[image: C:\Documents and Settings\vreck\My Documents\00-ETSI\Logo&Images\ETSI Logo_Office_20101130.jpg]	MTS(14)64_020
	

	Title*:
	[bookmark: title]Distinct metaclasses needed in TDL V2 drafts for unspecified members and members specified to be omitted

	
	28 - 29 Jan 2015

	from Source*:
	[bookmark: source]L.M.Ericsson

	Contact:
	[bookmark: contact]György Réthy

	
	

	input for Committee*:
	[bookmark: to]MTS

	
	

	Contribution For*:
	Decision
	[bookmark: forDecision]X
	

	
	Discussion
	[bookmark: forDiscussion]
	

	
	Information
	[bookmark: forInformation]
	

	
	

	Submission date*:
	[bookmark: date]2015-01-19

	
	

	Meeting & Allocation:
	MTS#64

	

Introduction

TDL always has been aimed to be a high-level language with abstraction level between test purposes and executable test cases. This has been reinforced several times (see quotes below). TDL Phase 2 targets usage in the
a) test standards development process
b) in classical waterfall-type SW product development processes
c) in more recent agile-type SW development processes, including TDD

This requires from TDL
1) hiding unnecessary details both of the dynamic behaviour and the test data, and
2) be able to develop the test descriptions in an iterative way, i.e. increase the details in the TDL specification step-by-step
both for the dynamic behaviour and test data.

--- (highlighting is from the submitter of the TD)--
(Scope of DES/MTS-140_TDL):
“The abstraction level of test descriptions specified in this notation should be similar to test purposes, i.e., they enable the specification of tests on top of TTCN-3 frameworks and can be produced as output from model-based test generators.”
STF 476 ToR:
(clause 1.2 Organization in phases) “This new STF for Phase 2 of the TDL development is proposed to build upon the work of STF 454 within TC MTS. The purpose of this phase is to add the necessary language functionality to integrate TDL test descriptions into test automation frameworks. It will also elaborate a standardized concrete graphical syntax for end-users and a TDL exchange format to be used by tools to foster tool interoperability.”
(clause 4.2 Market impact) “However, the imprecise semantics of UML leads to very different tool-dependent solutions, even when the same kind of modelling diagrams are used.
…
Black-box testing becomes the major testing approach since it offers good support for test-driven and agile software development processes that more and more replace traditional waterfall and iterative processes.
In the standardization of conformance test suites TDL offers a clear way forward from detailing test case specifications in TTCN-3 to the specification of more abstract test descriptions. Also, it enables the potential deployment of model-based testing methods in standardization.
…
TDL allows industry to develop automated tests more efficiently and to apply test automation more widely. Leveraging TDL relieves the test engineer from working on details of test implementations”.

Naturally, to use TDL requires tool support. That’s why the transfer syntax has been developed in TDL Phase 2 as also stated in clause 4.2 on the MM draft.. As TDL V2, according to the STF’s ToR, shall also support TDs in automated testing, at least the following tool interworking scenarios shall be supported:
[image:]
[image:]
[image:]
[image:]
[bookmark: clause_TDLCompliance2Reqs]TDL V2 draft’s compliance to the requirements
Let's analyse how the above requirements are fulfilled by the latest TDL draft for MTS approval.
Requirement: Partial test data (message) definition
TD MTS(13)58_024 served as one of the input documents for TDL design. It contained the following requirement that is in full alignment of the above purposes of TDL Phase 2:
“24.	Only relevant part of the messages (specific IEs, headers etc.) that make difference in the behavior – but ONLY that part of the data – to be handled in TDL/model level ”	Comment by Andres Kull: Agree
Clause 4.1 Motivation of the MM V1 draft:
“New testing techniques that stem from agile development methods such as test-driven development (TDD) relies heavily on the specification of so-called ‘user stories’. Typically such user stories are represented as scenarios, i.e. interaction flows, between the system and a user of this system. User stories are a natural input to the design of tests.”
Clause 4.1 What is TDL? of the MM V2 draft:
“
“Manual design of test descriptions from a test purpose specification, user stories in test driven development or other sources.
Representation of test descriptions derived from other sources such as MBT test generation tools, system simulators, or test execution traces from test runs.”

Content of the draft MM V1.1.4
On figure 6.5 and in clause 6.3 there are three predefined “wildcard” metaclasses: AnyValue, AnyNoneValue and NoneValue.

From the point of view of this TD NoneValue is the interesting one. Let’s see how it used:
$6.3.1: “Use of a 'StructuredDataInstance' with non-optional 'Member's
All the non-optional members of a 'StructuredDataInstance' shall have 'DataUse' specifications assigned to them that are different from 'NoneValue'.”

$6.3.8 NoneValue: “It is the default value of 'Variable's and 'Member's of a 'StructuredDataInstance' before the first assignment of a 'DataUse'”.

[bookmark: _Toc378926094][bookmark: _Toc407094746]$8.2.4	ComponentInstance: “When a 'ComponentInstance' is created, a 'Timer' shall be in the idle state (see clause 7.2.8) and a 'Variable' shall have the value 'NoneValue'”.

[bookmark: _Toc378926118][bookmark: _Toc407094778]$9.4.6	Interaction: “The 'DataUse' specification, which the 'argument' property refers to, shall be completely specified. That is, it shall not contain 'VariableUse' specifications of 'Variable's that hold 'NoneValue' nor 'DataUse' specifications of 'StructuredDataInstance's that contain 'Member's with an implicit assignment of 'NoneValue'. The use of 'NoneValue' is restricted to assignments to optional 'Member's only and shall be made explicit before the 'StructuredDataInstance' is used in the 'argument' specification (see clause 6.3.8).”

Consequences
The user SHALL assign a value or a wildcard value to ALL FIELDS of ALL MESSAGES before they are used in an interaction.

· This contradicts to the requirement to be able to specify partial messages, to the original purpose of TDL and to the What is TDL? clause of the MM draft itself: In test purpose and user-story based test description development not all information is available for complete message definitions;
· In the MBT case, again, not all information is available in the model;
· In TDD the test descriptions are written before the SUT, and at the time of defining TDLs simply not all message content is known and even the known once may change during SUT implementation;
· Several information is generated runtime, by the test harness, therefore these information is not know in the test description phase (and not even in the test case implementation phase!).

Therefore, the complete message definition requirement of the current TDL draft is simply impossible to fulfil in many of its real use scenarios.
Requirement: Support of optional message fields
(if you agree that optionality exists in protocol specifications, independent if the protocol is tested with TTCN-3 or not, you can skip the text with grey background colour below)
During the email discussions leading to this TD, an STF expert even implicitly questioned if optional fields and omitting them in the protocol communication exist in protocol specifications at all, by claiming that this is a TTCN-3 feature. Therefore, we are forced to provide a proof of our claim that optional information content in messages are “invented” and used at the specification level, and is not something specific to TTCN-3.
For example in RRC (3GPP TS 25.331):
[bookmark: _Toc257593149][bookmark: _Toc257593107]“10.1	General
The function of each Radio Resource Control message together with message contents in the form of a list of information elements is defined in subclause 10.2.
Functional definitions of the information elements are then described in subclause 10.3.
Information elements are marked as either MP - Mandatory present, MD - Mandatory with default value, OP - Optional, CV - Conditional on value or CH - Conditional on history (see Table 10.1 with information extracted from [14]).
Table 10.1: Meaning of abbreviations used in RRC messages and information elements
	Abbreviation
	Meaning

	MP
	Mandatory present
A value for that information is always needed, and no information is provided about a particular default value. If ever the transfer syntax allows absence (e.g., due to extension), then absence leads to an error diagnosis.

	MD
	Mandatory with default value
A value for that information is always needed, and a particular default value is mentioned (in the 'Semantical information' column). This opens the possibility for the transfer syntax to use absence or a special pattern to encode the default value.

	CV
	Conditional on value
The need for a value for that information depends on the value of some other IE or IEs, and/or on the message flow (e.g., channel, SAP). The need is specified by means of a condition, the result of which may be that the information is mandatory present, mandatory with default value, not needed or optional.
If one of the results of the condition is that the information is mandatory present, the transfer syntax must allow for the presence of the information. If in this case the information is absent an error is diagnosed.
If one of the results of the condition is that the information is mandatory with default value, and a particular default value is mentioned (in the 'Semantical information' column), the transfer syntax may use absence or a special pattern to encode the default value.
If one of the results of the condition is that the information is not needed, the transfer syntax must allow encoding the absence. If in this case the information is present, it will be ignored. In specific cases however, an error may be diagnosed instead.
If one of the results of the condition is that the information is optional, the transfer syntax must allow for the presence of the information. In this case, neither absence nor presence of the information leads to an error diagnosis.

	CH
	Conditional on history
The need for a value for that information depends on information obtained in the past (e.g., from messages received in the past from the peer). The need is specified by means of a condition, the result of which may be that the information is mandatory present, mandatory with default value, not needed or optional.
The handling of the conditions is the same as described for CV.

	OP
	Optional
The presence or absence is significant and modifies the behaviour of the receiver. However whether the information is present or not does not lead to an error diagnosis.

“
“10.2.20	PAGING TYPE 1
…
	Information Element/Group name
	Need
	Multi
	Type and reference
	Semantics description
	Version

	Message Type
	MP
	
	Message Type
	
	

	UE Information elements
	
	
	
	
	

	Paging record list
	OP
	1 to <maxPage1>
	
	
	

	>Paging record
	MP
	
	Paging record 10.3.3.23
	
	

	Other information elements
	
	
	
	
	

	BCCH modification info
	OP
	
	BCCH modification info 10.3.8.1
	
	

	ETWS information
	OP
	
	ETWS information 10.3.8.4ea
	
	REL-8

“
Please note, that except mandatory and optional, also conditional information exists that will need be handled in TDL later.

In SIP (RFC 3261):
“13.2.1 Creating the Initial INVITE
… An Allow header field (Section 20.5) SHOULD be present in the INVITE. ...
… An Accept (Section 20.1) header field MAY be present in the INVITE. …
… The UAC MAY add an Expires header field (Section 20.19) to limit the validity of the invitation. …
… A UAC MAY also find it useful to add, among others, Subject (Section 20.36), Organization (Section 20.25) and User-Agent (Section 20.41) header fields. They all contain information related to the INVITE. …”
Content of the draft MM V1.1.4
There is no formal value (metaclass) defined allowing to omit optional fields in the latest MM draft.
[bookmark: _Toc407094705]“6.2.11	StructuredDataInstance
…
If a 'StructuredDataInstance' has no 'MemberAssignment' for a given 'Member' of its 'StructuredDataType', it is assumed that the 'Member' has no value assigned to it. This is equal to the explicit assignment of 'NoneValue' to this 'Member' (see clause 6.3.8).”
$ 6.3.8 NoneValue: “It is the default value of 'Variable's and 'Member's of a 'StructuredDataInstance' before the first assignment of a 'DataUse'”. …
NOTE:	A 'NoneValue' can be used explicitly in a 'MemberAssignment' for an optional 'Member' of a 'StructuredDataType' to indicate that the 'Member' is deliberately omitted in the related 'StructuredDataInstance'.”
$9.4.6	Interaction: “The 'DataUse' specification, which the 'argument' property refers to, shall be completely specified. That is, it shall not contain 'VariableUse' specifications of 'Variable's that hold 'NoneValue' nor 'DataUse' specifications of 'StructuredDataInstance's that contain 'Member's with an implicit assignment of 'NoneValue'. The use of 'NoneValue' is restricted to assignments to optional 'Member's only and shall be made explicit before the 'StructuredDataInstance' is used in the 'argument' specification (see clause 6.3.8).
…
The occurrence of 'NoneValue' other than for optional 'Member's of a 'StructuredDataInstance' causes undefined semantics of the 'Interaction' behaviour at runtime.”
Consequences
The semantic meaning of NoneValue is clearly defined as ‘undefined’. There are several problems with it:
a) Inconsistency: The note in $6.3.8 contradicts to the mandatory text in clauses 6.2.11 and 6.3.8, which define 'NoneValue' in the meaning of ‘undefined’. Notes in n ETSI standards are informatory text, they shall not place any requirement or specify any mandatory feature.
But even if the note is made a mandatory text, this would just create ambiguity, as
a. there is no requirement and property to store if 'NoneValue'has been assigned implicitly or explicitly;
b. if the specification is stored in XF and then read by a tool, there is no way to know what was the semantic meaning of 'NoneValue' in the original TDL specification. This already may lead to incompatible tool implementations. But different tools’ behaviour even coded into the standard by the last sentence quoted here from clause 9.4.6. Tools may cause error or just ignore NoneValue assigned to mandatory members, and leave it to the test harness. In TTCN-3 we are fighting to secure identical tools behaviour for many years now, including writing language conformance test suites. We shall not fall into the same trap again with TDL.
b) No clear concept to omit optional members: As a concequence of the above,in fact, there is no formal specification of how the user can identify optional ‘Member’s that shall not – by the test specification - be present in an interaction..
c) Erroneous behaviour, decreased error checking: To assign anything else to an optional member, than a concrete value, the draft requires assigning NoneValue explicitly. Consequently, the tools shall distinguish between NoneValue assigned implicitly and explicitly for semantic checking purposes. However, no flag is defined for this purpose in the MM draft, and consequently is also missing in XMI (tools using this kind of flag could even be considered as non-conformaning, according to clause 4.6). Thus, this information is lost as soon as the TDL spec. is saved or transferred to another tool (see tool scenarios 2) to 4) in clause 1 of this TD). This may happen if the user forgets to assign a value to some of the optional members explicitly, or simply wants to save its works before he/she can complete it. Therefore, the other tool, on importing the TDL specification, may mistakenly take the undefined optional member as if the user wanted to omit it deliberately, or vice versa.
d) Backward incompatible: The current way of using NoneValue in the MM guarantees incompatibility between different versions of the language, or will place very strong limitations to new features in the future.
At any point in time, when support of partial message content is introduced (see clause 2.1 above), NoneValue cannot be used in two different semantic meanings any more. This will lead to tool and (saved) specification incompatibilities. Also, if other special values are added to the language (for example: role-specific presence, conditional presence, complement value or anything else), this will most probably lead to backward incompatible changes in future versions of TDL. We can see this happening in TTCN‑3, where unifying the language concepts is required time-to-time. Preventing future backward incompatibility would not require any significant effort at this stage of the language.
Other comments
Inconsistencies
On figure …, within metaclass …, the property is shown but
On figure …, Comment and Attribute inherits from Element, however, Element already contains the comment and attribute properties. It is proposed to delete the inheritance arrow.
Editorial comments
In the MM draft clause references are pure text. It is recommended to use bookmark references instead: manually bookmark referenced clauses and all other referenced objects and use cross-references to these bookmarks in when referencing them. This would automatically secure that cross references remain correct when clause, figure, table etc. numbers are changing in later editions.
Proposed solution
The proposed solution of the above problems is included into this TD in files MTS-203119-1v1.2.1v115.docx (for the MM), MTS-203119-2v013.doc (for the GR) and MTS-203119-3v015.doc (for the XF). As the MM drafts uploaded to the ETSI server already contain revision markings, parts changed by this TD are highlighted with yellow background colour in all three documents for easier review.
A list of changes is contained in the file “List of changes in the TDL drafts.docx”, included into this TD.
Conclusions
There are three aspects to be considered for the successful take-off of TDL:
- In the development “pipeline”, specifications are getting more-and-more detailed as progressing from the system specification (in standardization: protocol and TP specifications) to the design and testing phases (in standardization: ATS development); In this “pipeline” TDL would give the unique opportunity of “very early testing“, i.e. specifying test descriptions already in the system specification phase. This requires fulfilling both requirements, described in clause 2 of this TD: partial message specification and clear concept to omit optional message fields at the same time;
- Agile SW development processes require iterative, step-by-step development of both the product and related tests. In every single iteration step more-and-more technical details are added. Languages and tools not supporting this way of working have no chance to get used in this development process.
- Also TDD is getting more-and-more popular; in TDD test descriptions are developed even before all details of the SUT are known or even decided; therefore only languages and tools supporting the specific needs of TDD have chance to get used in TDD. TDL, as of today, is not one of those languages.
To make TDL V2 conforming to the above ways of working would require changes in the current drafts that are LESS than 1/10 of the size of this TD.
Therefore the proposed changes shall be reviewed and accepted at the TDL Technical meeting of TC MTS on 28th January, or if the this meeting fails doing it, by MTS#64.

Closing words
In overall, STF 476 has made a good job.
It’s unfortunate that this – small in its size, but technically very important – discussion has taken place at the very end of the STF’s existence. According to Philip Makedonski’s calculations (thanks Philip for your work!), almost 12’000 words were wasted just for the email discussions on this one single item only after the latest MM draft was made available, while the draft itself consists about 20’000 words (in fact, a significant part of the MM are the class figures). Even more time was spent on this topic during the STF work. This raises the question, how to solve similar technical questions in a more efficient way?
Therefore we propose:
· The TDL metamodel (both diagrams and text) shall be frozen early enough to have a firm basis for the other parts, built on top of it. We propose to freeze MM by September in each year.
· As it was required by TC MTS and the TDL SG earlier, the work of future STF’s shall be entirely transparent. This shall include:
· All changes to documents shall be based on ETSI Mantis CRs. These CRs shall include also the results of STF internal discussions (not the discussion itself, but it outcomes).
· All parts shall have one Mantis CR, where all versions of the subsequent drafts, including the actual latest version, are uploaded regularly.
· It has to be secured in future STF’s that in case of technical comments, before answering it, first the problem itself is well understood by STF experts, and their understanding is confirmed with the submitter. The solution shall be proposed only after this, and it shall be based both on an agreement among all STF experts, and between STF experts and the submitter.
· If for a problem within a specified time the STF cannot find a solution that is agreed by all the members, the problem and the proposed solutions shall be submitted to the TDL SG for decision.
[bookmark: _GoBack]

Annex A	Examples

See in the file TDL_NoneValue_comments_Ericsson.pptx, included into this TD.
	7/8
image2.JPG
Use case 2): savingand opening the TDL specification

File
(ToL xMI)

image3.JPG
Use case 3): Opening/importing TDL spec. in another tool

Tool A Tool B
(TDL editor) (TDL editor)

TDL XMI

image4.JPG
Use case 4): Editing TDL spec. and generating abstract code

in different tools

Tool C
(TDL code
generator)

autputs

Code
(Java, TTCN-3,
anything else)

image1.JPG
Use case 1): usinga single tool for editing and code generation

Code
(Java, TTCN-3,
anything else)

image5.jpeg
eS((—)

