add(TriAddress addr);
}

[bookmark: _Toc390248737][bookmark: _Toc406750785]6.3.2.7.1	Methods
size
Returns the number of components in this list.
isEmpty
Returns true if this list contains no components.
getAddresses
Returns an Enumeration over the components in the list. The enumeration provides the addresses in the same order as they appear in the list.
get
Returns the TriAddress at the specified position.
clear
Removes all addresses from this TriAddressList.
add
Adds addr to the end of this TriAddressList.
[bookmark: clause_Java_TriSignatureIdType][bookmark: _Toc390248738][bookmark: _Toc406750786]6.3.2.8	TriSignatureIdType
TriSignatureIdType is mapped to the following interface:
// TRI IDL TriSignatureIdType
package org.etsi.ttcn.tri;
public interface TriSignatureId {
	public String getSignatureName();
	public void setSignatureName(String sigName);
	public boolean equals(TriSignatureId sig);
}

[bookmark: _Toc390248739][bookmark: _Toc406750787]6.3.2.8.1	Methods
getSignatureName
Returns the signature identifier as defined in the TTCN3 specification.
setSignatureName
Sets the signature identifier of this TriSignatureId to sigName.
equals
Compares sig with this TriSignatureId for equality. Returns true if and only if both signatures have the same signature identifier, false otherwise.
[bookmark: _Toc390248740][bookmark: _Toc406750788]6.3.2.9	TriParameterType
TriParameterType is mapped to the following interface:
// TRI IDL TriParameterType
package org.etsi.ttcn.tri;
public interface TriParameter {
	public String getParameterName();
	public void setParameterName(String name);
 public int getNumberOfBits();
 public void setNumberOfBits(int amount);
	public int getParameterPassingMode();
	public void setParameterPassingMode(TriParameterPassingMode mode);
	public byte[] getEncodedParameter();
	public void setEncodedParameter(byte[] parameter);
}

[bookmark: _Toc390248741][bookmark: _Toc406750789]6.3.2.9.1	Methods
getParameterName
Returns the parameter name as defined in the TTCN3 specification.
setParameterName
Sets the name of this TriParameter parameter to name.
getNumberOfBits
Returns the amount of bits of the parameter.
setNumberOfBits
Sets the amount of bits in the parameter.
getParameterPassingMode
Returns the parameter passing mode of this parameter.
setParameterPassingMode
Sets the parameter mode of this TriParameter parameter to mode.
getEncodedParameter
Returns the encoded parameter representation of this TriParameter, or the null object if the parameter contains the distinct value null (see also clause 5.5.4).
setEncodedParameter
Sets the encoded parameter representation of this TriParameter to parameter. If the distinct value null shall be set to indicate that this parameter holds no value, the Java null shall be passed as parameter (see also clause 5.5.4).
[bookmark: _Toc390248742][bookmark: _Toc406750790]6.3.2.10	TriParameterPassingModeType
TriParameterPassingModeType is mapped to the following interface:
// TRI IDL TriParameterPassingModeType
package org.etsi.ttcn.tri;
public interface TriParameterPassingMode {
	public final static int TRI_IN = 0;
	public final static int TRI_INOUT = 1;
	public final static int TRI_OUT = 2;
}

[bookmark: _Toc390248743][bookmark: _Toc406750791]6.3.2.10.1	Constants
TRI_IN
Will be used to indicate that a TriParameter is an in parameter.
TRI_INOUT
Will be used to indicate that a TriParameter is an inout parameter.
TRI_OUT
Will be used to indicate that a TriParameter is an out parameter.
[bookmark: _Toc390248744][bookmark: _Toc406750792]6.3.2.11	TriParameterListType
TriParameterListType is mapped to the following interface:
// TRI IDL TriParameterListType
package org.etsi.ttcn.tri;
public interface TriParameterList {
	public int size();
	public boolean isEmpty();
	public java.util.Enumeration getParameters();
	public TriParameter get(int index);
	public void clear();
	public void add(TriParameter parameter);
}

[bookmark: _Toc390248745][bookmark: _Toc406750793]6.3.2.11.1	Methods
size
Returns the number of parameters in this list.
isEmpty
Returns true if this list contains no parameters.
getParameters
Returns an Enumeration over the parameters in the list. The enumeration provides the parameters in the same order as they appear in the list.
get
Returns the TriParameter at the specified position.
clear
Removes all parameters from this TriParameterList.
add
Adds parameter to the end of this TriParameterList.
[bookmark: _Toc390248746][bookmark: _Toc406750794]6.3.2.12	TriExceptionType
TriExceptionType is mapped to the following interface:
// TRI IDL TriExceptionType
package org.etsi.ttcn.tri;
public interface TriException {
	public byte[] getEncodedException();
	public void setEncodedException(byte[] message);
 public int getNumberOfBits();
 public void setNumberOfBits(int amount);
	public boolean equals(TriException exc);
}

[bookmark: _Toc390248747][bookmark: _Toc406750795]6.3.2.12.1	Methods
getEncodedException
Returns the exception encoded according to the coding rules defined in the TTCN3 specification.
setEncodedException
Sets the encoded exception representation of this TriException to exc.
getNumberOfBits
Returns the amount of bits of the exception.
setNumberOfBits
Sets the amount of bits in the exception.
equals
Compares exc with this TriException for equality. Returns true if and only if both exceptions have the same encoded representation, false otherwise.
[bookmark: _Toc390248748][bookmark: _Toc406750796]6.3.2.13	TriTimerIdType
TriTimerIdType is mapped to the following interface:
// TRI IDL TriTimerIdType
package org.etsi.ttcn.tri;
public interface TriTimerId {
	public String getTimerName();
	public boolean equals(TriTimerId timer);
}

[bookmark: _Toc390248749][bookmark: _Toc406750797]6.3.2.13.1	Methods
getTimerName
Returns the name of this timer identifier as defined in the TTCN3 specification. In case of implicit timers the result is implementation dependent (see clause 4.1.2.4).
equals
Compares timer with this TriTimerId for equality. Returns true if and only if both timers identifiers represent the same timer, false otherwise.
[bookmark: _Toc390248750][bookmark: _Toc406750798]6.3.2.14	TriTimerDurationType
TriTimerDurationType is mapped to the following interface:
// TRI IDL TriTimerDurationType
package org.etsi.ttcn.tri;
public interface TriTimerDuration {
	public double getDuration();
	public void setDuration(double duration);
	public boolean equals(TriTimerDuration duration);
}

[bookmark: _Toc390248751][bookmark: _Toc406750799]6.3.2.14.1	Methods
getDuration
Returns the duration of a timer as double.
setDuration
Sets the duration of this TriTimerDuration to duration.
equals
Compares duration with this TriTimerDuration for equality. Returns true if and only if both have the same duration, false otherwise.
[bookmark: _Toc390248752][bookmark: _Toc406750800]6.3.2.15	TriFunctionIdType
TriFunctionIdType is mapped to the following interface:
// TRI IDL TriFunctionIdType
package org.etsi.ttcn.tri;
public interface TriFunctionId {
	public String toString();
	public String getFunctionName();
	public boolean equals(TriFunctionId fun);
}

[bookmark: _Toc390248753][bookmark: _Toc406750801]6.3.2.15.1	Methods
toString
Returns the string representation of the function as defined in TTCN3 specification.
getFunctionName
Returns the function identifier as defined in the TTCN3 specification.
equals
Compares fun with this TriFunctionId for equality. Returns true if and only if both functions have the same function identifier, false otherwise.
[bookmark: _Toc390248754][bookmark: _Toc406750802]6.3.2.16	TriTestCaseIdType
TriTestCaseIdType is mapped to the following interface:
// TRI IDL TriTestCaseIdType
package org.etsi.ttcn.tri;
public interface TriTestCaseId {
	public String toString();
	public String getTestCaseName();
	public boolean equals(TriTestCaseId tc);
}

[bookmark: _Toc390248755][bookmark: _Toc406750803]6.3.2.16.1	Methods
toString
Returns the string representation of the test case as defined in TTCN3 specification.
getTestCaseName
Returns the test case identifier as defined in the TTCN3 specification.
equals
Compares tc with this TriTestCaseId for equality. Returns true if and only if both test cases have the same test case identifier, false otherwise.
[bookmark: _Toc390248756][bookmark: _Toc406750804]6.3.2.17	TriActionTemplateType
The content of this clause is obsolete.
[bookmark: clause_Java_TriStatusType][bookmark: _Toc390248757][bookmark: _Toc406750805]6.3.2.18	TriStatusType
TriStatusType is mapped to the following interface:
// TriStatusType
package org.etsi.ttcn.tri;
public interface TriStatus {
	public final static int TRI_OK = 0;
	public final static int TRI_ERROR = 1;
	public String toString();
	public int getStatus();
	public void setStatus(int status);
	public boolean equals(TriStatus status);
}
[bookmark: _Toc390248758][bookmark: _Toc406750806]6.3.2.18.1	Methods
toString
Returns the string representation of the status.
getStatus
Returns the status of this TriStatus.
setStatus
Sets the status of this TriStatus.
equals
Compares status with this TriStatus for equality. Returns true if and only if they have the same status, false otherwise.
[bookmark: _Toc390248759][bookmark: _Toc406750807]6.4	Constants
Within this Java language mapping constants have been specified. All constants are defined public final static and are accessible from every object from every package. The constants defined within this clause are not defined with the IDL clause. Instead they result from the specification of the TRI IDL types marked as native.
The following constants can be used to determine the parameter passing mode of TTCN3 parameters (see also clause 6.3.2.8):
org.etsi.ttcn.tri.TriParameterPassingMode.TRI_IN;
org.etsi.ttcn.tri.TriParameterPassingMode.TRI_INOUT;
org.etsi.ttcn.tri.TriParameterPassingMode.TRI_OUT.
The values of instances of these constants shall reflect the parameter passing mode defined in the TTCN3 procedure signatures.
For the distinct parameter value null, the encoded parameter value shall be set to Java null.
The following constants shall be used to indicate the local success of a method (see also clause 6.3.2.18):
org.etsi.ttcn.tri.TriStatus.TRI_OK;
org.etsi.ttcn.tri.TriStatus.TRI_ERROR.
[bookmark: _Toc390248760][bookmark: _Toc406750808]6.5	Mapping of interfaces
The TRI IDL definition defines two interfaces, the triCommunication and the triPlatform interface. As the operations are defined for different directions within this interface, i.e. some operations can only be called by the TTCN3 Executable (TE) on the System Adaptor (SA) while others can only be called by the SA on the TE. This is reflected by dividing the TRI IDL interfaces in two sub interfaces, each suffixed by the called entity.
Table 4: Sub Interfaces
	Calling/Called
	TE
	SA
	PA

	TE
	
	TriCommunicationSA
	triPlatformPA

	SA
	TriCommunicationTE
	
	

	PA
	TriPlatformTE
	
	

All methods defined in these interfaces should behave as defined in clause 5.
[bookmark: _Toc390248761][bookmark: _Toc406750809]6.5.1	Out and InOut Parameter Passing Mode
The following IDL types are used in out or inout parameter passing mode:
TriParameter.
TriParameterList.
TriBoolean.
TriTimerDuration.
In case they are used in out or inout parameter passing mode objects of the respective class will be passed with the method call. The called entity can then access methods to set the return values.
[bookmark: _Toc390248762][bookmark: _Toc406750810]6.5.2	triCommunication - Interface
The triCommunication interface is divided into two sub interfaces, the triCommunicationSA interface, defining calls from the TE to the SA and the triCommunicationTE interface, defining calls from the SA to the TE.
[bookmark: _Toc390248763][bookmark: _Toc406750811]6.5.2.1	triCommunicationSA
The triCommunicationSA interface is mapped to the following interface:
// TriCommunication
// TE > SA
package org.etsi.ttcn.tri;
public interface TriCommunicationSA {
	// Reset Operation
	// Ref: TRIDefinition 5.5.1
	TriStatus triSAReset();

	// Connection handling operations
	// Ref: TRIDefinition 5.5.2.1
	public TriStatus triExecuteTestCase(TriTestCaseId
		testCaseId,TriPortIdList tsiPorts);
	// Ref: TRIDefinition 5.5.2.2
	public TriStatus triMap(TriPortId compPortId, TriPortId tsiPortId);
	// Ref: TRIDefinition 5.5.2.3
	public TriStatus triMapParam(TriPortId compPortId, TriPortId tsiPortId,
							TriParameterList paramList);
	// Ref: TRIDefinition 5.5.2.4
	public TriStatus triUnmap(TriPortId compPortId, TriPortId tsiPortId);
	// Ref: TRIDefinition 5.5.2.5
	public TriStatus triUnmapParam(TriPortId compPortId, TriPortId tsiPortId,
							TriParameterList paramList);
	// Ref: TRIDefinition 5.5.2.6
	public TriStatus triEndTestCase();
	
	// Message based communication operations
	// Ref: TRIDefinition 5.5.3.1
	public TriStatus triSend(TriComponentId componentId, TriPortId tsiPortId,
			TriAddress sutAddress, TriMessage sendMessage);
	// Ref: TRIDefinition 5.5.3.2
	public TriStatus triSendBC(TriComponentId componentId, TriPortId tsiPortId,
			TriMessage sendMessage);
	// Ref: TRIDefinition 5.5.3.3
	public TriStatus triSendMC(TriComponentId componentId, TriPortId tsiPortId,
			TriAddressList sutAddresses, TriMessage sendMessage);

	// Procedure based communication operations
	// Ref: TRIDefinition 5.5.4.1
	public TriStatus triCall(TriComponentId componentId,
			TriPortId tsiPortId, TriAddress sutAddress,
			TriSignatureId signatureId, TriParameterList parameterList);
	// Ref: TRIDefinition 5.5.4.2
	public TriStatus triCallBC(TriComponentId componentId,
			TriPortId tsiPortId,
			TriSignatureId signatureId, TriParameterList parameterList);
	// Ref: TRIDefinition 5.5.4.3
	public TriStatus triCallMC(TriComponentId componentId,
			TriPortId tsiPortId, TriAddressList sutAddresses,
			TriSignatureId signatureId, TriParameterList parameterList);

	// Ref: TRIDefinition 5.5.4.4
	public TriStatus triReply(TriComponentId componentId,
			TriPortId tsiPortId, TriAddress sutAddress,
			TriSignatureId signatureId, TriParameterList parameterList,
			TriParameter returnValue);
	// Ref: TRIDefinition 5.5.4.5
	public TriStatus triReplyBC(TriComponentId componentId,
			TriPortId tsiPortId,
			TriSignatureId signatureId, TriParameterList parameterList,
			TriParameter returnValue);
	// Ref: TRIDefinition 5.5.4.6
	public TriStatus triReplyMC(TriComponentId componentId,
			TriPortId tsiPortId, TriAddressList sutAddresses,
			TriSignatureId signatureId, TriParameterList parameterList,
			TriParameter returnValue);

	// Ref: TRIDefinition 5.5.4.7
	public TriStatus triRaise(TriComponentId componentId, TriPortId tsiPortId,
			TriAddress sutAddress,
			TriSignatureId signatureId,
			TriException exc);
	// Ref: TRIDefinition 5.5.4.8
	public TriStatus triRaiseBC(TriComponentId componentId,
			TriPortId tsiPortId,
			TriSignatureId signatureId,
			TriException exc);
	// Ref: TRIDefinition 5.5.4.9
	public TriStatus triRaiseMC(TriComponentId componentId, TriPortId tsiPortId,
			TriAddressList sutAddresses,
			TriSignatureId signatureId,
			TriException exc);

	// Miscellaneous operations
	// Ref: TRIDefinition 5.5.5.1
	public TriStatus triSutActionInformal(String description);

}

[bookmark: _Toc390248764][bookmark: _Toc406750812]6.5.2.2	triCommunicationTE
The triCommunicationTE interface is mapped to the following interface:
// TriCommunication
// SA > TE
package org.etsi.ttcn.tri;
public interface TriCommunicationTE {
	// Message based communication operations
	// Ref: TRIDefinition 5.5.3.4
	public void triEnqueueMsg(TriPortId tsiPortId,
			TriAddress sutAddress, TriComponentId componentId,
			TriMessage receivedMessage);

	// Procedure based communication operations
	// Ref: TRIDefinition 5.5.4.10
	public void triEnqueueCall(TriPortId tsiPortId,
			TriAddress sutAddress, TriComponentId componentId,
			TriSignatureId signatureId, TriParameterList parameterList);

	// Ref: TRIDefinition 5.5.4.11
	public void triEnqueueReply(TriPortId tsiPortId, TriAddress sutAddress,
			TriComponentId componentId, TriSignatureId signatureId,
			TriParameterList parameterList, TriParameter returnValue);

	// Ref: TRIDefinition 5.5.4.12
	public void triEnqueueException(TriPortId tsiPortId,
			TriAddress sutAddress, TriComponentId componentId,
		 TriSignatureId signatureId, TriException exc);

	// Error handling
	// Ref: TRIDefinition 5.2.1
	public void	triSAErrorReq (String message);
}

[bookmark: _Toc390248765][bookmark: _Toc406750813]6.5.3	triPlatform - Interface
The triPlatform interface is divided in two sub interfaces, the triPlatformPA interface, defining calls from the TE to the PA and the triPlatformTE interface, defining calls from the PA to the TE.
[bookmark: _Toc390248766][bookmark: _Toc406750814]6.5.3.1	TriPlatformPA
The triPlatformPA interface is mapped to the following interface:
// TriPlatform
// TE > PA
package org.etsi.ttcn.tri;
public interface TriPlatformPA {
	// Ref: TRIDefinition 5.6.1
	public TriStatus triPAReset();

	// Timer handling operations
	// Ref: TRIDefinition 5.6.2.1
	public TriStatus triStartTimer(TriTimerId timerId,
		TriTimerDuration timerDuration);

	// Ref: TRIDefinition 5.6.2.2
	public TriStatus triStopTimer(TriTimerId timerId);

	// Ref: TRIDefinition 5.6.2.3
	public TriStatus triReadTimer(TriTimerId timerId,
		TriTimerDuration elapsedTime);

	// Ref: TRIDefinition 5.6.2.4
	public TriStatus triTimerRunning(TriTimerId timerId,
		TriBoolean running);

	// Miscellaneous operations

	// Ref: TRIDefinition 5.6.3.1
	public TriStatus triExternalFunction(TriFunctionId functionId,
	 TriParameterList parameterList, TriParameter returnValue);
}

[bookmark: _Toc390248767][bookmark: _Toc406750815]6.5.3.2	TriPlatformTE
The triPlatformTE interface is mapped to the following Java interface:
// TriPlatform
// PA > TE
package org.etsi.ttcn.tri;
public interface TriPlatformTE {
	// Ref: TRIDefinition 5.6.2.5
	public void triTimeout(TriTimerId timerId);

	// Error handling
	// Ref: TRIDefinition 5.2.2
	public void	triPAErrorReq (String message);

	// Ref: TRI-Definition 5.6.3.2
	public TriCompnentId triSelf();

	// Ref: TRI-Definition 5.6.3.3
	public TriMessage triRnd(TriComponentId componentId, TriMessage seed);
}

[bookmark: _Toc390248768][bookmark: _Toc406750816]6.6	Optional parameters
Clause 5.4 defines that a reserved value shall be used to indicate the absence of an optional parameter. For the Java language mapping the Java null value shall be used to indicate the absence of an optional value. For example if in the triSend operation the address parameter shall be omitted the operation invocation shall be: triSend(componentId, tsiPortId, null, sendMessage).
[bookmark: _Toc390248769][bookmark: _Toc406750817]6.7	TRI initialization
All methods are nonstatic, i.e. operations can only be called on objects. As the present document does not define concrete implementation strategies of TE, SA and PA the mechanism how the TE, the SA, or the PA get to know the handles on the respective objects is out of scope of the present document.
Tool vendors shall provide methods to the developers of SA and PA to register the TE, SA and PA to their respective communication partner.
[bookmark: clause_C_Mapping][bookmark: _Toc390248770][bookmark: _Toc406750818]7	ANSI C language mapping
[bookmark: _Toc390248771][bookmark: _Toc406750819]7.1	Introduction
This clause defines the TRI ANSIC language [6] mapping for the abstract data types specified in clause 5.35.3. For basic IDL types, the mapping conforms to OMG recommendations.
[bookmark: _Toc390248772][bookmark: _Toc406750820]7.2	Names and scopes
C parameter identifiers shall start with a lower case letter, and subsequent part building the parameter identifier start with a capital letter. For example the IDL parameter SUTaddress maps to sutAddress in C.
Abstract data type identifiers in C are omitting the trailing Type used in the IDL definition. For example the IDL type TriPortIdType maps to TriPortId in C.
Older C specifications have restricted the identifier uniqueness to the most significant 8 characters. Nevertheless, the recent ANSIC specifications have moved this limitation to the 31 most significant characters. Aside from this issue, no naming or scope conflicts have been identified in this mapping.
[bookmark: _Toc390248773][bookmark: _Toc406750821]7.2.1	Abstract type mapping
	TRI ADT
	ANSI C Representation
	Notes and comments

	TriAddress
	BinaryString
	

	TriAddressList
	typedef struct TriAddressList
{
 TriAddress** addrList;
 long int length;
} TriAddressList;
	See note 1.

	TriComponentId
	typedef struct TriComponentId
{
 BinaryString compInst;
 String compName;
 QualifiedName compType;
} TriComponentId;
	See note 2.

	TriComponentIdList
	typedef struct TriComponentIdList
{
 TriComponentId** compIdList;
 long int length;
} TriComponentIdList;
	See note 3.

	TriException
	BinaryString
	

	TriFunctionId
	QualifiedName
	

	TriMessage
	BinaryString
	

	TriParameterList
	typedef struct TriParameterList
{
 TriParameter** parList;
 long int length;
} TriParameterList;
	See note 4.

	TriParameter
	typedef struct TriParameter
{
 BinaryString par;
 TriParameterPassingMode mode;
} TriParameter;
	

	TriParameterPassingMode
	typedef enum
{
 TRI_IN = 0,
 TRI_INOUT = 1,
 TRI_OUT = 2
} TriParameterPassingMode;

	See note 5.

	TriPortIdList
	typedef struct TriPortIdList
{
 TriPortId** portIdList;
 long int length;
} TriPortIdList;
	See note 6.

	TriPortId
	typedef struct TriPortId
{
 TriComponentId compInst;
 char* portName;
 long int portIndex;
 QualifiedName portType;
 void* aux;
} TriPortId;
	See notes 7, 8 and 9.

	TriSignatureId
	QualifiedName
	

	TriStatus
	long int
#define TRI_ERROR 1
#define TRI_OK 0
	See note 10.

	TriTestCaseId
	QualifiedName
	

	TriTimerDuration
	Double
	

	TriTimerId
	BinaryString
	See note 11.

	NOTE 1:	No special values mark the end of addrList[]. The length field shall be used to traverse this array properly.
NOTE 2:	compInst is for component instance.
NOTE 3:	No special values mark the end of compIdList[]. The length field shall be used to traverse this array properly.
NOTE 4:	No special values mark the end of parList. The length field shall be used to traverse this array properly.
NOTE 5:	The values of instances of this type shall reflect the parameter passing mode defined in the corresponding TTCN3 procedure signatures.
NOTE 6:	No special values mark the end of portIdList[]. The length field shall be used to traverse this array properly.
NOTE 7:	compInst is for component instance.
NOTE 8:	For a singular (nonarray) declaration, the portIndex value should be 1.
NOTE 9:	The aux field is for future extensibility of TRI functionality.
NOTE 10:	All negative values are reserved for future extension of TRI functionality.
NOTE 11:	Pending ETSI statement on timer and snapshot semantics may influence future representation!

[bookmark: _Toc390248774][bookmark: _Toc406750822]7.2.2	ANSI C type definitions
	C ADT
	Type definition
	Notes and comments

	BinaryString
	typedef struct BinaryString
{
 unsigned char* data;
 long int bits;
 void* aux;
} BinaryString;
	See notes 1, 2 and 3.

	QualifiedName
	typedef struct QualifiedName
{
 char* moduleName;
 char* objectName;
 void* aux;
} QualifiedName;
	See notes 4 and 5.

	NOTE 1:	data is a nonnullterminated string.
NOTE 2:	bits is the number of bits used in data. bits value –1 is used to denote omitted value.
NOTE 3:	The aux field is for future extensibility of TRI functionality.
NOTE 4:	The moduleName and objectName fields are the TTCN3 identifiers literally.
NOTE 5:	The aux field is for future extensibility of TRI functionality.

[bookmark: _Toc390248775][bookmark: _Toc406750823]7.2.3	IDL type mapping
	IDL type
	ANSI C Representation
	Notes and comments

	Boolean
	unsigned char
	From OMG IDL to C++ mapping

	String
	char*
	From OMG IDL to C++ mapping

[bookmark: _Toc390248776][bookmark: _Toc406750824]7.2.4	TRI operation mapping
	IDL Representation
	ANSI C Representation

	TriStatusType triSAReset()
	TriStatus triSAReset()

	TriStatusType triExecuteTestCase
 (in TriTestCaseIdType testCaseId,
 in TriPortIdListType tsiPortList)
	TriStatus triExecuteTestCase
 (const TriTestCaseId* testCaseId,
 const TriPortIdList* tsiPortList)

	TriStatusType triMap
 (in TriPortIdType compPortId,
 in TriPortIdType tsiPortId)
	TriStatus triMap
 (const TriPortId* compPortId,
 const TriPortId* tsiPortId)

	TriStatusType triMapParam
 (in TriPortIdType compPortId,
 in TriPortIdType tsiPortId,
 in TriParameterListType paramList)
	TriStatus triMapParam
 (const TriPortId* compPortId,
 const TriPortId* tsiPortId,
 const TriParameterList* paramList)

	TriStatusType triUnmap
 (in TriPortIdType compPortId,
 in TriPortIdType tsiPortId)
	TriStatus triUnmap
(const TriPortId* compPortId,
 const TriPortId* tsiPortId)

	TriStatusType triUnmapParam
 (in TriPortIdType compPortId,
 in TriPortIdType tsiPortId,
 in TriParameterListType paramList)
	TriStatus triUnmapParam
(const TriPortId* compPortId,
 const TriPortId* tsiPortId,
 const TriParameterList* paramList)

	TriStatusType triEndTestCase()
	TriStatus triEndTestCase()

	TriStatusType triSend
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriMessageType sendMessage)
	TriStatus triSend
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriMessage* sendMessage)

	TriStatusType triSendBC
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriMessageType sendMessage)
	TriStatus triSendBC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriMessage* sendMessage)

	TriStatusType triSendMC
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses,
 in TriMessageType sendMessage)
	TriStatus triSendMC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriMessage* sendMessage)

	void triEnqueueMsg
 (in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriComponentIdType componentId,
 in TriMessageType receivedMessage)
	void triEnqueueMsg
(const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriMessage* receivedMessage)

	TriStatusType triCall
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList)
	TriStatus triCall
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList)

	TriStatusType triCallBC
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList)
	TriStatus triCallBC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList)

	TriStatusType triCallMC
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList)
	TriStatus triCallMC
(const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList)

	TriStatusType triReply
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList,
 in TriParameterType returnValue)
	TriStatus triReply
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue)

	TriStatusType triReplyBC
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList,
 in TriParameterType returnValue)
	TriStatus triReplyBC
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue)

	TriStatusType triReplyMC
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList,
 in TriParameterType returnValue)
	TriStatus triReplyMC
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue)

	TriStatusType triRaise
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc)
	TriStatus triRaise
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriSignatureId* signatureId,
 const TriException* exception)

	TriStatusType triRaiseBC
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc)
	TriStatus triRaiseBC
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriSignatureId* signatureId,
 const TriException* exception)

	TriStatusType triRaiseMC
 (in TriComponentIdType componentId,
 in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc)
	TriStatus triRaiseMC
 (const TriComponentId* componentId,
 const TriPortId* tsiPortId,
 const TriAddressList* sutAddresses,
 const TriSignatureId* signatureId,
 const TriException* exception)

	void triEnqueueCall
 (in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriComponentId componentId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList)
	void triEnqueueCall
 (const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList)

	void triEnqueueReply
 (in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriComponentIdType componentId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList,
 in TriParameterType returnValue)
	void triEnqueueReply
 (const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriParameterList* parameterList,
 const TriParameter* returnValue)

	void triEnqueueException
 (in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress,
 in TriComponentIdType componentId,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc)
	void triEnqueueException
 (const TriPortId* tsiPortId,
 const TriAddress* sutAddress,
 const TriComponentId* componentId,
 const TriSignatureId* signatureId,
 const TriException* exception)

	TriStatusType triSUTActionInformal
 (in string description)
	TriStatus triSUTActionInformal
 (const char* description)

	TriStatusType triPAReset()
	TriStatus triPAReset()

	TriStatusType triStartTimer
 (in TriTimerIdType timerId,
 in TriTimerDurationType timerDuration)
	TriStatus triStartTimer
 (const TriTimerId* timerId,
 TriTimerDuration timerDuration)

	TriStatusType triStopTimer
 (in TriTimerIdType timerId)
	TriStatus triStopTimer
 (const TriTimerId* timerId)

	TriStatusType triReadTimer
 (in TriTimerIdType timerId,
 out TriTimerDurationType elapsedTime)
	TriStatus triReadTimer
 (const TriTimerId* timerId,
 TriTimerDuration* elapsedTime)

	TriStatusType triTimerRunning
 (in TriTimerIdType timerId,
 out boolean running)
	TriStatus triTimerRunning
 (const TriTimerId* timerId,
 unsigned char* running)

	void triTimeout
 (in TriTimerIdType timerId)
	void triTimeout
 (const TriTimerId* timerId)

	TriStatusType triExternalFunction
 (in TriFunctionIdType functionId,
 inout TriParameterListType parameterList,
 out TriParameterType returnValue)
	TriStatus triExternalFunction
 (const TriFunctionId* functionId,
 TriParameterList* parameterList,
 TriParameter* returnValue)

	TriComponentId triSelf()
	TriComponentId triSelf()

	TriMessage triRnd
 (in TriComponentId self,
 in TriMessage seed)
	TriMessage triRnd
 (const TriComponentId* componentId,
 const TriMessage* seed)

	void triPAErrorReq(in string message)
	void triPAErrorReq(const char* message)

	void triSAErrorReq(in string message)
	void triSAErrorReq(const char* message)

[bookmark: _Toc390248777][bookmark: _Toc406750825]7.3	Memory management
The content of this clause is obsolete.
[bookmark: clause_Cplusplus_Mapping][bookmark: _Toc390248778][bookmark: _Toc406750826]8	C++ language mapping
[bookmark: _Toc390248779][bookmark: _Toc406750827]8.1	Introduction
This clause introduces the TRI C++ language [7] mapping for the definitions given in clause 5.
[bookmark: _Toc390248780][bookmark: _Toc406750828]8.2	Names and scopes
The namespace ORG_ETSI_TTCN3_TRI has been defined for the TRI C++ mapping, in order to avoid conflicts with the different names used, for example, in the C mapping.
C++ class identifiers are omitting the trailing "Type" at the end of the abstract definitions, e.g. the type TriMessageType is mapped to TriMessage in C++.
[bookmark: _Toc390248781][bookmark: _Toc406750829]8.3	Memory management
A general policy for memory management is not defined in this mapping. However, parameters are passed as pointers (or references) where possible, and a clone method has been added to the definition of every interface. The clone method can be used by the receiving entity to make a local copy where needed.
[bookmark: _Toc390248782][bookmark: _Toc406750830]8.4	Void
[bookmark: _Toc390248783][bookmark: _Toc406750831]8.5	Type mapping
This clause introduces the TRI C++ language mapping for the abstract types defined in clause 5.3. The following concepts have been used:
-	Pure classes have been used, following the concept of an interface.
-	Basic data types have both set and get methods, so that they can be handled in a general way.
-	The Standard Template Library (STL) has been used as it is a standardized way of using container classes, and iterators, such as lists. All classes define the operator "<" for easy insertion in STL containers.
-	C++ types have been encapsulated under abstract definitions, like Tfloat or Tinteger.
[bookmark: _Toc390248784][bookmark: _Toc406750832]8.5.1	Encapsulated C++ types
The following types have been defined in order to keep the definitions of data types and operations as general as possible:
Boolean type definition: 	typedef bool Tboolean.
Integer type definition: 	typedef long int Tinteger.
Size type definition: 	typedef unsigned long int Tsize.
Float type definition: 	typedef double Tfloat.
Byte type definition: 	typedef unsigned char Tbyte.
String type definition: 	typedef std::string Tstring.
[bookmark: _Toc390248785][bookmark: _Toc406750833]8.5.2	Abstract data types
[bookmark: _Toc390248786][bookmark: _Toc406750834]8.5.2.1	QualifiedName
This class defines a qualified TTCN-3 identifier: moduleName and objectName. It is mapped to the following pure virtual class:
class QualifiedName {
public:
	~QualifiedName ();
	const Tstring & getModuleName () const = 0;
	void setModuleName (const Tstring &mName) = 0;
	const Tstring & getObjectName () const = 0;
	void setObjectName (const Tstring &oName) = 0;
		Tboolean equals (const QualifiedName &qn) const = 0;
	QualifiedName * cloneQualifiedName () const = 0;
	Tboolean operator< (const QualifiedName &qn) const = 0;
}

[bookmark: _Toc390248787][bookmark: _Toc406750835]8.5.2.1.1	Methods
· ~QualifiedName
Destructor.
· getModuleName
Gets the module name as string value.
· setModuleName
Set the module name from string parameter.
· getObjectName
Gets the object name as string value.
· setObjectName
Set the object name from string parameter.
· operator==
Returns true if both objects are equal.
· cloneQualifiedName
Returns a copy of the QualifiedName.
· operator<
Operator < overload.
[bookmark: _Toc390248788][bookmark: _Toc406750836]8.5.2.2	TriAddress
A value of type TriAddress indicates a source or destination address within the SUT. The TriAddress class contains a C++ template: TAddress. It is mapped to the following pure virtual class:
class TriAddress {
public:
	virtual ~TriAddress ();
	virtual const Tbyte *getEncodedData()const=0;
	virtual void setEncodedData(const Tbyte *str, Tsize bitLen)=0;
	virtual Tsize getBitsDataLen()const=0;
	virtual Tboolean operator== (const TriAddress &add) const =0;
	virtual TriAddress * cloneAddress () const =0;
	virtual Tboolean operator< (const TriAddress &add) const =0;
}

[bookmark: _Toc390248789][bookmark: _Toc406750837]8.5.2.2.1	Methods
· ~TriAddress
Destructor.
· getEncodedData
Gets the encoded address.
· setEncodedData
Sets the encoded address.
· getBitsDataLen
Gets address length.
· operator==
Returns true if both TriAddress objects are equal.
· cloneAddress
Returns a copy of the TriAddress.
· operator<
Operator < overload.
[bookmark: _Toc390248790][bookmark: _Toc406750838]8.5.2.3	TriAddressList
The value of this type is a list of TriAddress elements. This abstract type is used for multicast communication in TRI. It is mapped to the following pure virtual class:
class TriAddressList {
public:
	virtual ~TriAddressList ();
	virtual Tsize size () const =0;
	virtual Tboolean isEmpty () const =0;
	virtual const TriAddress & get (Tsize index) const =0;
	virtual void clear ()=0;
	virtual void add (const TriAddress &elem)=0;
	virtual Tboolean operator== (const TriAddressList &addl) const =0;
	virtual TriAddressList * cloneAddressList () const =0;
	virtual Tboolean operator< (const TriAddressList &addl) const =0;
}

[bookmark: _Toc390248791][bookmark: _Toc406750839]8.5.2.3.1	Methods
· ~TriAddressList
Destructor.
· size
Returns the number of addresses in the list.
· isEmpty
Returns true if address list is empty.
· get
Gets TriAddress element at specified position from the address list.
· clear
Removes all TriAddress elements from the list.
· add
Adds a TriAddress element to the list.
· operator==
Returns true if both TriAddressList objects are equal.
· cloneAddressList
Returns a copy of the TriAddressList.
· operator<
Operator < overload.
[bookmark: _Toc390248792][bookmark: _Toc406750840]8.5.2.4	TriComponentId
A value of type TriComponentId includes an identifier, a name and the component type. This abstract type is mainly used to resolve TRI communication operations on TSI ports that have mappings to many test component ports. It is mapped to the following pure virtual class:
class TriComponentId {
public:
	virtual ~TriComponentId ();
	virtual const QualifiedName & getComponentTypeName () const =0;
	virtual void setComponentTypeName (const QualifiedName &tName)=0;
	virtual const Tstring & getComponentName () const =0;
	virtual void setComponentName (const Tstring &sName)=0;
	virtual const Tinteger & getComponentId () const =0;
	virtual void setComponentId (const Tinteger &id)=0;
	virtual Tboolean operator== (const TriComponentId &cmp) const =0;
	virtual TriComponentId * cloneComponentId () const =0;
	virtual Tboolean operator< (const TriComponentId &cmp) const =0;
}

[bookmark: _Toc390248793][bookmark: _Toc406750841]8.5.2.4.1	Methods
· ~TriComponentId
Destructor.
· getComponentTypeName
Returns a const reference to the component type name.
· setComponentTypeName
Set the component type name.
· getComponentName
Gets the component name.
· setComponentName
Set the component name.
· getComponentId
Returns the component identifier.
· setComponentId
Set the component identifier.
· operator==
Returns true if both TriComponentId objects are equal.
· cloneComponentId
Returns a copy of the TriComponentId.
· operator<
Operator < overload.
[bookmark: _Toc390248794][bookmark: _Toc406750842]8.5.2.5	TriComponentIdList
This abstract type defines a list of TriComponentId elements. It is mapped to the following pure virtual class:
class TriComponentIdList {
public:
	virtual ~TriComponentIdList ();
	virtual Tsize size () const =0;
	virtual Tboolean isEmpty () const =0;
	virtual const TriComponentId & get (Tsize index)const=0;
	virtual void clear ()=0;
	virtual void add (const TriComponentId &comp)=0;
	virtual Tboolean operator== (const TriComponentIdList &cmpl) const =0;
	virtual TriComponentIdList * cloneComponentIdList () const =0;
	virtual Tboolean operator< (const TriComponentIdList &cmpl) const =0;
}

[bookmark: _Toc390248795][bookmark: _Toc406750843]8.5.2.5.1	Methods
· ~TriComponentIdList
Destructor.
· size
Returns the number of components in the list.
· isEmpty
Returns true if this list contains no components.
· get
Returns the component at the specified position.
· clear
Removes all the components from this list.
· add
Adds a component to the end of this list.
· operator==
Returns true if both TriComponentIdList are equal.
· cloneComponentIdList
Returns a copy of the TriComponentIdList.
· operator<
Operator < overload.
[bookmark: _Toc390248796][bookmark: _Toc406750844]8.5.2.6	TriException
A value of type TriException is an encoded type and value of an exception that either is to be sent to the SUT or has been received from the SUT. This abstract type is used in procedure based TRI communication operations. It is mapped to the following pure virtual class:
class TriException {
public:
	virtual ~TriException ();
	virtual const Tbyte *getData()const=0;
	virtual void setData(const Tbyte *str, Tsize bitLen)=0;
	virtual Tsize getBitsDataLen()const=0;
	virtual Tboolean operator== (const TriException &exc)const=0;
	virtual TriException * cloneException () const =0;
	virtual Tboolean operator< (const TriException &exc) const =0;
}

[bookmark: _Toc390248797][bookmark: _Toc406750845]8.5.2.6.1	Methods
· ~TriException
Destructor.
· getData
Gets binary string data (array of characters).
· setData
Set the binary string data (array of characters).
· getBitsDataLen
Gets data length.
· operator==
Returns true if both TriException objects are equal.
· cloneException
Returns a copy of the TriException.
· operator<
Operator < overload.
[bookmark: _Toc390248798][bookmark: _Toc406750846]8.5.2.7	TriFunctionId
A value of type TriFunctionId is the name of a function as specified in the TTCN-3 ATS. It is a derived class from QualifiedName, mapped to the following pure virtual class:
class TriFunctionId : public QualifiedName {
public:
	virtual ~TriFunctionId ();
	virtual Tboolean operator== (const TriFunctionId &fid) const =0;
	virtual TriFunctionId * cloneFunctionId () const =0;
	virtual Tboolean operator< (const TriFunctionId &fid) const =0;
}

[bookmark: _Toc390248799][bookmark: _Toc406750847]8.5.2.7.1	Methods
· ~TriFunctionId
Destructor.
· operator==
Returns true if both TriFunctionId objects are equal.
· cloneFunctionId
Returns a copy of the TriFunctionId.
· operator<
Operator < overload.
[bookmark: _Toc390248800][bookmark: _Toc406750848]8.5.2.8	TriMessage
A value of type TriMessage is encoded test data that either is to be sent to the SUT or has been received from the SUT. It is mapped to following pure virtual class:
class TriMessage {
public:
	virtual ~TriMessage ();
	virtual const Tbyte *getData()const=0;
	virtual void setData(const Tbyte *str, Tsize bitLen)=0;
	virtual Tsize getBitsDataLen()const=0;
	virtual Tboolean operator== (const TriMessage &msg) const =0;
	virtual TriMessage * cloneMessage () const =0;
	virtual Tboolean operator< (const TriMessage &msg) const =0;
}

[bookmark: _Toc390248801][bookmark: _Toc406750849]8.5.2.8.1	Methods
· ~TriMessage
Destructor.
· getData
Gets binary string data (array of characters).
· setData
Set the binary string data (array of characters).
· getBitsDataLen
Gets data length.
· operator==
Returns true if both TriMessage objects are equal.
· cloneMessage
Returns a copy of the TriMessage.
· operator<
Operator < overload.
[bookmark: _Toc390248802][bookmark: _Toc406750850]8.5.2.9	TriParameter
A value of type TriParameter includes an encoded parameter and a value of TriParameterPassingMode to represent the passing mode specified for the parameter in the TTCN-3 ATS. It is mapped to the following pure virtual class:
class TriParameter {
public:
	virtual ~TriParameter ();
	virtual const Tstring & getParameterName () const =0;
	virtual void setParameterName (const Tstring &name)=0;
	virtual const TriParameterPassingMode & getParameterPassingMode () const =0;
	virtual void setParameterPassingMode (const TriParameterPassingMode &mode)=0;
	virtual const Tbyte *getEncodedParameter()const=0;
	virtual void setEncodedParameter(const Tbyte *str, Tsize bitLen)=0;
	virtual Tsize getBitsDataLen()const=0;
	virtual Tboolean operator== (const TriParameter &par) const =0;
	virtual TriParameter * cloneParameter () const =0;
	virtual Tboolean operator< (const TriParameter &par) const =0;
}

[bookmark: _Toc390248803][bookmark: _Toc406750851]8.5.2.9.1	Methods
· ~TriParameter
Destructor.
· getParameterName
Returns the parameter name as defined in the TTCN-3 specification.
· setParameterName
Set the parameter name.
· getParameterPassingMode
Returns the parameter passing mode of this parameter.
· setParameterPassingMode
Set the parameter passing mode.
· getEncodedParameter
Gets the encoded parameter.
· setEncodedParameter
Sets the encoded parameter.
· getBitsDataLen
Gets parameter length.
· operator==
Returns true if both TriParameter objects are equal.
· cloneParameter
Returns a copy of the TriParameter.
· operator<
Operator < overload.
[bookmark: _Toc390248804][bookmark: _Toc406750852]8.5.2.10	TriParameterList
A value of type TriParameterList is a list of TriParameterType. This abstract type is used in procedure based TRI communication operations and for external function calls. It is mapped to the following pure virtual class:
class TriParameterList {
public:
	virtual ~TriParameterList ();
	virtual Tsize size () const =0;
	virtual Tboolean isEmpty () const =0;
	virtual const TriParameter & get (Tsize index) const =0;
	virtual void clear ()=0;
	virtual void add (const TriParameter ¶meter)=0;
	virtual Tboolean operator== (const TriParameterList &pml) const =0;
	virtual TriParameterList * cloneParameterList () const =0;
	virtual Tboolean operator< (const TriParameterList &pml) const =0;
}

[bookmark: _Toc390248805][bookmark: _Toc406750853]8.5.2.10.1	Methods
· ~TriParameterList
Destructor.
· size
Returns the number of parameters in this list.
· isEmpty
Returns true if this list contains no parameters.
· get
Returns the TriParameter at the specified position.
· clear
Removes all parameters from this TriParameterList.
· add
Adds parameter to the end of this TriParameterList.
· operator==
Returns true if both TriParameterList objects are equal.
· cloneParameterList
Returns a copy of the TriParameterList.
· operator<
Operator < overload.
[bookmark: _Toc390248806][bookmark: _Toc406750854]8.5.2.11	TriParameterPassingMode
Defines the parameter passing mode. It is mapped to an enumeration:
typedef enum
{
 IN = 0,
 OUT = 1,
 INOUT = 2
} TriParameterPassingMode;

[bookmark: _Toc390248807][bookmark: _Toc406750855]8.5.2.12	TriPortId
A value of type TriPortId includes a value of type TriComponentIdType to represent the component to which the port belongs, a port index (if present), and the port name as specified in the TTCN-3 ATS. The TriPortId type is mainly required to pass information about the TSI and connections to the TSI from the TE to the SA. It is mapped to the following pure virtual class:
class TriPortId {
public:
	virtual ~TriPortId (void);
	virtual const Tstring & getPortName () const =0;
	virtual void setPortName (const Tstring &pName)=0;
	virtual const TriComponentId & getComponent () const =0;
	virtual void setComponent (const TriComponentId &comp)=0;
	virtual Tsize getPortIndex () const =0;
	virtual void setPortIndex (Tsize index)=0;
	virtual const QualifiedName & getPortType () const =0;
	virtual void setPortType (const QualifiedName &pType)=0;
	virtual Tboolean isArray () const =0;
	virtual Tboolean operator== (const TriPortId &prt) const =0;
	virtual TriPortId * clonePortId () const =0;
	virtual Tboolean operator< (const TriPortId &prt) const =0;
}

[bookmark: _Toc390248808][bookmark: _Toc406750856]8.5.2.12.1	Methods
· ~TriPortId
Destructor.
· getPortName
Returns the port name.
· setPortName
Set the port name.
· getComponent
Returns the component identifier that this TRI port belongs to.
· setComponent
Set the component identifier that this port belongs to.
· getPortIndex
Gets the port index (0..N). Returns -1 if it is not part of an array.
· setPortIndex
Set the port index.
· getPortType
Gets the port type.
· setPortType
Set the port type.
· isArray
Returns true if port is defined as part of an array.
· operator==
Returns true if both TriPortId objects are equal.
· clonePortId
Returns a copy of the TriPortId.
· operator<
Operator < overload.
[bookmark: _Toc390248809][bookmark: _Toc406750857]8.5.2.13	TriPortIdList
The value of this type is a list of TriPortIdType elements. It is mapped to the following pure virtual class:
class TriPortIdList {
public:
	virtual ~TriPortIdList ();
	virtual Tsize size () const =0;
	virtual bool isEmpty () const =0;
	virtual const TriPortId & get (Tsize index) const =0;
	virtual void clear ()=0;
	virtual void add (const TriPortId &elem)=0;
	virtual Tboolean operator== (const TriPortIdList &prtl) const =0;
	virtual TriPortIdList * clonePortIdList () const =0;
	virtual Tboolean operator< (const TriPortIdList &prtl) const =0;
}

[bookmark: _Toc390248810][bookmark: _Toc406750858]8.5.2.13.1	Methods
· ~TriPortIdList
Destructor.
· size
Returns the number of ports in this list.
· isEmpty
Returns true if port list is empty.
· get
Gets TriPortIdType element at position index from the port list.
· clear
Removes all TriPortIdType elements from the list.
· add
Adds a TriPortIdType element to the list.
· operator==
Returns true if both TriPortIdList objects are equal.
· clonePortIdList
Returns a copy of the TriPortIdList.
· operator<
Operator < overload.
[bookmark: _Toc390248811][bookmark: _Toc406750859]8.5.2.14	TriSignatureId
A value of type TriSignatureIdType is the name of a procedure signature as specified in the TTCN-3 ATS. It is a derived class from QualifiedName, mapped to the following pure virtual class:
class TriSignatureId : public QualifiedName {
public:
	virtual ~TriSignatureId ();
	virtual Tboolean operator== (const TriSignatureId &sid) const =0;
	virtual TriSignatureId * cloneSignatureId () const =0;
	virtual Tboolean operator< (const TriSignatureId &sid) const =0;
}

[bookmark: _Toc390248812][bookmark: _Toc406750860]8.5.2.14.1	Methods
· ~TriSignatureId
Destructor.
· operator==
Returns true if both TriSignatureId objects are equal.
· cloneSignatureId
Returns a copy of the TriSignatureId.
· operator<
Operator < overload.
[bookmark: _Toc390248813][bookmark: _Toc406750861]8.5.2.15	TriStatus
Defines TRI status as an enumeration:
typedef enum
{
 TRI_OK = 0,
 TRI_ERROR = -1
} TriStatus;

[bookmark: _Toc390248814][bookmark: _Toc406750862]8.5.2.16	TriTestCaseId
A value of type TriTestCaseId is the name of a test case as specified in the TTCN-3 ATS. It is a derived class from QualifiedName, mapped to the following pure virtual class:
class TriTestCaseId : public QualifiedName {
public:
	virtual ~TriTestCaseId ();
	virtual Tboolean operator== (const TriTestCaseId &tcid) const =0;
	virtual TriTestCaseId * cloneTestCaseId () const =0;
	virtual Tboolean operator< (const TriTestCaseId &tcid) const =0;
}

[bookmark: _Toc390248815][bookmark: _Toc406750863]8.5.2.16.1	Methods
· ~TriTestCaseId
Destructor.
· operator==
Returns true if both TriTestCaseId objects are equal.
· cloneTestCaseId
Returns a copy of the TriTestCaseId.
· operator<
Operator < overload.
[bookmark: _Toc390248816][bookmark: _Toc406750864]8.5.2.17	TriTimerDuration
A value of type TriTimerDuration specifies the duration for a timer in seconds. It is mapped to the following pure virtual class:
class TriTimerDuration {
public:
	virtual ~TriTimerDuration ();
	virtual Tfloat getDuration () const =0;
	virtual void setDuration (Tfloat duration)=0;
	virtual Tboolean operator== (const TriTimerDuration &timd) const =0;
	virtual TriTimerDuration * cloneTimerDuration () const =0;
	virtual Tboolean operator< (const TriTimerDuration &timd) const =0;
}

[bookmark: _Toc390248817][bookmark: _Toc406750865]8.5.2.17.1	Methods
· ~TriTimerDuration
Destructor.
· getDuration
Gets the timer duration time.
· setDuration
Set the timer duration time from "duration" value.
· operator==
Returns true if both TriTimerDuration objects are equal.
· cloneTimerDuration
Returns a copy of the TriTimerDuration.
· operator<
Operator < overload.
[bookmark: _Toc390248818][bookmark: _Toc406750866]8.5.2.18	TriTimerId
A value of type TriTimerId specifies an identifier for a timer. This type is required for all TRI timer operations. It is mapped to the following pure virtual class:
class TriTimerId {
public:
	virtual ~TriTimerId ();
	virtual const Tstring & getTimerName () const =0;
	virtual void setTimerName (const Tstring &tName)=0;
	virtual const Tinteger getTId() const =0;
	virtual Tboolean operator== (const TriTimerId &tmid) const =0;
	virtual TriTimerId * cloneTimerId () const =0;
	virtual Tboolean operator< (const TriTimerId &tmid) const =0;
}

[bookmark: _Toc390248819][bookmark: _Toc406750867]8.5.2.18.1	Methods
· ~TriTimerId
Destructor.
· getTimerName
Returns the timer id name (string value).
· setTimerName
Sets the timer id name.
· getTId
Returns the timer identification as integer.
· operator==
Returns true if both TriTimerId objects are equal.
· cloneTimerId
Returns a copy of the TriTimerId.
· operator<
Operator < overload.
[bookmark: _Toc390248820][bookmark: _Toc406750868]8.6	Mapping of interfaces
[bookmark: _Toc390248821][bookmark: _Toc406750869]8.6.1	TriCommunicationSA
This interface consists of operations that are necessary to implement the communication of the TTCN-3 ETS with the SUT. It is mapped to the following pure virtual class:
class TriCommunicationSa TriCommunicationSA {
public:

	//Destructor.
	virtual ~TriCommunicationSA ();
	//To reset the System Adaptor
	virtual TriStatus triSAReset ()=0;
	
	//To execute a test case.
	virtual TriStatus triExecuteTestCase (const TriTestCaseId *testCaseId, const TriPortIdList 	*tsiPortList)=0;
	
	//To establish a dynamic connection between two ports.
	virtual TriStatus triMap (const TriPortId *comPortId, const TriPortId *tsiPortId)=0;
	
	//To establish a dynamic connection between two ports including configuration parameters.
	virtual TriStatus triMapParam (const TriPortId *comPortId, const TriPortId *tsiPortId,
	const TriParameterList *paramList)=0;

	//To close a dynamic connection to the SUT for the referenced TSI port.
	virtual TriStatus triUnmap (const TriPortId *comPortId, const TriPortId *tsiPortId)=0;
	
	//To close a dynamic connection to the SUT for the referenced TSI port
	//including configuration parameters.
	virtual TriStatus triUnmapParam (const TriPortId *comPortId, const TriPortId *tsiPortId,
	const TriParameterList *paramList)=0;

	//To end a test case.
	virtual TriStatus triEndTestCase ()=0;
	
	//Send operation on a component which has been mapped to a TSI port.
	virtual TriStatus triSend (const TriComponentId *componentId, const TriPortId *tsiPortId, const 	TriAddress *SUTaddress, const TriMessage *sendMessage)=0;
	
	//Send (broadcast) operation on a component which has been mapped to a TSI port.
	
	virtual TriStatus triSendBC (const TriComponentId *componentId, const TriPortId *tsiPortId, 	const TriMessage *sendMessage)=0;
	
	//Send (multicast) operation on a component which has been mapped to a TSI port.
	virtual TriStatus triSendMC (const TriComponentId *componentId, const TriPortId *tsiPortId, 	const TriAddressList *SUTaddresses, const TriMessage *sendMessage)=0;
	
	//Initiate the procedure call.
	virtual TriStatus triCall (const TriComponentId *componentId, const TriPortId *tsiPortId, const 	TriAddress *sutAddress, const TriSignatureId *signatureId, const TriParameterList 	*parameterList)=0;
	
	//Initiate and broadcast the procedure call.
	virtual TriStatus triCallBC (const TriComponentId *componentId, const TriPortId *tsiPortId, 	const TriSignatureId *signatureId, const TriParameterList *parameterList)=0;
	
	//Initiate and multicast the procedure call.
	virtual TriStatus triCallMC (const TriComponentId *componentId, const TriPortId *tsiPortId, 	const TriAddressList *sutAddresses, const TriSignatureId *signatureId, const TriParameterList 	*parameterList)=0;
	
	//Issue the reply to a procedure call.
	virtual TriStatus triReply (const TriComponentId *componentId, const TriPortId *tsiPortId, 	const TriAddress *sutAddress, const TriSignatureId *signatureId, const TriParameterList *	parameterList, const TriParameter *returnValue)=0;
	
	//Broadcast the reply to a procedure call.
	virtual TriStatus triReplyBC (const TriComponentId *componentId, const TriPortId *tsiPortId, 	const TriSignatureId *signatureId, const TriParameterList *parameterList, const TriParameter 	*returnValue)=0;
	
	//Multicast the reply to a procedure call.
	virtual TriStatus triReplyMC (const TriComponentId *componentId, const TriPortId *tsiPortId, 	const TriAddressList *sutAddresses, const TriSignatureId *signatureId, const TriParameterList 	*parameterList, const TriParameter *returnValue)=0;
	
	//Raise an exception to a procedure call.
	virtual TriStatus triRaise (const TriComponentId *componentId, const TriPortId *tsiPortId, 	const TriAddress *sutAddress, const TriSignatureId *signatureId, const TriException *exc)=0;
	
	//Raise an broadcast an exception to a procedure call.
	virtual TriStatus triRaiseBC (const TriComponentId *componentId, const TriPortId *tsiPortId, 	const TriSignatureId *signatureId, const TriException *exc)=0;
	
	//Raise an multicast an exception to a procedure call.
	virtual TriStatus triRaiseMC (const TriComponentId *componentId, const TriPortId *tsiPortId, 	const TriAddressList *sutAddresses, const TriSignatureId *signatureId, const TriException 	*exc)=0;
	
	//Initiate the described actions to be taken on the SUT.
	virtual TriStatus triSUTactionInformal (const Tstring *description)=0;

}

[bookmark: _Toc390248822][bookmark: _Toc406750870]8.6.2	TriCommunicationTE
This interface consists of operations that are necessary to implement the communication of the SUT with the TTCN-3 ETS. It is mapped to the following pure virtual class:
class TriCommunicationTe TriCommunicationTE {
public:

	//Destructor.
	virtual ~TriCommunicationTE ();
	
	//Called by SA after it has received a message from the SUT.
	virtual void triEnqueueMsg (const TriPortId *tsiPortId, const TriAddress *SUTaddress, const 	TriComponentId *componentId, const TriMessage *receivedMessage)=0;
	
	//Called by SA after it has received a procedure call from the SUT.
	virtual void triEnqueueCall (const TriPortId *tsiPortId, const TriAddress *SUTaddress, const 	TriComponentId *componentId, const TriSignatureId *signatureId, const TriParameterList 	*parameterList)=0;
	
	//Called by SA after it has received a reply from the SUT.
	virtual void triEnqueueReply (const TriPortId *tsiPortId, const TriAddress *SUTaddress, const 	TriComponentId *componentId, const TriSignatureId *signatureId, const TriParameterList 	*parameterList, const TriParameter *returnValue)=0;
	
	//Called by SA after it has received an exception from the SUT.
	virtual void triEnqueueException (const TriPortId *tsiPortId, const TriAddress *SUTaddress, 	const TriComponentId *componentId, const TriSignatureId *signatureId, const TriException 	*exc)=0;

	//Called by SA in unrecoverable error situations.
	virtual void triSAError (const Tstring &message)=0;
}

[bookmark: _Toc390248823][bookmark: _Toc406750871]8.6.3	TriPlatformPA
This interface consists of operations that are necessary to implement the communication of the TTCN-3 ETS with the platform, in which the testcase is running. It is mapped to the following pure virtual class:
class TriPlatformPa TriPlatformPA {
public:

	//Destructor.
	virtual ~TriPlatformPA ();
	
	//Reset all timing activities which It is currently performing.
	virtual TriStatus triPAReset ()=0;
	
	//Start the indicated timer with the indicated duration.
	virtual TriStatus triStartTimer (const TriTimerId *timerId, const TriTimerDuration 	*timerDuration)=0;
	
	//Stop the indicated timer.
	virtual TriStatus triStopTimer (const TriTimerId *timerId)=0;
	
	//Use the timerId to access the time that elapsed since this timer was started.
	virtual TriStatus triReadTimer (const TriTimerId *timerId, TriTimerDuration *elapsedTime)=0;
	
	//Use the timerId to access the status of the timer.
	virtual TriStatus triTimerRunning (const TriTimerId *timerId, Tboolean * running)=0;
	
	//For each external function specified in the TTCN-3 ATS implement the behaviour.
	virtual TriStatus triExternalFunction (const TriFunctionId *functionId, TriParameterList 	*parameterList, TriParameter *returnValue)=0;
}

[bookmark: _Toc390248824][bookmark: _Toc406750872]8.6.4	TriPlatformTE
This interface consists of operations that are necessary to implement the communication of the platform, in which the testcase is running, with the TTCN-3 ETS. It is mapped to the following pure virtual class:
class TriPlatformTe TriPlatformTE {
public:

	//Destructor.
	virtual ~TriPlatformTE ();
	
	//Notify the timeout of the timer.
	virtual void triTimeout (const TriTimerId *timerId)=0;

	//Called by PA in unrecoverable error situations.
	virtual void triPAError (const Tstring &message)=0;

	//Called by PA inside external function
	virtual TriComponentId *triSelf ()=0;

	//Generate random number.
	virtual TriMessage* triRnd (const TriComponentId *componentId, const TriMessage *seed)=0;
}

[bookmark: clause_Use_Scenarios][bookmark: AAAAAAAACR][bookmark: AAAAAAAACT][bookmark: AAAAAAAACU][bookmark: AAAAAAAACV][bookmark: AAAAAAAACW][bookmark: AAAAAAAACX][bookmark: AAAAAAAACY][bookmark: AAAAAAAACZ][bookmark: AAAAAAAADT][bookmark: AAAAAAAADU][bookmark: AAAAAAAAEA][bookmark: AAAAAAAAFD][bookmark: AAAAAAAAFH][bookmark: AAAAAAAAFI][bookmark: AAAAAAAAGR][bookmark: AAAAAAAAGS][bookmark: AAAAAAAAGT][bookmark: AAAAAAAAIE][bookmark: AAAAAAAAIF][bookmark: _Toc390248825][bookmark: _Toc406750873]9	C# language mapping
[bookmark: _Toc390248826][bookmark: _Toc406750874]9.1	Introduction
The C# mapping for the TTCN-3 Runtime Interface defines how the IDL definitions described in clause 5 are mapped to C# [8].
[bookmark: _Toc390248827][bookmark: _Toc406750875]9.2	Names and scopes
[bookmark: _Toc390248828][bookmark: _Toc406750876]9.2.1	Names
Although there are no conflicts between identifiers used in the IDL definition and C# some naming translation rules are applied to the IDL identifiers.
C# parameter identifiers shall start with a lower case letter and subsequent part building the parameter identifier start with a capital letter.
EXAMPLE 1:	The IDL parameter identifier SUTaddress maps to sutAddress in C#.
C# interfaces are omitting the trailing Type used in the IDL definition. In addition to that, the capital letter "I" is added to the beginning of interface names.
EXAMPLE 2:	The IDl type TriPortIdType maps to ITriPortId in C#.
The resulting mapping conforms to the standard C# coding conventions.
[bookmark: _Toc390248829][bookmark: _Toc406750877]9.2.2	Scopes
The IDL module triInterface is mapped to the namespace Etsi.Ttcn3.Tri. All IDL type declarations within this module are mapped to C# interface declarations within this namespace. The associated assembly file is Etsi.Ttcn3.Tri.dll.
[bookmark: _Toc390248830][bookmark: _Toc406750878]9.3	Null value mapping
The distinct value null specified in the IDL definition is equal to null in C#.
[bookmark: _Toc390248831][bookmark: _Toc406750879]9.4	Type mapping
[bookmark: _Toc390248832][bookmark: _Toc406750880]9.4.1	Basic type mapping
Table 5 gives an overview on how the used basic IDL types are mapped to the C# types.
Table 5: Basic type mappings
	IDL Type
	C# Type/Interface

	boolean
	Etsi.Ttcn3.Tri.ITriBoolean

	string
	string

Other IDL basic types are not used within the IDL definition.
[bookmark: _Toc390248833][bookmark: _Toc406750881]9.4.1.1	Boolean
The IDL boolean type is mapped to the interface Etsi.Ttcn3.Tri.ITriBoolean, so that objects implementing this interface can act as holder objects.
The following interface is defined for Etsi.Ttcn3.Tri.ItriBoolean:
public interface ITriBoolean {
	bool BooleanValue { get; set; }
}

[bookmark: _Toc390248834][bookmark: _Toc406750882]9.4.1.1.1	Members
BooleanValue
Gets or sets the boolean value associated with the object.
[bookmark: _Toc390248835][bookmark: _Toc406750883]9.4.1.2	String
The IDL string type is mapped to the System.String class without range checking or bounds for characters in the string. All possible strings defined in TTCN-3 can be converted to System.String.
[bookmark: _Toc390248836][bookmark: _Toc406750884]9.4.2	Structured type mapping
The TRI IDL description defines user-defined types as native types. In the C# mapping, these types are mapped to C# interfaces. The interfaces define methods and properties being available for classes implementing this interface.
[bookmark: _Toc390248837][bookmark: _Toc406750885]9.4.2.1	IQualifiedName
IQualifiedName interface represents a TTCN-3 identifier. Although it is not specified in the TRI IDL description, it is used as parent type of several other C# interfaces which are present in the IDL description. It is also common type of TRI properties containing TTCN-3 type references. The interface is defined as follows:
public interface IQualifiedName {
	string ModuleName { get; }
	string BaseName { get; }
	bool Equals(IQualifiedName name);
}

[bookmark: _Toc390248838][bookmark: _Toc406750886]9.4.2.1.1	Members
ModuleName
Returns the name of the module where the identifier is defined.
BaseName
Returns the name of the identifier.
Equals
Compares a qualified name with this IQualifiedName for equality. Returns true if and only if the module and base name of both instances are equal, false otherwise.
[bookmark: _Toc390248839][bookmark: _Toc406750887]9.4.2.2	TriPortIdType
TriPortIdType is mapped to the following interface:
public interface ITriPortId {
	string PortName { get; }
	ITriComponentId Component { get; }
	bool IsArray { get; }
	int PortIndex { get; }
	IQualifiedName PortTypeName { get; }
}

[bookmark: _Toc390248840][bookmark: _Toc406750888]9.4.2.2.1	Members
PortName
Returns the port name as defined in the TTCN-3 specification.
PortTypeName
Returns the port type name as defined in the TTCN-3 specification.
Component
Returns the component identifier that this ITriPortId belongs to as defined in the TTCN-3 specification.
IsArray
Returns true if this port is part of a port array, false otherwise.
PortIndex
Returns the port index if this port is part of a port array starting at zero. If the port is not part of a port array, then -1 is returned.
[bookmark: _Toc390248841][bookmark: _Toc406750889]9.4.2.3	TriPortIdListType
TriPortIdListType is mapped to the following interface:
public interface ITriPortIdList
	: System.Collections.IEnumerable {
	int Size { get; }
	bool IsEmpty { get; }
	ITriPortId this[int index] { get; }
}

[bookmark: _Toc390248842][bookmark: _Toc406750890]9.4.2.3.1	Members
Size
Returns the number of ports in this list.
IsEmpty
Returns true if this list contains no ports.
getEnumerator
Inherited from IEnumerable. Returns an enumerator for this object and allows to use the list in a foreach loop.
Indexing operator
Returns a ITriPortId instance at the specified position. IndexOutOfRangeException is thrown if the index is less than zero or greater or equal to the list size.
[bookmark: _Toc390248843][bookmark: _Toc406750891]9.4.2.4	TriComponentIdType
TriComponentIdType is mapped to the following interface:
public interface ITriComponentId {
	string ComponentId { get; }
	string ComponentName { get; }
	IQualifiedName ComponentTypeName { get; }
	bool Equals(ITriComponentId comp);
}

[bookmark: _Toc390248844][bookmark: _Toc406750892]9.4.2.4.1	Members
ComponentId
Returns a representation of this unique component identifier.
ComponentName
Returns the component name as defined in the TTCN-3 specification. If no name is provided, null is returned.
ComponentTypeName
Returns the component type name as defined in the TTCN-3 specification.
Equals
Compares component with this TriComponentId for equality. Returns true if and only if both components have the same representation of this unique component identifier, false otherwise.
[bookmark: _Toc390248845][bookmark: _Toc406750893]9.4.2.5	TriComponentIdListType
TriComponentIdListType is mapped to the following interface:
public interface ITriComponentIdList: System.Collections.IEnumerable {
	int Size { get; }
	bool IsEmpty { get; }
	ITriComponentId this[int index] { get; }
	void Clear();
	void Add(ITriComponentId comp);
}

[bookmark: _Toc390248846][bookmark: _Toc406750894]9.4.2.5.1	Members
Size
Returns the number of components in this list.
IsEmpty
Returns true if this list contains no components.
getEnumerator
Inherited from IEnumerable. Returns an enumerator for this object and allows to use the list in a foreach loop.
Indexing operator
Returns a ITriComponentId instance at the specified position. IndexOutOfRangeException is thrown if the index is less than zero or greater or equal to the list size.
Clear
Removes all components from the list.
Add
Adds a component to the end of the list.
[bookmark: _Toc390248847][bookmark: _Toc406750895]9.4.2.6	TriMessageType
TriMessageType is mapped to the following interface:
public interface ITriMessage {
	byte [] EncodedMessage { get; set; }
	int NumberOfBits { get; }
	void SetEncodedMessage(byte[] data, int numberOfBits);
	bool Equals(ITriMessage msg);
}

[bookmark: _Toc390248848][bookmark: _Toc406750896]9.4.2.6.1	Members
EncodedMessage
Gets or sets the message encoded according the coding rules defined in the TTCN-3 specification. In case the message is set, the property assignment call produces the same result as calling the SetEncodedMessage method with the second parameter equal to byte array length * 8.
NumberOfBits
Returns the amount of bits of the message.
SetEncodedMessage
Sets the encoded message representation of this TriMessage to message. The number of bits has to be less or equal to data.Length * 8.
Equals
Compares a message with this TriMessage for equality. Returns true if and only if both messages have
the same encoded representation, false otherwise.
[bookmark: _Toc390248849][bookmark: _Toc406750897]9.4.2.7	TriAddressType
TriAddressType is mapped to the following interface:
public interface ITriAddress {
	byte [] EncodedAddress { get; set; }
	bool Equals(ITriAddress addr);
}

[bookmark: _Toc390248850][bookmark: _Toc406750898]9.4.2.7.1	Methods
EncodedAddress
Gets or sets the encoded address.
Equals
Compares an address with this ITriAddress for equality. Returns true if and only if both addresses have the same encoded representation, false otherwise.
[bookmark: _Toc390248851][bookmark: _Toc406750899]9.4.2.8	TriAddressListType
TriAddressListType is mapped to the following interface:
public interface ITriAddressList: System.Collections.IEnumerable {
	int Size { get; }
	bool IsEmpty { get; }
	ITriAddress this[int index] { get; }
	void Clear();
	void Add(ITriAddress addr);
}

[bookmark: _Toc390248852][bookmark: _Toc406750900]9.4.2.8.1	Members
Size
Returns the number of addresses in this list.
IsEmpty
Returns true if this list contains no addresses.
getEnumerator
Inherited from IEnumerable. Returns an enumerator for this object and allows to use the list in a foreach loop.
Indexing operator
Returns a ITriAddress instance at the specified position. IndexOutOfRangeException is thrown if the index is less than zero or greater or equal to the list size.
Clear
Removes all addresses from the list.
Add
Adds an address to the end of the list.
[bookmark: _Toc390248853][bookmark: _Toc406750901]9.4.2.9	TriSignatureIdType
TriSignatureIdType C# mapping is derived from the IQualifiedName interface:
public interface ITriSignatureId : IQualifiedName {}

[bookmark: _Toc390248854][bookmark: _Toc406750902]9.4.2.10	TriParameterPassingModeType
TriParameterPassingModeType is mapped to the following enumeration:
public enum TriParameterPassingMode {
	TriIn = 0,
	TriInOut = 1,
	TriOut =2
}

[bookmark: _Toc390248855][bookmark: _Toc406750903]9.4.2.11	TriParameterType
TriParameterType is mapped to the following interface:
public interface ITriParameter {
	string ParameterName { get; set; }
	TriParameterPassingMode ParameterPassingMode { get; set; }
	byte [] EncodedParameter { get; set; }
}

[bookmark: _Toc390248856][bookmark: _Toc406750904]9.4.2.11.1	Members
ParameterName
Gets or sets the parameter name.
ParameterPassingMode
Gets or sets the parameter passing mode of this parameter.
EncodedParameter
Gets or sets the encoded representation of this TriParameter, or the null object if the parameter contains the distinct value null (see also clause 5.5.4). The null value is used to indicate that this parameter holds no value.
[bookmark: _Toc390248857][bookmark: _Toc406750905]9.4.2.12	TriParameterListType
TriParameterListType is mapped to the following interface:
public interface ITriParameterList: System.Collections.IEnumerable {
	int Size { get; }
	bool IsEmpty { get; }
	ITriParameterId this[int index] { get; }
	void Clear();
	void Add(ITriParameter comp);
}

[bookmark: _Toc390248858][bookmark: _Toc406750906]9.4.2.12.1	Members
Size
Returns the number of parameters in this list.
IsEmpty
Returns true if this list contains no parameters.
getEnumerator
Inherited from IEnumerable. Returns an enumerator for this object and allows to use the list in a foreach loop.
Indexing operator
Returns a ITriParameter instance at the specified position. IndexOutOfRangeException is thrown if the index is less than zero or greater or equal to the list size.
Clear
Removes all parameters from the list.
Add
Adds a parameter to the end of the list.
[bookmark: _Toc390248859][bookmark: _Toc406750907]9.4.2.13	TriExceptionType
TriExceptionType is mapped to the following interface:
public interface ITriException {
	byte [] EncodedException { get; set; }
	bool Equals(ITriException exception);
}

[bookmark: _Toc390248860][bookmark: _Toc406750908]9.4.2.13.1	Methods
EncodedException
Gets or sets the encoded exception.
Equals
Compares an exception with this ITriException for equality. Returns true if and only if both exceptions have the same encoded representation, false otherwise.
[bookmark: _Toc390248861][bookmark: _Toc406750909]9.4.2.14	TriTimerIdType
TriTimerIdType is mapped to the following interface:
public interface ITriTimerId {
	string TimerName { get;	}
	bool Equals(ITriTimerId timer);
}

[bookmark: _Toc390248862][bookmark: _Toc406750910]9.4.2.14.1	Members
TimerName
Returns the name of this timer identifier as defined in the TTCN-3 specification. In case of implicit timers the result is implementation dependent (see clause 4.1.2.4).
Equals
Compares timer with this TriTimerId for equality. Returns true if and only if both timers identifiers represent the same timer, false otherwise.
[bookmark: _Toc390248863][bookmark: _Toc406750911]9.4.2.15	TriTimerDurationType
TriTimerDurationType is mapped to the following interface:
public interface ITriTimerDuration {
	double Duration { get; set; }
	bool Equals(ITriTimerDuration duration);
}

[bookmark: _Toc390248864][bookmark: _Toc406750912]9.4.2.15.1	Members
Duration
Gets or sets the duration of a timer.
Equals
Compares duration with this TriTimerDuration for equality. Returns true if and only if both have the same duration, false otherwise.
[bookmark: _Toc390248865][bookmark: _Toc406750913]9.4.2.16	TriFunctionIdType
TriFunctionIdType C# mapping is derived from the IQualifiedName interface:
public interface ITriFunctionId : IQualifiedName {}

[bookmark: _Toc390248866][bookmark: _Toc406750914]9.4.2.17	TriTestCaseIdType
TriTestCaseIdType C# mapping is derived from the IQualifiedName interface:
public interface ITriTestCaseId : IQualifiedName {}

[bookmark: _Toc390248867][bookmark: _Toc406750915]9.4.2.18	TriStatusType
TriStatusType is mapped to the following enumeration:
public enum TriStatus {
	TriOk = 0,
	TriError = -1
}

[bookmark: _Toc390248868][bookmark: _Toc406750916]9.5	Mapping of interfaces
The TRI IDL definition defines two interfaces, the triCommunication and the triPlatform interface. As the operations are defined for different directions within this interface, i.e. some operations can only be called by the TTCN-3 Executable (TE) on the System Adaptor (SA) while others can only be called by the SA on the TE. This is reflected by dividing the TRI IDL interfaces in two sub interfaces, each suffixed by the called entity.
Table 6: TRI sub-interfaces
	Calling/Called
	TE
	SA
	pA

	TE
	-
	ITriCommunicationSA
	ITriPlatformPA

	SA
	ITriCommunicationTE
	-
	-

	PA
	ITriPlatformTE
	-
	-

All methods defined in these interfaces should behave as defined in clause 5.
[bookmark: _Toc390248869][bookmark: _Toc406750917]9.5.1	Out and inout parameter passing mode
The following C# interfaces are used in out or inout parameter passing mode:
ITriParameter
ItriParameterList
ITriBoolean
ITriTimerDuration
In case they are used in out or inout parameter passing mode, instances of the respective interfaces will be passed with the method call. The called entity can then access methods and properties of the passed instances to set the return values.
[bookmark: _Toc390248870][bookmark: _Toc406750918]9.5.2	triCommunication interface
The triCommunication interface is divided into two C# sub-interfaces, the ITriCommunicationSA interface, defining calls from the TE to the SA and the ITriCommunicationTE interface, defining calls from the SA to the TE.
[bookmark: _Toc390248871][bookmark: _Toc406750919]9.5.2.1	ITriCommunicationSA
The ITriCommunicationSA interface is defined as follows:
public interface ITriCommunicationSA {
	// Reset operation
	// Ref: TRI-Definition clause 5.5.1
	TriStatus TriSAReset();
	// Connection handling operations
	// Ref: TRI-Definition clause 5.5.2.1
	triStatus TriExecuteTestCase(iTriTestCaseId testCaseId,
		ITriPortIdList portIdList);
	// Ref: TRI-Definition clause 5.5.2.2
	TriStatus TriMap(ITriPortId compPortId, ITriPortId tsiPortId);
	// Ref: TRI-Definition clause 5.5.2.3
	TriStatus TriMapparam(ITriPortId compPortId, ITriPortId tsiPortId,
		ITriParameterList paramList);
	// Ref: TRI-Definition clause 5.5.2.4
	TriStatus TriUnmap(ITriPortId compPortId, ITriPortId tsiPortId);
	// Ref: TRI-Definition clause 5.5.2.5
	TriStatus TriUnmapparam(ITriPortId compPortId, ITriPortId tsiPortId,
		ITriParameterList paramList);
	// Ref: TRI-Definition clause 5.5.2.6
	TriStatus TriEndTestCase();

	// Message based communication operations
	// Ref: TRI-Definition clause 5.5.3.1
	TriStatus TriSend(iTriComponentId componentId, ITriPortId tsiPortId,
		ITriAddress address, ITriMessage sentMessage);
	// Ref: TRI-Definition clause 5.5.3.2
	TriStatus TriSendBC(iTriComponentId componentId, ITriPortId tsiPortId,
		ITriMessage sentMessage);
	// Ref: TRI-Definition clause 5.5.3.3
	TriStatus TriSendMC(iTriComponentId componentId, ITriPortId tsiPortId,
		ITriAddressList addresses, ITriMessage sentMessage);

	// Procedure based communication operations
	// Ref: TRI-Definition clause 5.5.4.1
	TriStatus TriCall(iTriComponentId componentId, ITriPortId tsiPortId,
		ITriAddress sutAddress, ITriSignatureId signatureId,
		ITriParameterList parameterList);
	// Ref: TRI-Definition clause 5.5.4.2
	TriStatus TriCallBC(iTriComponentId componentId, ITriPortId tsiPortId,
		iTriSignatureId signatureId, ITriParameterList parameterList);
	// Ref: TRI-Definition clause 5.5.4.3
	TriStatus TriCallMC(iTriComponentId componentId, ITriPortId tsiPortId,
		ItriAddressList sutAddresses, ITriSignatureId signatureId,
		ITriParameterList parameterList);
	// Ref: TRI-Definition clause 5.5.4.4
	TriStatus TriReply(iTriComponentId componentId, ITriPortId tsiPortId,
		ITriAddress sutAddress, ITriSignatureId signatureId,
		ITriparameterList parameterList, ITriParameter returnValue);
	// Ref: TRI-Definition clause 5.5.4.5
	TriStatus TriReplyBC(iTriComponentId componentId, ITriPortId tsiPortId,
		iTriSignatureId signatureId, ITriParameterList parameterList,
		ITriParameter returnValue);
	// Ref: TRI-Definition clause 5.5.4.6
	TriStatus TriReplyMC(iTriComponentId componentId, ITriPortId tsiPortId,
		ItriAddressList sutAddresses, ITriSignatureId signatureId,
		ITriparameterList parameterList, ITriParameter returnValue);
	// Ref: TRI-Definition clause 5.5.4.7
	TriStatus TriRaise(iTriComponentId componentId, ITriPortId tsiPortId,
		ITriAddress sutAddress, ITriSignatureId signatureId,
		ITriException exc);
	// Ref: TRI-Definition clause 5.5.4.8
	TriStatus TriRaiseBC(iTriComponentId componentId, ITriPortId tsiPortId,
		iTriSignatureId signatureId, ITriException exc);
	// Ref: TRI-Definition clause 5.5.4.9
	TriStatus TriRaiseMC(iTriComponentId componentId, ITriPortId tsiPortId,
		ItriAddressList sutAddresses, ITriSignatureId signatureId,
		ITriException exc);

	// Miscellaneous operations
	// Ref: TRI-Definition clause 5.5.5.1
	TriStatus TriSutActionInformal(string description);
}

[bookmark: _Toc390248872][bookmark: _Toc406750920]9.5.2.2	ITriCommunicationTE
The ITriCommunicationTE interface is defined as follows:
public interface ITriCommunicationTE {
	// Message based communication operations
	// Ref: TRI-Definition clause 5.5.3.4
	void EnqueueMessage(ITriPortId tsiPortId, ITriAddress sutAddress,
		iTriComponentId componentId, ITriMessage msg);

	// Procedure based communication operations
	// Ref: TRI-Definition clause 5.5.4.10
	void EnqueueCall(ITriPortId tsiPortId, ITriAddress sutAddress,
		iTriComponentId componentId, ITriSignatureId signatureId,
		ITriParameterList parameterList);
	// Ref: TRI-Definition clause 5.5.4.10
	void EnqueueReply(ITriPortId tsiPortId, ITriAddress sutAddress,
		iTriComponentId componentId, ITriSignatureId signatureId,
		ITriparameterList parameterList, ITriParameter returnValue);
	// Ref: TRI-Definition clause 5.5.4.11
	void EnqueueException(ITriPortId tsiPortId, ITriAddress sutAddress,
		iTriComponentId componentId, ITriSignatureId signatureId,
		ITriException exc);
	// Ref: TRI Definition clause 5.2.1
	void TriSAErrorReq(string message);
}

[bookmark: _Toc390248873][bookmark: _Toc406750921]9.5.2.3	ITriPlatformPA
The ITriPlatformPA interface is defined as follows:
public interface ITriPlatformPA {
	// Ref: TRI-Definition clause 5.6.1
	TriStatus TriPAReset();

	// Timer handling operations
	// Ref: TRI-Definition clause 5.6.2.1
	TriStatus TriStartTimer(ITriTimerId timerId, ITriTimerDuration duration);
	// Ref: TRI-Definition clause 5.6.2.2
	TriStatus TriStopTimer(ITriTimerId timerId);
	// Ref: TRI-Definition clause 5.6.2.3
	TriStatus TriReadtimer(ITriTimerId timerId,
		ITriTimerDuration elapsedTime);
	// Ref: TRI-Definition clause 5.6.2.4
	TriStatus TriTimerrunning(ITriTimerId timerId, ITriBoolean running);

	// Miscellaneous operations
	// Ref: TRI-Definition clause 5.6.3.1
	TriStatus TriExternalFunction(ItriFunctionId functionId,
		ITriparameterList parameterList, ITriParameter returnValue);
}

[bookmark: _Toc390248874][bookmark: _Toc406750922]9.5.2.4	ITriPlatformTE
The ITriPlatformTE interface is defined as follows:
public interface ITriPlatformTE {
	// Ref: TRI-Definition clause 5.6.2.5
	void TriTimeout(ITriTimerId timerId);
	// Ref: TRI Definition clause 5.2.2
	void TriPAErrorReq(string message);
	// Ref: TRI Definition clause 5.6.3.2
	ITriComponentId TriSelf();
	// Ref: TRI Definition clause 5.6.3.3
	ITriMessage TriRnd(ITriComponentId componentId, ITriMessage seed);
}

[bookmark: _Toc390248875][bookmark: _Toc406750923]9.6	Optional parameters
Clause 5.4 defines that a reserved value shall be used to indicate the absence of an optional parameter. For the C# language mapping the distinct value null shall be used to indicate the absence of an optional value. For example if in the triSend operation the address parameter shall be omitted the operation invocation shall be TriSend(componentId, tsiPortId, null, sendMessage).
[bookmark: _Toc390248876]
Annex A (normative):
IDL Summary
This clause summarizes the IDL definition of TRI operations as defined in clause 5.
// ***
// Interface definition for the TTCN3 Runtime Interface

// ***

module triInterface
{

 //
 // ***
 // Types
 // ***
 //

 // Connection
 native TriPortIdType;
 typedef sequence<TriPortIdType> TriPortIdListType;
 native TriComponentIdType;
 typedef sequence<TriComponentIdType> TriComponentIdListType;

 // Communication
 native TriMessageType;	
 native TriAddressType;
 typedef sequence<TriAddressType> TriAddressListType;
 native TriSignatureIdType;
 native TriParameterType;
 typedef sequence<TriParameterType> TriParameterListType;
 native TriExceptionType;

 // Timing
 native TriTimerIdType;
 native TriTimerDurationType;

 // Miscellaneous
 native TriFunctionIdType;
 native TriTestCaseIdType;
 native TriStatusType;

 //
 // ***
 // Interfaces
 // ***
 //

 //
 // ***
 // The communication interface (Ref: TRIDefinition: clauses 5.5 and 5.2)
 // ***
 //
 interface triCommunication
 {
	
	// Reset operation
	
	// Ref: TRIDefinition clause 5.5.1
	TriStatusType triSAReset();

	// Connection handling operations

	// Ref: TRIDefinition clause 5.5.2.1
	TriStatusType triExecuteTestCase(in TriTestCaseIdType testCaseId, 			
 in TriPortIdListType tsiPortList);

	// Ref: TRIDefinition clause 5.5.2.2
	TriStatusType triMap(in TriPortIdType compPortId, in TriPortIdType tsiPortId);

	// Ref: TRIDefinition clause 5.5.2.3
	TriStatusType triMapParam(in TriPortIdType compPortId, in TriPortIdType tsiPortId, in 	TriParameterListType paramList);

	// Ref: TRIDefinition clause 5.5.2.4
	TriStatusType triUnmap(in TriPortIdType compPortId, in TriPortIdType tsiPortId);

	// Ref: TRIDefinition clause 5.5.2.5
	TriStatusType triUnmapParam(in TriPortIdType compPortId, in TriPortIdType tsiPortId, in 	TriParameterListType paramList);

	// Ref: TRIDefinition clause 5.5.2.6
	TriStatusType triEndTestCase();

	// Message based communication operations

	// Ref: TRIDefinition clause 5.5.3.1
	TriStatusType triSend(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress, in TriMessageType sendMessage);

	// Ref: TRIDefinition clause 5.5.3.2
	TriStatusType triSendBC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriMessageType sendMessage);

	// Ref: TRIDefinition clause 5.5.3.3
	TriStatusType triSendMC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses, in TriMessageType sendMessage);

	// Ref: TRIDefinition clause 5.5.3.4
	void triEnqueueMsg(in TriPortIdType tsiPortId , in TriAddressType SUTaddress,
	 in TriComponentIdType componentId, in TriMessageType receivedMessage);

	// Procedure based communication operations

	// Ref: TRIDefinition clause 5.5.4.1
	TriStatusType triCall(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList);

	// Ref: TRIDefinition clause 5.5.4.2
	TriStatusType triCallBC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList);

	// Ref: TRIDefinition clause 5.5.4.3
	TriStatusType triCallMC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList);

	// Ref: TRIDefinition clause 5.5.4.4
	TriStatusType triReply(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList, in TriParameterType returnValue);

	// Ref: TRIDefinition clause 5.5.4.5
	TriStatusType triReplyBC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriParameterListType parameterList, in TriParameterType returnValue);

	// Ref: TRIDefinition clause 5.5.4.6
	TriStatusType triReplyMC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList, in TriParameterType returnValue);

	// Ref: TRIDefinition clause 5.5.4.7
	TriStatusType triRaise(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressType SUTaddress, in TriSignatureIdType signatureId,
 in TriExceptionType exc);

	// Ref: TRIDefinition clause 5.5.4.8
	TriStatusType triRaiseBC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriSignatureIdType signatureId,
 in TriExceptionType exc);

	// Ref: TRIDefinition clause 5.5.4.9
	TriStatusType triRaiseMC(in TriComponentIdType componentId, in TriPortIdType tsiPortId,
 in TriAddressListType SUTaddresses, in TriSignatureIdType signatureId,
 in TriExceptionType exc);

	// Ref: TRIDefinition clause 5.5.4.10
	void triEnqueueCall(in TriPortIdType tsiPortId, in TriAddressType SUTaddress,
 in TriComponentIdType componentId, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList);

	// Ref: TRIDefinition clause 5.5.4.11
	void triEnqueueReply(in TriPortIdType tsiPortId, in TriAddressType SUTaddress,
	in TriComponentIdType componentId, in TriSignatureIdType signatureId,
 in TriParameterListType parameterList, in TriParameterType returnValue);

	// Ref: TRIDefinition clause 5.5.4.12
	void triEnqueueException(in TriPortIdType tsiPortId, in TriAddressType SUTaddress,
	in TriComponentIdType componentId, in TriSignatureIdType signatureId,
 in TriExceptionType exc);

	// Miscellaneous operations

	// Ref: TRIDefinition clause 5.5.5.1
	TriStatusType triSUTactionInformal(in string description);

	// Error Handling

	// Ref: TRI Definition clause 5.2.1
	void triSAErrorReq(in string message);
};

 //
 // ***
 // The platform interface (Ref: TRIDefinition: clauses 5.6 and 5.2)
 // ***
 //
 interface triPlatform
 {

	// Reset Operation

	// Ref: TRIDefinition clause 5.6.1
	TriStatusType triPAReset();

	// Timer handling operations

	// Ref: TRIDefinition clause 5.6.2.1
	TriStatusType triStartTimer(in TriTimerIdType timerId,
 in TriTimerDurationType timerDuration);

	// Ref: TRIDefinition clause 5.6.2.2
	TriStatusType triStopTimer(in TriTimerIdType timerId);

	// Ref: TRIDefinition clause 5.6.2.3
	TriStatusType triReadTimer(in TriTimerIdType timerId,
 out TriTimerDurationType elapsedTime);

	// Ref: TRIDefinition clause 5.6.2.4
	TriStatusType triTimerRunning(in TriTimerIdType timerId, out boolean running);

	// Ref: TRIDefinition clause 5.6.2.5
	void triTimeout(in TriTimerIdType timerId);

	// Miscellaneous operations

	// Ref: TRIDefinition clause 5.6.3.1
	TriStatusType triExternalFunction(in TriFunctionIdType functionId,
	 inout TriParameterListType parameterList,
	 out TriParameterType returnValue);

	// Ref: TRIDefinition clause 5.6.3.2
	TriComponentIdType triSelf();

	// Ref: TRIDefinition clause 5.6.3.3
	TriMessage triRnd(in TriComponentIdType componentId,
	in TriMessage seed);

	// Error Handling

	// Ref: TRI Definition clause 5.2.2
	void triPAErrorReq(in string message);
 };
};
[bookmark: _Toc390248877]
Annex B (informative):
Use scenarios
This annex contains use scenarios that should help users of the TRI and tool vendors providing the TRI understand the semantics of the operations defined within the present document.
Three scenarios are defined in terms of Message Sequence Charts (MSC). A scenario consists of a TTCN3 code fragment that uses TTCN3 communication functions to the SUT as well as timer handling functions. The MSC shows the interactions between the TE, SA and PA entities together with the SUT.
Please note that the TTCN3 fragments are not complete, as the main objective of the fragments is the usage of dynamic behaviour. All of the presented scenarios use a common preamble sequence of TRI operations shown in figure B.1.
Notice that the MSCs presented in this clause use message pairs to model each TRI operation. The MSC message triMap followed by triMapOK denotes, for example, that the TRI operation triMap has been invoked by the TE and it returns successfully from the SA. TRI operation calls are shown using abstract types and values, and are intended to serve only for illustration purposes. The concrete representation of these parameters in a particular target language is defined in the respective language mappings.
[image: Preamble]
Figure B.1: Common MSC Preamble
[bookmark: _Toc390248878][bookmark: _Toc406750924]B.1	First scenario
The first scenario shows some TTCN3 timer operations, i.e. start and timer running, message based communication operations, i.e. send and receive, as well as connection handling operations, i.e. map and unmap.
[bookmark: _Toc390248879][bookmark: _Toc406750925]B.1.1	TTCN3 fragment
module triScenario1
{
 external function MyFunction();

 type port PortTypeMsg message { inout integer }

 type component MyComponent {
	port PortTypeMsg MyPort;
	timer MyTimer
 }

 type component MyTSI {
	port PortTypeMsg PCO1;
 }

 testcase scenario1() runs on MyComponent system MyTSI
 {
	MyPort.clear;
	MyPort.start;
	MyTimer.start(2);

	map(MyComponent: MyPort, system: PCO1);
	MyPort.send (integer : 5);
	if (MyTimer.running)
	{
	 MyPort.receive(integer:7);
	}
	else
	{
	 MyFunction();
	}
	unmap(MyComponent: MyPort, system:PCO1);
	MyPort.stop;
 }

 control {
	execute(scenario1());
 }

}

[bookmark: _Toc390248880][bookmark: _Toc406750926]B.1.2	Message sequence chart
[image: scenario1]
Figure B.2: Use Scenario 1
[bookmark: _Toc390248881][bookmark: _Toc406750927]B.2	Second scenario
The second example shows a similar scenario which also uses timed procedure based communication operations which are initiated by the test component MyComponent. In this example MyComponent is assumed to run as the MTC.
[bookmark: _Toc390248882][bookmark: _Toc406750928]B.2.1	TTCN3 fragment
module triScenario2
{

 signature MyProc (in float par1, inout float par2)
	exception(MyExceptionType);

 type record MyExceptionType { FieldType1 par1, FieldType2 par2 }

 type port PortTypeProc procedure { out MyProc }

 type component MyComponent {
	port PortTypeProc MyPort;
	timer MyTimer = 7
 }

 testcase scenario2() runs on MyComponent
 {
	var float MyVar;

	MyPort.clear;
	MyPort.start;
	MyTimer.start;

 MyVar := MyTimer.read;	

 if (MyVar>5.0) {
	 MyPort.call (MyProc:{MyVar, 5.7}, 5);
	 alt {
	 [] MyPort.getreply(MyProc:{,MyVar*5}) {}
	 [] MyPort.catch (MyProc, MyExceptionType:*) {}
	 [] MyPort.catch (timeout) {}
	 }
	}
MyTimer.stop;
	MyPort.stop;
 }

 control {
	execute(scenario2());
 }

}

[bookmark: _Toc390248883][bookmark: _Toc406750929]B.2.2	Message sequence chart
[image: scenario2]
Figure B.3: Use Scenario 2
[bookmark: _Toc390248884][bookmark: _Toc406750930]B.3	Third scenario
Use scenario 3 shows the reception of a procedure call as well as a reply and raising of an exception based on this received call. Again MyComponent is assumed to run as the MTC. FieldType1, FieldType2, p1, and p2 are assumed to be defined elsewhere.
[bookmark: _Toc390248885][bookmark: _Toc406750931]B.3.1	TTCN3 fragment
module triScenario3
{
 signature MyProc (in float par1, inout float par2)
	exception(MyExceptionType);

 type record MyExceptionType { FieldType1 par1, FieldType2 par2 }

 type port PortTypeProc procedure { in MyProc }

 type component MyComponent {
 	port PortTypeProc MyPort;
	timer MyTimer = 3
 }

 testcase scenario3(integer x) runs on MyComponent
 {
	MyPort.start;
	MyTimer.start;
	alt
	{
	 [] MyPort.getcall(MyProc:{5.0, 6.0})
	 {
	 MyTimer.stop;
	 }
	 [x>5] MyTimer.timeout
	 {
	 MyPort.reply(MyProc:{, 30.0});
	 }
	 [x<=5] MyTimer.timeout
	 {
	 MyPort.raise(MyProc, MyExceptionType:{p1, p2});
	 }
	}
	MyPort.stop;
 }

 control {
	execute(scenario3(4));
 }
}

[bookmark: _Toc390248886][bookmark: _Toc406750932]B.3.2	Message sequence chart
[image: scenario3]
Figure B.4: Use Scenario 3
[bookmark: _Toc390248887]
Annex C (informative):
Bibliography
INTOOL CGI/NPL038 (V2.2): "Generic Compiler/Interpreter interface; GCI Interface Specification", Infrastructural Tools, December 1996.
[bookmark: _Toc390248888][bookmark: _Toc406750933]
History
	Document history

	V1.1.1
	February 2003
	Publication

	V3.1.1
	June 2005
	Publication

	V3.2.1
	February 2007
	Publication

	V3.3.1
	April 2008
	Publication

	V4.1.1
	June 2009
	Publication

	V4.2.1
	July 2010
	Publication

	V4.3.1
	June 2011
	Publication

	V4.4.1
	April 2012
	Publication

	V4.5.1
	April 2013
	Publication

	V4.6.1
	April 2014
	Membership Approval Procedure	MV 20140606:	2014-04-07 to 2014-06-06

	V4.6.1
	June 2014
	Publication

ETSI
image2.png

image3.png

image4.png

image5.png

image6.png

image1.jpeg

