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[bookmark: _Toc437874494]5	Graphical Representation Viewer

[bookmark: _Toc437874495]5.1	Scope and Requirements (P2)	Comment by Philip Makedonski: Indicates current priority: P1 high – P5 low
[TODO: move parts of this to Clause 4.2, focus on the viewer here]
To accelerate the adoption of TDL, a reference implementation of TDL is provided in order to lower the barrier to entry for both users and tool vendors in getting started with using TDL. The reference implementation comprises graphical and textual editors, as well as validation facilities. In addition, an implementation of the UML profile for TDL and supporting editing facilities seek to enable its application in UML-based working environments and model-based testing approaches.
The implementation scope includes a graphical viewer according to ES 203 119-2 based on the Eclipse platform and related technologies, covering essential constructs related to test configurations and test behaviour specification. For creating and manipulating models, a textual editor for ES 203 119-1, Annex B is implemented based on the Eclipse platform and related technologies. The applicability of general purpose model editing facilities provided by the Eclipse platform and related technologies is discussed.
For tools that need to import and export TDL models according to ES 203 119-3, corresponding facilities are implemented based on the Eclipse platform and related technologies. These facilities can be used to transform textual representations based on ES 203 119-1 into XMI serialisations according to ES 203 119-3 and can be integrated in custom tooling that builds on the Eclipse platform.
An implementation of ES 203 119-4 includes dedicated textual editor for structured test objectives which can be integrated in the textual editor for TDL. The implementation also includes facilities for exporting structured test objectives to Word documents using customisable tabular templates. 
An implementation of the UML profile for TDL includes a specification of the TDL UML profile abstract syntax according to the mapping from the TDL meta-model to TDL stereotypes and UML meta-classes in ES 203 119-1 Annex C. It is integrated with the open source UML modelling environment Eclipse Papyrus as open TDL UML profile reference implementation platform. It will be published on the open source "Eclipse UML Profiles Repository" project.
[image: C:\Documents and Settings\Philip-III\Desktop\Context.png]
Figure 1: TDL tool infrastructure
An overview of the context of the reference implementation is shown in Figure 1. The TDL exchange format specified in ES 203 119-3 serves as a bridge between the different tool components. Textual editors enable the creation and manipulation of TDL models. The graphical viewer is used to visualise TDL models as diagrams. Documentation generation, in particular for structured test objectives, can be plugged in to produce Word documents for presenting parts of a TDL model in a format suitable for standardisation documents.
The complete implementation will be published on an open-source portal serving as a central hub for the TDL community.

[bookmark: _Toc437874496]5.2	Architecture and Technology Foundation (P3)
[bookmark: _Toc437874497]5.2.1	Diagram Viewer
TDL viewer is built on Eclipse platform to benefit from its wide range of modeling tools. The main Eclipse projects that are used as basis for this implementation are shown in Figure 1. Sirius is a technology that allows declarative creation of graphical editors that work with EMF models. It uses GMF to create visual diagram elements and link those to model objects. Model management and serialization is done by EMF.
Eclipse platform
GMF
Diagram specification
TDL (XF)
Diagram
Sirius
EMF
TDL viewer
Image
TDL Ecore

NOTE:	Components with grey background are part of the implementation that iscovered by current document.

[bookmark: fig_viewer_dependencies]Figure 1: Dependencies and data flows of TDL viewer
Every EMF model is based on a meta-model that is defined in terms of meta-modeling system named Ecore. TDL meta-model in UML format was converted to Ecore meta-model (TDL Ecore) using EMF utilities. Further, Java code was generated based on this meta-model.
Sirius creates diagram editors by interpreting diagram specification files. Those files contain TDL meta-model references in the form of Java or OCL queries. OCL support is provided by Eclipse OCL project, Java queries are references to classes that are part of the TDL viewer source code. Diagram specifications also contain definitions of Sirius specific styles that are applied to model objects when rendering them on diagram. Several extensions to GMF classes have been implemented in Sirius to configure shapes according to those styles. Since TDL viewer needs to customized shapes then it has dependencies both to Sirius API as well as GMF.
GMF utilities are used to export diagrams as images.
[TBD: Word conversion]

[bookmark: _Toc437874498]5.3	Implemented Facilities (P1)
[bookmark: _Toc437874499]5.3.1	Creating Models
Overview
Model instances are the primary artifacts for TDL. They carry the semantic information. In a modelling environment there are various means for creating, viewing, and manipulating model instances of a particular meta-model. Comprehensive modelling environments typically provide generic model facilities that enable working with model instances of arbitrary meta-models, provided the meta-model is known. Generic model facilities provide sufficient capabilities for performing basic tasks on model instances. However, due to their generic nature, they are cumbersome to work with, lack support for certain features that are not expressed in the meta-model directly (unless customised), and do not provide domain-specific features such as syntactical customisation beyond basic adaptations.
Custom syntax implementations address some of the shortcomings of generic model editors. Such implementations enable the specification of a customised representation of a model instance in format that is tailored to a specific group of users. There may be multiple custom syntax implementations mapped to the same meta-model, serving different stakeholders or even different purposes for the same stakeholder. Custom syntax implementations may cover only a subset of the meta-model, restricting the access to certain features that are not relevant for specific stakeholders. Modelling environments provide platforms for the realisation of custom syntax implementations. Custom syntax implementations may rely on secondary artifacts that store the concrete representation of the TDL model instance. 
TDL model instances may be produced automatically by tools. The exchange format for TDL enables the interoperability of tools producing model instances and tools for manipulating model instances.
Generic Model Editors
The EMF provides facilities for generating basic tree editors for a given meta-model, which can then be customised to an extent while still remaining within the tree editor paradigm. In addition, the EMF also provides generic reflective model editors which provide quick access to model instances of any meta-model. Extensions to the EMF such as MoDisco include additional generic facilities such as the MoDisco model browser which provides faceted browsing and editing of model instances. Faceted browsing provides filtering by type, as well as deep navigation across references. In addition, MoDisco also includes tabular views on different parts of the model for a quick overview across multiple dimensions.
[TODO: Example descriptions]
[image: C:\Documents and Settings\Philip-III\Desktop\Screen Shot 2015-12-14 at 16.16.29.png]
Figure 1: Example of reflective model editor
[image: C:\Documents and Settings\Philip-III\Desktop\Screen Shot 2015-12-14 at 16.19.29.png]
Figure 2: Example of MoDisco facetted model browser 
Textual Editor
Xtext provides facilities for the automatic generation of a default textual syntax closely resembling the structure of the meta-model. It serves as the base for further refinements resulting in customised syntax definitions. Due to it being automatically generated, and it being very similar in structure to the meta-model, it is rather cumbersome to write actual test descriptions in this syntax notation. 
The reference implementation includes a customised textual syntax that implements the example syntax from Annex B of ES 203 119-1. Apart from the grammar specification, it also includes further customisations in the scoping and linking facilities for handling gate references, as well as enhanced semantic syntax highlighting which provides customisable styles for identifiers based on their type and usage. Current version of the grammar specification and the additional customisations can be found in Annex A.x.
[image: C:\Documents and Settings\Philip-III\Desktop\Screen Shot 2015-12-14 at 16.30.24.png]
Figure 3: Example of customised textual editor 
Associated tooling provides means for the transformation between different syntax notations and model representations. Model instances in one notation can be transformed automatically into XMI representations and/or other textual or graphical syntax representations. This tooling integrates the APIs from different platforms for task specific automation. A current version of this tooling and detailed technical information can be found in Annex A.x.
[TODO: Customizations summary]
[image: C:\Documents and Settings\Philip-III\Desktop\Screen Shot 2015-12-14 at 16.34.45.png]
Figure 4: Example of customised textual editor for structured test objectives 

Import and Export
The TDL reference implementation relies largely on the import and export facilities provided by the EMF. By default the EMF does not activate the GUID support for XMI which is prescribed in ES 203 119-3. The TDL meta-model implementation needs to be adapted to activate the GUID support for model elements. The necessary adaptation involves selecting the correct resource type (XMI) in the generator model and activating the GUID support by overriding the corresponding method in the TDL resource implementation.

[bookmark: _Toc437874500]5.3.2	Viewing Models
Overview
[TBD: some intro around here?]

Principles of Building Model Diagrams
The GMF framework that TDL viewer is built upon follows Model-View-Controller architecture. The model is an instance of TDL meta-model. The view are the figures displayed on the diagram. Controller takse care creating figures based on model objects and their associations: corss-references and containments. In GMF, controllers are called editparts.
The major part of diagram viewer implementation consists of defining the editparts. In case of Sirius, those are not implemented directly but rather defined in terms of mappings. A mapping is a relation between certain model object and a figure. Sirius will interpret each mapping and uses appropriate editpart as a controller providing mapping configuration data.
Mappings can be defined as nodes, edges or containers (and some sequence diagram specific items). Each mapping defines the meta-class of the model object that it applies to as well as the query that is used to lookup objects from the model based on the current context object (like models and diagrams, mappings are also hierarchical). Edge mappings must also define the queries that determine where its endpoints connect to.

Sirius Diagrams
Sirius provides several diagram kinds that can be configured by providing diagram specific model object mappings. For TDL, the interesting diagram kinds are generic diagram and sequence diagram.
Generic diagrams contain nodes and connections between the nodes with no specific constraints on layout. Composite nodes containing other nodes are also supported, but only a few limited layout options are available for inner node placement: free-form and table (lines of text).
Sequence diagrams contain vertical parallel lines known as lifelines. Lifelines have headers with labels. Nodes and connectors between the lifelines – the fragments - are layed out as a horizontal stack. Nodes may cover any number of lifelines, connectors may only be drawn between two lifelines. Composite nodes containing sub-fragments (called combined fragments) are also supported.
Sirius editors are defined in configuration files known as viewpoint specifications. TDL viewpoint specification defines  a single viewpoint that contains two diagram descriptions named "TDL Behavior" and "Generic TDL".
TDL Behavior is a sequence diagram description. The root object of such diagrams is an instance of  'TestDescription'. The diagram description also defines the visual order of elements both horizontally and vertically. The vertical ordering contains behaviors recursively included in the 'TestDescription' as they occur semantically. The horizontal ordering contains 'GateReference's that are defined in the 'Testconfiguration' associated with the diagram’s 'TestDescription' instance.
Generic TDL is a generic diagram description. The root object of such diagrams is an instance of  'Package'. There is no predefined order of objects defined for this diagram kind.

Sirius Diagram Customization
Sirius diagram specification model does not provide enough flexibility in terms of configuring all possible layouts required by TDL graphical syntax. The diagrams are rendered by interpreting predefined configuration elements that don’t have any extension mechanisms built in. Thus, some simple and composite figures need to be customized in lower level.
Sirius diagram rendering is built on top of GMF runtime. Thus, it’s possible to use extensions points [TBD] provided by GMF for diagram customization. "org.eclipse.gmf.runtime.diagram.ui.editpartProviders" extension point allows  to replace default Sirius editparts with customized editparts dynamically based on which model object is being rendered on which diagram. Classes defined in those extensions use mapping idnetifiers from diagram specification to decide whether and which custom editparts should be provided for diagram rendering. All other mappings will get default editparts from Sirius implementation.

Implemented EditParts
Editpart implementations are in 'org.etsi.mts.tdl.graphical.sirius.part' package.
MultipartContainerCompartmentEditPart extends GMF’s ListCompartmentEditPart. This class adds grid layout that allows child figures to fill the available area within the container. It also removes all borders from child figures to get rid of shadows and places horizontal lines between them. Lastly, it removes the ability of being dragged and selected from its children to facilitate movingthe whole compartment figure as one. The mapping that uses this editpart must be a container.
[image: ]
Figure 1: Example of MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart extends AbstractDiagramListEditPart from Sirius API. It is intended to be used as child of MultipartContainerCompartmentEditPart and provides functionality that allows the parent to control its drag and selection handling. It removes all line borders from its children and replaces those with margins. The mapping that uses this editpart must be a container with list presentation. The first label of the figure is the label of that container’s style. Children of that mapping should be nodes with square style.
[image: ]
Figure 2: Example of NodeListWithHeaderEditPart
TopLevelNodeListWithHeaderEditPart extends NodeListWithHeaderEditPart and adds the ability to be included directly on the diagram or inside a container with freeform presentation style. It also fixes a bug in AbstractDiagramElementContainerEditPart.reInitFigure() method.
[image: ]
Figure 3: Example of NodeListWithHeaderEditPart
TopLevelImageNodeListWithHeaderEditPart extends TopLevelNodeListWithHeaderEditPart and adds the support for using an image as a style of the container. It removes the border to not interfere with the image.
[image: ]
Figure 4: Example of TopLevelImageNodeListWithHeaderEditPart
NodeContainerEditPart extends AbstractDiagramContainerEditPart from Sirius API. Default container is modified by disabling stadnalone selection and dragging and delegating those functions to the parent. All borders are removed from the figure. It is intended to be used as child of MultipartContainerCompartmentEditPart.
[image: ]
Figure 5: Example of NodeContainerEditPart
InteractionUseConfiguringEditPart extends AbstractNotSelectableShapeNodeEditPart from Sirius API. The class modifies the default interaction use figure by setting custom layout to it. The custom layout streches the cotnainer's children to fill the available vertical space and leavse sufficient margin tothe top for the label of the container. If the interaction use mapping has image style then the image background is made opaqe.
This class should be mapped to (an abstract) sub-mapping of interaction use. That mapping need not have a style as it will not be visible. The first label of the interaction use is the label of the container. Rest of the labels should be sub-nodes with square styles.

[image: ]
Figure 6: Example of InteractionUseConfiguringEditPart

Viewer specific meta-model
Sirius sequence diagram configuration sets implicit requirements to the structure of meta-model that is used in mapping definitions. TDL meta-model does not comply with those requirements in all cases. For example, the mappings of combined fragments tend to fail at runtime when the begin and end occurrence objects (as understood by Sirius) are the same. As the TDL does not define occurrences at all then some adaptation is needed to provide those objects.
Sirius and underlying framework require that model objects used in diagrams are defined by meta-model. Extending TDL meta-model with pure fabrications just to facilitate viewer implementations would be a bad practice. Therefore, a separate domain-agnostic meta-model was created.
The meta-model named "tdlviewer" is defined in "extension.ecore" file and is registered as dynamic. This means that the meta-model may be used reflectively without any code generation (which is a standard practice with meta-model implementations in EMF). The "tdlviewer" contains a single meta-class 'End' with a single attribute "begin". The "begin" holds a reference to the model object for which this instance of 'End' is paired with. The object itself is used as the begin occurrence in the mappings.
The creation of virtual end objects is implemented in "org.etsi.mts.tdl.graphical.extensions.BehaviorProvider" class.

Configured mappings
[TBD: fill table when implementation complete]
Table 1: Mappings in diagram specifications
	Mapping
	Style
	Editpart

	
	
	

	
	
	




[bookmark: _Toc437874501]5.3.3	Validating Models
Overview
Means for defining and validating constraints on models are an integral part of modelling environments. Model constraints are used to impose semantic restrictions on top of the abstract syntax provided by the meta-model. There are different approaches for the specification, integration, and validation of such constraints. The Object Constraint Language (OCL) is the de facto standard for the specification and realisation of constraints on object-oriented meta-models. OCL expressions can be integrated into the meta-model by means of annotations, which can be used for automated validation of model instances, provided adequate tool support is available. An alternative approach is the specification constraints as an add-on which can then be applied to the model instances.
A constraint specification typically consists of a context indicating the meta-class to which the constraint shall apply, and an invariant indicating the conditions that shall hold true in the given context for valid models. For example if a NamedElement shall always have a non-empty name, the constraint specification with OCL is:
context NamedElement
  inv: not self.name.oclIsUndefined() and self.name.length > 0
where ‘self‘ refers to the instance of the NamedElement meta-class.
Integrated Approach
The integrated approach involves the definition of semantic constraints within the meta-model itself by means of annotations. Modelling environments can then generate integrated validation facilities based on the annotations.  The validation facilities can be invoked automatically so that immediate feedback can be provided to the users when they work with models. The main benefit of an integrated approach is that the constraints become an embedded part of the meta-model. However, there also certain limitations associated with the integrated approach. Modifications to constraints would require changing the meta-model and generated resources. Tool support for constraints included as embedded annotations is very inconsistent. Immediate feedback while helpful, can sometimes get in the way and in case a model is refined over multiple steps before it becomes valid, checking constraints at any point before that would be superfluous,
Add-on Approach
In contrast the integrated approach, the add-on approach relies on semantics constraints defined separately from the meta-model. Such constraints can be checked on demand as required by the specific usage scenario. In addition, the evaluation of such constraints can also be conducted in a more flexible manner, where only subsets of constraints are checked as necessary at a given point in time, thus limiting the amount of superfluous violations for models which are known to be incomplete at that point in time. Add-on constraints can also be modified, maintained, and extended independently from the meta-model. Certain technologies, such as the Epsilon Validation Language (EVL) also extend the capabilities of OCL by providing means to specify guards on constraints determining conditions under which the the evaluation of a constraint shall be skipped. 

[bookmark: _Toc437874502]5.4	Usage Instructions (P4)
<Text>.

[bookmark: _Toc437874503]5.5	Extension and Integration (P5)
<Text>.

[bookmark: _Toc437874504]5.6	Public Availability (P6)
<Text>.

[bookmark: _Toc437874505]6	UML Profile Editor

[bookmark: _Toc437874506]6.1	Architecture and Technology Foundation (P3)
The UML based editor is also built on Eclipse on Eclipse platform. At the high level, it contains two main components: the UML Profile for TDL (UP4TDL) implementation described in [TODO : add reference to the annex of MM document] and the facilities for editing UP4TDL models. 
The profile is static. This allows the implementation of derived properties. Notice the profile implementation is independent of the edition facilities provided in the context of this reference implementation and can be used by other UML tools.
[TODO : model validation relying on OCL constraints]
Model to Model transformation from UP4TDL model to TDL Ecore model allows generating TDL (XF).
The TDL profile is in the plugin org.etsi.mts.up4tdl while the validation plugin is in org.etsi.mts.up4tdl.validation. 
Edition facilities can be found in the plugins with org.etsi.mts.up4tdl.diagram.*
The ElementType framework is used for manipulating model elements in Papyrus. Specialized ElementType are in plugin org.etsi.mts.up4tdl.service.type
[bookmark: _Toc437874507]6.2 Implemented Facilities
[bookmark: _Toc437874508]6.2.1 Applying the Profile 
Overview
A UML profile allows to build models that will rely on the UML meta model in the following ways : they can verify additional constraints, and have additional specific properties. A UP4TDL model is then a UML model with these new constraints and properties.
Stereotype 
The Extension mechanism of profile is based on stereotypes. A stereotype of a UML profile always extend (directly or indirectly) a UML metaclass. For example the ComponentInstance concept from TDL extends the Property concept of UML and it has the specific property to define its role (“tester” or “SUT”).

Using the UP4TDL profile on a UML model
Applying UP4TDL concepts on a UML model implies to apply UP4TDL stereotypes on UML elements. To do this the UP4TDL profile (or one of its sub profiles) must be added to the package (or the model) containing the UML element as shown in the caption below:
[image: ]

Then the stereotype can be applied on the uml model allowing specifying the stereotype properties.
In the caption below, the stereotype ComponentInstance is applied to a UML::Property. This allows to specify the role, in this case, “tester”.
[image: ]
[bookmark: _Toc437874509]6.2.2 Validating Models
[TODO]
[bookmark: _Toc437874510]6.2.3 Hints for the Transforming UP4TDL Models into TDL Models
Most translations are straightforward one-to-one mapping between UP4TDL concepts and concepts from TDL meta model.
The exceptions are detailed below.
ElementImport
In TDL ElementImport can holds several Elements, while in UML, the corresponding concept UML::ElementImport  concept (direct mapping without stereotype) can have only one. So the model to model transformation can potentially turn one TDL::ElementImport into several UML::ElementImport.
SimpleDataInstance or StructuredDataInstance
Both SimpleDataInstance and StructuredDataInstance are mapped to the same concept UML::InstanceSpecification. To determine wether it is a Simple or Structured Instance, one needs to check the type of the UML::InstanceSpecification. If the InstanceSpecification’s type is a PrimitiveType, then it is a SimpleDataInstance.
Property identification
There are two direct Mapping from UML::Property to TDL concepts; for TDL::Variable and TDL::Member. In order to determine which kind of property it is, one need to check the container. If the property is in a ComponentInstance, then it corresponds to a Variable. Else if the property is in a DataType, then it corresponds to a Member.
[bookmark: _Toc437874511]6.2.4 Edition from the Model Explorer
As shown in section 6.2.1, UP4TDL elements can be created UML elements, then applying the stereotype on those elements. Both steps can be performed in a row from the model explorer, using TDL specific “new child” creation options.
Elements are sorted according in this “new TDL child menu” according to the diagram they are supposed to appear in.
[image: ]
[bookmark: _Toc437874512]6.2.5 Edition with the specific property from the “TDL property view”
Editing the properties of UP4TDL model with the standard property view can be troublesome for two reasons. Some property from the UML base meta class are not relevant for the associated TDL Element. Some properties of TDL Element are not properties of the base meta class. Even when properties of TDL Element and the base UML Element match, they might not have the same name. Editing UP4TDL model would then require expertise in both UML, TDL and knowledge of the UP4TDL profile specifics choices. There is a “TDL onglet” for the property view, which makes the TDL property editing task easier.
The caption below shows the property view of a ComponentInstance, which contains its name, type and role.
[image: ]
[bookmark: _Toc437874513]6.2.6 Editing TDL specific diagrams
Editing UP4TDL model can be done using exclusively from the property view and model explorer. In order to provide a graphical representation of model being edited, TDL Diagrams, specializing UML Diagram are another edition facilities provided. There are 3 kinds of TDL Diagrams: TDL DataDefinition Diagram, TDL TestConfiguration Diagram and TDL TestDescription Diagram.
There are two specific edition facilities for all of these diagrams: the creation of element using content from the “palette” and the “drag and drop” of an existing element from the model explorer.
The TDL Diagram can be initialized from the model explorer.
[image: ]
Figure 1 Initialization of TDL Diagrams
Editing TDL DataDefinition Diagram
The DataDefinition Diagram is based on UML Class Diagram.
The DataDefinition Diagram is supposed to represent the following TDL Elements:
· StructuredDataType
· SimpleDataType
· MemberAssignment
· Member
· DataElementMapping
· DataResourceMapping
· ParameterMapping
· DataInstance

[image: ]
Figure 2 palette of DataDefinitionDiagram
Editing TDL TestConfiguration Diagram
The TestConfiguration Diagram is based on UML Composite Diagram.
The TestConfiguration Diagram is supposed to represent the following TDL Elements :
· TestConfiguration
· ComponentInstance
· ComponentType
· GateInstance
· Connection

[image: ]
Figure 3 Palette of TestConfiguration Diagram

[image: ]
Figure 4 example of TestConfiguration Diagram
Specific behaviors:
· Dragging a ComponentType to a ComponentInstance specify the type of this ComponentInstance
· Dragging a GateType to a ComponentInstance specify the type of this GateInstance
· Creating from the palette a GateInstance on a ComponentInstance actually creates it on its type (the associated ComponentType)

Editing TDL TestDescription Diagram
The TestDescription Diagram is based on UML Sequence Diagram.
The TestDescription Diagram is supposed to represent the following TDL Elements :

[image: ]
Figure 5 Palette of TestDescription Diagram
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	Version
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	October 2011 
	1.1.1
	First publication of the TS after approval by TC SPAN at SPAN#19
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Version 1.2.1 prepared by the Rapporteur
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	1.3.1
	Implemented Changes:

Correction needed because the previously approved version did not contain the last version of the ASN.1 and XML attachments.

Version 1.3.1 prepared by the Rapporteur
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