ETSI TR 203 119 V0.0.1 (2015-12)
2
[Part element for endorsement] or [Release #]

[bookmark: docnumber][bookmark: docversion][bookmark: docdate]ETSI TR 203 119 V0.0.1 (2015-12)
[bookmark: doctitle]Methods for Testing and Specification (MTS);
The Test Description Language (TDL);
Reference Implementation
[Release #]
[Part element for endorsement]
[bookmark: docdiskette]The TR (ETSI Technical Report) is the default deliverable when the document contains only informative elements.
[image: 600px-Warning_icon_svg]The guidance text (green) shall be removed when no longer needed.
<

[bookmark: GSBox]
[bookmark: doctypelong]TECHNICAL REPORT
[image: ETSI_BG_final_new]

[bookmark: page2]Reference
'DTR/MTS-203119REFv1.1.1'
Keywords
[bookmark: keywords]Test description language, model-based testing, test description, test purpose, test model

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© European Telecommunications Standards Institute yyyy.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
[bookmark: _Toc300919378][bookmark: _Toc339380233][bookmark: _Toc389039452][bookmark: _Toc437874472]
Logos on the front page
[bookmark: _Toc300919379][bookmark: _Toc339380234]If a logo is to be included, it should appear below the title on the right hand side of the cover page
[bookmark: _Toc389039453][bookmark: _Toc437874473]Copyrights on page 2
This paragraph should be used for deliverables processed before WG/TB approval and used in meetings.
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.
[bookmark: _Toc356548487][bookmark: _Toc388868215][bookmark: _Toc389039454][bookmark: _Toc437874474]If an additional copyright is necessary, it shall appear on page 2 after the ETSI copyright.
The additional EBU copyright applies for EBU and DVB documents.
© European Broadcasting Union yyyy.

The additional CENELEC copyright applies for ETSI/CENELEC documents.
© Comité Européen de Normalisation Electrotechnique yyyy.

The additional CEN copyright applies for CEN documents.
© Comité Européen de Normalisation yyyy.

The additional WIMAX copyright applies for WIMAX documents.
© WIMAX Forum yyyy.

Contents (style TT)
If you need to update the Table of Content you would need to first unlock it.
To unlock the Table of Contents: select the Table of Contents, click simultaneously: Ctrl + Shift + F11.
To update the Table of Contents: F9.
To lock it: select the Table of Contents and then click simultaneously: Ctrl + F11.
Logos on the front page	3
Copyrights on page 2	3
If an additional copyright is necessary, it shall appear on page 2 after the ETSI copyright.	3
Intellectual Property Rights (style H1)	6
Foreword (style H1)	6
Multi-part documents	6
Modal verbs terminology (style H1)	6
Executive summary (style H1)	7
Introduction (style H1)	7
1	Scope (style H1)	7
2	References (style H1)	7
2.1	Normative references (style H2)	7
2.2	Informative references (style H2)	7
3	Definitions, symbols and abbreviations (style H1)	8
3.1	Definitions (style H2)	8
3.2	Symbols (style H2)	8
3.3	Abbreviations (style H2)	9
4	Basic Principles (style H1)	9
4.1	Introduction (style H2)	9
4.2	Implementation Scope	10
4.3	Document Structure	10
4.4	Notational Conventions	10
5	Graphical Representation Viewer	10
5.1	Scope and Requirements (P2)	10
5.2	Architecture and Technology Foundation (P3)	11
5.2.1	Diagram Viewer	11
5.3	Implemented Facilities (P1)	12
5.3.1	Creating Models	12
5.3.2	Viewing Models	16
5.3.3	Validating Models	20
5.4	Usage Instructions (P4)	21
5.5	Extension and Integration (P5)	21
5.6	Public Availability (P6)	21
6	UML Profile Editor	21
6.1	Architecture and Technology Foundation (P3)	21
6.2 Implemented Facilities	22
6.2.1 Applying the Profile	22
6.2.2 Validating Models	22
6.2.3 Hints for the Transforming UP4TDL Models into TDL Models	23
6.2.4 Edition from the Model Explorer	23
6.2.5 Edition with the specific property from the “TDL property view”	23
6.2.6 Editing TDL specific diagrams	24
Proforma copyright release text block	27
Annexes	27
<B.1>	First clause of the annex (style H1)	28
<B.1.1>	First subdivided clause of the annex (style H2)	28
<C.1> Introduction (style H1)	28
<C.2> The TTCN-2 Machine Processable form (TTCN.MP) (style H1)	28
<D.1>	Introduction (style H1)	29
<D.2>	TTCN-3 files and other related modules (style H1)	29
<D.3>	HTML documentation of TTCN-3 files (style H1)	29
History (style H1)	30
A few examples:	30

[bookmark: _Toc300919380][bookmark: _Toc339380235]
<PAGE BREAK>
[bookmark: _Toc389039455][bookmark: _Toc437874475]Intellectual Property Rights (style H1)
This clause is always the first unnumbered clause.
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
[bookmark: _Toc300919381][bookmark: _Toc339380236][bookmark: _Toc389039456][bookmark: _Toc437874476]Foreword (style H1)
This unnumbered clause is mandatory and shall appear just after the IPR clause.
Replace all <parameters> with the appropriate text.
[bookmark: For_doctype][bookmark: For_tbname][bookmark: For_shortname]This Technical Report (TR) has been produced by {ETSI Technical Committee|ETSI Project|<other>} <long techbody> (<short techbody>).
[bookmark: _Toc300919382][bookmark: _Toc339380237][bookmark: _Toc389039457][bookmark: _Toc437874477]Multi-part documents
The following block is required in the case of multi-part deliverables.
· the <common element of the title> is the same for all parts;
· the <part element of the title> differs from part to part; and if appropriate;
· the <sub-part element of the title> differs from sub-part to sub-part.
The paragraph identifying the current part (and sub-part, if appropriate) shall be set in bold.
See an example in the Foreword of EN 300 392-3-5 standard regrouping the different cases we may have of multi-part deliverables containing different deliverable types (e.g. TSs and ENs), parts and sub-parts and a less complex one with TS 101 376-3-22.
For more details see clause 2.5 of the ETSI Drafting Rules (EDRs).
The best solution for maintaining the structure of series is to have a detailed list of all parts and subparts mentioned in one of the parts (usually it is part 1).
If you choose this solution, the following text has to be mentioned in all of the other parts and sub-parts:
The present document is part <i> of a multi-part deliverable. Full details of the entire series can be found in part [i.x] [Bookmark_Reference].
See an example in the Foreword of the EN 302 217-2-1.
[bookmark: _Toc388348742][bookmark: _Toc389039458][bookmark: _Toc300919383][bookmark: _Toc339380238][bookmark: _Toc437874478]Modal verbs terminology (style H1)
This unnumbered clause is a mandatory informative element and shall appear just after the "Foreword".
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc388868220][bookmark: _Toc389039459][bookmark: _Toc300919384][bookmark: _Toc339380239][bookmark: _Toc437874479][bookmark: _GoBack]Executive summary (style H1)
This unnumbered clause, if present, appears after the "Modal verbs terminology" and before the "Introduction". It is an optional informative element and shall not contain requirements.
The "Executive summary" is used, if required, to summarize the ETSI deliverable. It contains enough information for the readers to become acquainted with the full document without reading it. It is usually one page or shorter.
[bookmark: _Toc388868221][bookmark: _Toc389039460][bookmark: _Toc437874480]Introduction (style H1)
This unnumbered clause, if present, appears just before the "Scope". It is an optional informative element and shall not contain requirements.
<PAGE BREAK>
Clause numbering starts hereafter.
Automatic numbering may be used in ETSI deliverables but it is highly recommended to use sequence numbering.
Check http://portal.etsi.org/edithelp/Files/other/EDRs_navigator.chm clauses 2.12.1.1 and 6.9.2 for help.
[bookmark: _Toc389039461][bookmark: _Toc437874481]1	Scope (style H1)
This clause numbered 1 shall start on a new page. More details can be found in clause 2.9 of the EDRs.
The Scope shall not contain requirements. Forms of expression such as the following should be used:
The present document …
EXAMPLE:	The present document provides the necessary adoptions to the endorsed document.
[bookmark: _Toc300919385][bookmark: _Toc339380240][bookmark: _Toc389039462][bookmark: _Toc437874482]2	References (style H1)
This clause numbered 2 appears just after the "Scope". It is a required element.
The following text block applies. More details can be found in clause 2.10 of the EDRs.
[bookmark: _Toc300919386][bookmark: _Toc339380241][bookmark: _Toc389039463][bookmark: _Toc437874483]2.1	Normative references (style H2)
As the ETSI Technical Report (TR) is entirely informative it shall not list normative references.
[bookmark: _Toc300919387][bookmark: _Toc339380242][bookmark: _Toc389039464]References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
Not applicable.
[bookmark: _Toc437874484]2.2	Informative references (style H2)
Clause 2.2 shall only contain informative references, which are cited in the document itself.
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references, see clause 6.9.2: "Sequence numbering") (see example).
EXAMPLE:
[i.1][tab]	<Standard Organization acronym> <document number>: "<Title>".
[i.2][tab]	<Standard Organization acronym> <document number>: "<Title>".
[bookmark: _Toc300919388][bookmark: _Toc339380243][bookmark: _Toc389039465][bookmark: _Toc437874485]3	Definitions, symbols and abbreviations (style H1)
Delete from the above heading the word(s) which is/are not applicable, (see clause 2.11 of EDRs).
Definitions and abbreviations extracted from ETSI deliverables can be useful when drafting documents and can be consulted via the Terms and Definitions Interactive Database (TEDDI) (http://webapp.etsi.org/Teddi/).
[bookmark: _Toc300919389][bookmark: _Toc339380244][bookmark: _Toc389039466][bookmark: _Toc437874486]3.1	Definitions (style H2)
Clause numbering depends on applicability.
· A definition shall not take the form of, or contain, a requirement.
· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).
· The terms and definitions shall be presented in alphabetical order.
The following text block applies. More details can be found in clause 2.11.1 of the EDRs.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:
Definition format
Use the Normal style.
The term shall be in bold, and shall start with a lower case letter (unless it is always rendered with a leading capital) followed by a colon, one space, and the definition starting with a lower case letter and no ending fullstop.
<defined term>: <definition>
example 1: text used to clarify abstract rules by applying them literally
NOTE:	This may contain additional information.
[bookmark: _Toc300919390][bookmark: _Toc339380245][bookmark: _Toc389039467][bookmark: _Toc437874487]3.2	Symbols (style H2)
Symbols should be ordered alphabetically. Clause numbering depends on applicability.
The following text block applies. More details can be found in clause 2.11.2 of the EDRs.
For the purposes of the present document, the [following] symbols [given in ... and the following] apply:
Symbol format
Use the EW style and separate this from the definition with a tab. Use the EX style for the last term.
<1st symbol> [tab]<1st Explanation> (style EW)
<2nd symbol> [tab]<2nd Explanation> (style EW)
<3rd symbol> [tab]<3rd Explanation> (style EX)
[bookmark: _Toc300911785][bookmark: _Toc339285289][bookmark: _Toc339285449][bookmark: _Toc339285834][bookmark: _Toc388868229][bookmark: _Toc389039468][bookmark: _Toc300919392][bookmark: _Toc339380247][bookmark: _Toc437874488]3.3	Abbreviations (style H2)
Abbreviations should be ordered alphabetically. Clause numbering depends on applicability.
The following text block applies. More details can be found in clause 2.11.2 of the EDRs.
For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:
Abbreviation format
Use the EW style and separate this from the definition with a tab. Use the EX style for the last term.
<1st ACRONYM> [tab]<Explanation> (style EW)
<2nd ACRONYM> [tab]<Explanation> (style EW)
<3rd ACRONYM> [tab]<Explanation> (style EX)
<PAGE BREAK>
[bookmark: _Toc389039469][bookmark: _Toc437874489]4	Basic Principles (style H1)
From clause 4 the technical content of the deliverable shall be inserted. Each clause shall have a title which shall be placed after its number separated by a tab.
A clause can have numbered subdivisions, e.g. 5.1, 5.2, 5.1.1, 5.1.2, etc. This process of subdivisions may be continued as far as the sixth heading level (e.g. 6.5.4.3.2.1).
For numbering issues, see clause 2.12.1 of the EDRs.
Use the Heading style appropriate to its level (see clause 6.1, table 8 of the EDRs).
Separate the number of the heading and the text of the heading with a tab.
Treat clause titles as normal text (i.e. no additional capitalization), but no full stop.
[bookmark: _Toc300919393][bookmark: _Toc339380248][bookmark: _Toc389039470][bookmark: _Toc437874490]4.1	Introduction (style H2)
<Text>.
[bookmark: _Toc300919394][bookmark: _Toc339380249]IF YOUR DOCUMENT CONTAINS FIGURES, TABLES AND/OR MATHEMATICAL FORMULAE, THIS IS THE WAY THEY SHALL BE PREPARED:
- Figures shall be prepared in accordance to clauses 7.5.2 and/or 7.1 of the EDRs. The figure number and title shall be below the figure. An explicit figure title is optional. See clause 5.1.5 if you need to include notes to figures.
Use TF style for the figure number and title.
Use FL style on the paragraph which contains the figure itself.
If applicable, the figure number is followed by a colon, a space and the table title.
Maximum width for figures is 17 cm and maximum height is 22 cm.
Should you wish to number figures automatically, "Sequence numbering and bookmarking" (see clause 6.9.2 of the EDRs) is highly recommended.
- Tables shall be prepared in accordance to clause 5.2 of the EDRs. If you have tables in your document, the table number and title shall be above the table itself. An explicit table title is optional.
Use TH style for the table number and title.
If applicable, the table number is followed by a colon, a space and the table title.
Should you wish to number tables automatically, "Sequence numbering and bookmarking" (see clause 6.9.2 of the EDRs) is highly recommended.
- Mathematical formulae shall be prepared in accordance to clause 5.3 of the EDRs.
Numbers given to the clauses, tables, figures and mathematical formulae of an annex shall be preceded by the letter designating that annex followed by a full-stop (e.g. figure B.1, table C.4). The numbering shall start afresh with each annex. A single annex shall be designated "Annex A".
NOTE:	For an easy application of the ETSI styles download "the ETSI styles toolbar" from website.
THE FOLLOWING TEXT IS TO BE USED WHEN APPROPRIATE:

[bookmark: _Toc437874491]4.2	Implementation Scope
<Text>.

[bookmark: _Toc437874492]4.3	Document Structure
<Text>.

[bookmark: _Toc437874493]4.4	Notational Conventions
<Text>.

[bookmark: _Toc437874494]5	Graphical Representation Viewer

[bookmark: _Toc437874495]5.1	Scope and Requirements (P2)	Comment by Philip Makedonski: Indicates current priority: P1 high – P5 low
[TODO: move parts of this to Clause 4.2, focus on the viewer here]
To accelerate the adoption of TDL, a reference implementation of TDL is provided in order to lower the barrier to entry for both users and tool vendors in getting started with using TDL. The reference implementation comprises graphical and textual editors, as well as validation facilities. In addition, an implementation of the UML profile for TDL and supporting editing facilities seek to enable its application in UML-based working environments and model-based testing approaches.
The implementation scope includes a graphical viewer according to ES 203 119-2 based on the Eclipse platform and related technologies, covering essential constructs related to test configurations and test behaviour specification. For creating and manipulating models, a textual editor for ES 203 119-1, Annex B is implemented based on the Eclipse platform and related technologies. The applicability of general purpose model editing facilities provided by the Eclipse platform and related technologies is discussed.
For tools that need to import and export TDL models according to ES 203 119-3, corresponding facilities are implemented based on the Eclipse platform and related technologies. These facilities can be used to transform textual representations based on ES 203 119-1 into XMI serialisations according to ES 203 119-3 and can be integrated in custom tooling that builds on the Eclipse platform.
An implementation of ES 203 119-4 includes dedicated textual editor for structured test objectives which can be integrated in the textual editor for TDL. The implementation also includes facilities for exporting structured test objectives to Word documents using customisable tabular templates.
An implementation of the UML profile for TDL includes a specification of the TDL UML profile abstract syntax according to the mapping from the TDL meta-model to TDL stereotypes and UML meta-classes in ES 203 119-1 Annex C. It is integrated with the open source UML modelling environment Eclipse Papyrus as open TDL UML profile reference implementation platform. It will be published on the open source "Eclipse UML Profiles Repository" project.
[image: C:\Documents and Settings\Philip-III\Desktop\Context.png]
Figure 1: TDL tool infrastructure
An overview of the context of the reference implementation is shown in Figure 1. The TDL exchange format specified in ES 203 119-3 serves as a bridge between the different tool components. Textual editors enable the creation and manipulation of TDL models. The graphical viewer is used to visualise TDL models as diagrams. Documentation generation, in particular for structured test objectives, can be plugged in to produce Word documents for presenting parts of a TDL model in a format suitable for standardisation documents.
The complete implementation will be published on an open-source portal serving as a central hub for the TDL community.

[bookmark: _Toc437874496]5.2	Architecture and Technology Foundation (P3)
[bookmark: _Toc437874497]5.2.1	Diagram Viewer
TDL viewer is built on Eclipse platform to benefit from its wide range of modeling tools. The main Eclipse projects that are used as basis for this implementation are shown in Figure 1. Sirius is a technology that allows declarative creation of graphical editors that work with EMF models. It uses GMF to create visual diagram elements and link those to model objects. Model management and serialization is done by EMF.
Eclipse platform
GMF
Diagram specification
TDL (XF)
Diagram
Sirius
EMF
TDL viewer
Image
TDL Ecore

NOTE:	Components with grey background are part of the implementation that iscovered by current document.

[bookmark: fig_viewer_dependencies]Figure 1: Dependencies and data flows of TDL viewer
Every EMF model is based on a meta-model that is defined in terms of meta-modeling system named Ecore. TDL meta-model in UML format was converted to Ecore meta-model (TDL Ecore) using EMF utilities. Further, Java code was generated based on this meta-model.
Sirius creates diagram editors by interpreting diagram specification files. Those files contain TDL meta-model references in the form of Java or OCL queries. OCL support is provided by Eclipse OCL project, Java queries are references to classes that are part of the TDL viewer source code. Diagram specifications also contain definitions of Sirius specific styles that are applied to model objects when rendering them on diagram. Several extensions to GMF classes have been implemented in Sirius to configure shapes according to those styles. Since TDL viewer needs to customized shapes then it has dependencies both to Sirius API as well as GMF.
GMF utilities are used to export diagrams as images.
[TBD: Word conversion]

[bookmark: _Toc437874498]5.3	Implemented Facilities (P1)
[bookmark: _Toc437874499]5.3.1	Creating Models
Overview
Model instances are the primary artifacts for TDL. They carry the semantic information. In a modelling environment there are various means for creating, viewing, and manipulating model instances of a particular meta-model. Comprehensive modelling environments typically provide generic model facilities that enable working with model instances of arbitrary meta-models, provided the meta-model is known. Generic model facilities provide sufficient capabilities for performing basic tasks on model instances. However, due to their generic nature, they are cumbersome to work with, lack support for certain features that are not expressed in the meta-model directly (unless customised), and do not provide domain-specific features such as syntactical customisation beyond basic adaptations.
Custom syntax implementations address some of the shortcomings of generic model editors. Such implementations enable the specification of a customised representation of a model instance in format that is tailored to a specific group of users. There may be multiple custom syntax implementations mapped to the same meta-model, serving different stakeholders or even different purposes for the same stakeholder. Custom syntax implementations may cover only a subset of the meta-model, restricting the access to certain features that are not relevant for specific stakeholders. Modelling environments provide platforms for the realisation of custom syntax implementations. Custom syntax implementations may rely on secondary artifacts that store the concrete representation of the TDL model instance.
TDL model instances may be produced automatically by tools. The exchange format for TDL enables the interoperability of tools producing model instances and tools for manipulating model instances.
Generic Model Editors
The EMF provides facilities for generating basic tree editors for a given meta-model, which can then be customised to an extent while still remaining within the tree editor paradigm. In addition, the EMF also provides generic reflective model editors which provide quick access to model instances of any meta-model. Extensions to the EMF such as MoDisco include additional generic facilities such as the MoDisco model browser which provides faceted browsing and editing of model instances. Faceted browsing provides filtering by type, as well as deep navigation across references. In addition, MoDisco also includes tabular views on different parts of the model for a quick overview across multiple dimensions.
[TODO: Example descriptions]
[image: C:\Documents and Settings\Philip-III\Desktop\Screen Shot 2015-12-14 at 16.16.29.png]
Figure 1: Example of reflective model editor
[image: C:\Documents and Settings\Philip-III\Desktop\Screen Shot 2015-12-14 at 16.19.29.png]
Figure 2: Example of MoDisco facetted model browser
Textual Editor
Xtext provides facilities for the automatic generation of a default textual syntax closely resembling the structure of the meta-model. It serves as the base for further refinements resulting in customised syntax definitions. Due to it being automatically generated, and it being very similar in structure to the meta-model, it is rather cumbersome to write actual test descriptions in this syntax notation.
The reference implementation includes a customised textual syntax that implements the example syntax from Annex B of ES 203 119-1. Apart from the grammar specification, it also includes further customisations in the scoping and linking facilities for handling gate references, as well as enhanced semantic syntax highlighting which provides customisable styles for identifiers based on their type and usage. Current version of the grammar specification and the additional customisations can be found in Annex A.x.
[image: C:\Documents and Settings\Philip-III\Desktop\Screen Shot 2015-12-14 at 16.30.24.png]
Figure 3: Example of customised textual editor
Associated tooling provides means for the transformation between different syntax notations and model representations. Model instances in one notation can be transformed automatically into XMI representations and/or other textual or graphical syntax representations. This tooling integrates the APIs from different platforms for task specific automation. A current version of this tooling and detailed technical information can be found in Annex A.x.
[TODO: Customizations summary]
[image: C:\Documents and Settings\Philip-III\Desktop\Screen Shot 2015-12-14 at 16.34.45.png]
Figure 4: Example of customised textual editor for structured test objectives

Import and Export
The TDL reference implementation relies largely on the import and export facilities provided by the EMF. By default the EMF does not activate the GUID support for XMI which is prescribed in ES 203 119-3. The TDL meta-model implementation needs to be adapted to activate the GUID support for model elements. The necessary adaptation involves selecting the correct resource type (XMI) in the generator model and activating the GUID support by overriding the corresponding method in the TDL resource implementation.

[bookmark: _Toc437874500]5.3.2	Viewing Models
Overview
[TBD: some intro around here?]

Principles of Building Model Diagrams
The GMF framework that TDL viewer is built upon follows Model-View-Controller architecture. The model is an instance of TDL meta-model. The view are the figures displayed on the diagram. Controller takse care creating figures based on model objects and their associations: corss-references and containments. In GMF, controllers are called editparts.
The major part of diagram viewer implementation consists of defining the editparts. In case of Sirius, those are not implemented directly but rather defined in terms of mappings. A mapping is a relation between certain model object and a figure. Sirius will interpret each mapping and uses appropriate editpart as a controller providing mapping configuration data.
Mappings can be defined as nodes, edges or containers (and some sequence diagram specific items). Each mapping defines the meta-class of the model object that it applies to as well as the query that is used to lookup objects from the model based on the current context object (like models and diagrams, mappings are also hierarchical). Edge mappings must also define the queries that determine where its endpoints connect to.

Sirius Diagrams
Sirius provides several diagram kinds that can be configured by providing diagram specific model object mappings. For TDL, the interesting diagram kinds are generic diagram and sequence diagram.
Generic diagrams contain nodes and connections between the nodes with no specific constraints on layout. Composite nodes containing other nodes are also supported, but only a few limited layout options are available for inner node placement: free-form and table (lines of text).
Sequence diagrams contain vertical parallel lines known as lifelines. Lifelines have headers with labels. Nodes and connectors between the lifelines – the fragments - are layed out as a horizontal stack. Nodes may cover any number of lifelines, connectors may only be drawn between two lifelines. Composite nodes containing sub-fragments (called combined fragments) are also supported.
Sirius editors are defined in configuration files known as viewpoint specifications. TDL viewpoint specification defines a single viewpoint that contains two diagram descriptions named "TDL Behavior" and "Generic TDL".
TDL Behavior is a sequence diagram description. The root object of such diagrams is an instance of 'TestDescription'. The diagram description also defines the visual order of elements both horizontally and vertically. The vertical ordering contains behaviors recursively included in the 'TestDescription' as they occur semantically. The horizontal ordering contains 'GateReference's that are defined in the 'Testconfiguration' associated with the diagram’s 'TestDescription' instance.
Generic TDL is a generic diagram description. The root object of such diagrams is an instance of 'Package'. There is no predefined order of objects defined for this diagram kind.

Sirius Diagram Customization
Sirius diagram specification model does not provide enough flexibility in terms of configuring all possible layouts required by TDL graphical syntax. The diagrams are rendered by interpreting predefined configuration elements that don’t have any extension mechanisms built in. Thus, some simple and composite figures need to be customized in lower level.
Sirius diagram rendering is built on top of GMF runtime. Thus, it’s possible to use extensions points [TBD] provided by GMF for diagram customization. "org.eclipse.gmf.runtime.diagram.ui.editpartProviders" extension point allows to replace default Sirius editparts with customized editparts dynamically based on which model object is being rendered on which diagram. Classes defined in those extensions use mapping idnetifiers from diagram specification to decide whether and which custom editparts should be provided for diagram rendering. All other mappings will get default editparts from Sirius implementation.

Implemented EditParts
Editpart implementations are in 'org.etsi.mts.tdl.graphical.sirius.part' package.
MultipartContainerCompartmentEditPart extends GMF’s ListCompartmentEditPart. This class adds grid layout that allows child figures to fill the available area within the container. It also removes all borders from child figures to get rid of shadows and places horizontal lines between them. Lastly, it removes the ability of being dragged and selected from its children to facilitate movingthe whole compartment figure as one. The mapping that uses this editpart must be a container.
[image:]
Figure 1: Example of MultipartContainerCompartmentEditPart
NodeListWithHeaderEditPart extends AbstractDiagramListEditPart from Sirius API. It is intended to be used as child of MultipartContainerCompartmentEditPart and provides functionality that allows the parent to control its drag and selection handling. It removes all line borders from its children and replaces those with margins. The mapping that uses this editpart must be a container with list presentation. The first label of the figure is the label of that container’s style. Children of that mapping should be nodes with square style.
[image:]
Figure 2: Example of NodeListWithHeaderEditPart
TopLevelNodeListWithHeaderEditPart extends NodeListWithHeaderEditPart and adds the ability to be included directly on the diagram or inside a container with freeform presentation style. It also fixes a bug in AbstractDiagramElementContainerEditPart.reInitFigure() method.
[image:]
Figure 3: Example of NodeListWithHeaderEditPart
TopLevelImageNodeListWithHeaderEditPart extends TopLevelNodeListWithHeaderEditPart and adds the support for using an image as a style of the container. It removes the border to not interfere with the image.
[image:]
Figure 4: Example of TopLevelImageNodeListWithHeaderEditPart
NodeContainerEditPart extends AbstractDiagramContainerEditPart from Sirius API. Default container is modified by disabling stadnalone selection and dragging and delegating those functions to the parent. All borders are removed from the figure. It is intended to be used as child of MultipartContainerCompartmentEditPart.
[image:]
Figure 5: Example of NodeContainerEditPart
InteractionUseConfiguringEditPart extends AbstractNotSelectableShapeNodeEditPart from Sirius API. The class modifies the default interaction use figure by setting custom layout to it. The custom layout streches the cotnainer's children to fill the available vertical space and leavse sufficient margin tothe top for the label of the container. If the interaction use mapping has image style then the image background is made opaqe.
This class should be mapped to (an abstract) sub-mapping of interaction use. That mapping need not have a style as it will not be visible. The first label of the interaction use is the label of the container. Rest of the labels should be sub-nodes with square styles.

[image:]
Figure 6: Example of InteractionUseConfiguringEditPart

Viewer specific meta-model
Sirius sequence diagram configuration sets implicit requirements to the structure of meta-model that is used in mapping definitions. TDL meta-model does not comply with those requirements in all cases. For example, the mappings of combined fragments tend to fail at runtime when the begin and end occurrence objects (as understood by Sirius) are the same. As the TDL does not define occurrences at all then some adaptation is needed to provide those objects.
Sirius and underlying framework require that model objects used in diagrams are defined by meta-model. Extending TDL meta-model with pure fabrications just to facilitate viewer implementations would be a bad practice. Therefore, a separate domain-agnostic meta-model was created.
The meta-model named "tdlviewer" is defined in "extension.ecore" file and is registered as dynamic. This means that the meta-model may be used reflectively without any code generation (which is a standard practice with meta-model implementations in EMF). The "tdlviewer" contains a single meta-class 'End' with a single attribute "begin". The "begin" holds a reference to the model object for which this instance of 'End' is paired with. The object itself is used as the begin occurrence in the mappings.
The creation of virtual end objects is implemented in "org.etsi.mts.tdl.graphical.extensions.BehaviorProvider" class.

Configured mappings
[TBD: fill table when implementation complete]
Table 1: Mappings in diagram specifications
	Mapping
	Style
	Editpart

	
	
	

	
	
	

[bookmark: _Toc437874501]5.3.3	Validating Models
Overview
Means for defining and validating constraints on models are an integral part of modelling environments. Model constraints are used to impose semantic restrictions on top of the abstract syntax provided by the meta-model. There are different approaches for the specification, integration, and validation of such constraints. The Object Constraint Language (OCL) is the de facto standard for the specification and realisation of constraints on object-oriented meta-models. OCL expressions can be integrated into the meta-model by means of annotations, which can be used for automated validation of model instances, provided adequate tool support is available. An alternative approach is the specification constraints as an add-on which can then be applied to the model instances.
A constraint specification typically consists of a context indicating the meta-class to which the constraint shall apply, and an invariant indicating the conditions that shall hold true in the given context for valid models. For example if a NamedElement shall always have a non-empty name, the constraint specification with OCL is:
context NamedElement
 inv: not self.name.oclIsUndefined() and self.name.length > 0
where ‘self‘ refers to the instance of the NamedElement meta-class.
Integrated Approach
The integrated approach involves the definition of semantic constraints within the meta-model itself by means of annotations. Modelling environments can then generate integrated validation facilities based on the annotations. The validation facilities can be invoked automatically so that immediate feedback can be provided to the users when they work with models. The main benefit of an integrated approach is that the constraints become an embedded part of the meta-model. However, there also certain limitations associated with the integrated approach. Modifications to constraints would require changing the meta-model and generated resources. Tool support for constraints included as embedded annotations is very inconsistent. Immediate feedback while helpful, can sometimes get in the way and in case a model is refined over multiple steps before it becomes valid, checking constraints at any point before that would be superfluous,
Add-on Approach
In contrast the integrated approach, the add-on approach relies on semantics constraints defined separately from the meta-model. Such constraints can be checked on demand as required by the specific usage scenario. In addition, the evaluation of such constraints can also be conducted in a more flexible manner, where only subsets of constraints are checked as necessary at a given point in time, thus limiting the amount of superfluous violations for models which are known to be incomplete at that point in time. Add-on constraints can also be modified, maintained, and extended independently from the meta-model. Certain technologies, such as the Epsilon Validation Language (EVL) also extend the capabilities of OCL by providing means to specify guards on constraints determining conditions under which the the evaluation of a constraint shall be skipped.

[bookmark: _Toc437874502]5.4	Usage Instructions (P4)
<Text>.

[bookmark: _Toc437874503]5.5	Extension and Integration (P5)
<Text>.

[bookmark: _Toc437874504]5.6	Public Availability (P6)
<Text>.

[bookmark: _Toc437874505]6	UML Profile Editor

[bookmark: _Toc437874506]6.1	Architecture and Technology Foundation (P3)
The UML based editor is also built on Eclipse on Eclipse platform. At the high level, it contains two main components: the UML Profile for TDL (UP4TDL) implementation described in [TODO : add reference to the annex of MM document] and the facilities for editing UP4TDL models.
The profile is static. This allows the implementation of derived properties. Notice the profile implementation is independent of the edition facilities provided in the context of this reference implementation and can be used by other UML tools.
[TODO : model validation relying on OCL constraints]
Model to Model transformation from UP4TDL model to TDL Ecore model allows generating TDL (XF).
The TDL profile is in the plugin org.etsi.mts.up4tdl while the validation plugin is in org.etsi.mts.up4tdl.validation.
Edition facilities can be found in the plugins with org.etsi.mts.up4tdl.diagram.*
The ElementType framework is used for manipulating model elements in Papyrus. Specialized ElementType are in plugin org.etsi.mts.up4tdl.service.type
[bookmark: _Toc437874507]6.2 Implemented Facilities
[bookmark: _Toc437874508]6.2.1 Applying the Profile
Overview
A UML profile allows to build models that will rely on the UML meta model in the following ways : they can verify additional constraints, and have additional specific properties. A UP4TDL model is then a UML model with these new constraints and properties.
Stereotype
The Extension mechanism of profile is based on stereotypes. A stereotype of a UML profile always extend (directly or indirectly) a UML metaclass. For example the ComponentInstance concept from TDL extends the Property concept of UML and it has the specific property to define its role (“tester” or “SUT”).

Using the UP4TDL profile on a UML model
Applying UP4TDL concepts on a UML model implies to apply UP4TDL stereotypes on UML elements. To do this the UP4TDL profile (or one of its sub profiles) must be added to the package (or the model) containing the UML element as shown in the caption below:
[image:]

Then the stereotype can be applied on the uml model allowing specifying the stereotype properties.
In the caption below, the stereotype ComponentInstance is applied to a UML::Property. This allows to specify the role, in this case, “tester”.
[image:]
[bookmark: _Toc437874509]6.2.2 Validating Models
[TODO]
[bookmark: _Toc437874510]6.2.3 Hints for the Transforming UP4TDL Models into TDL Models
Most translations are straightforward one-to-one mapping between UP4TDL concepts and concepts from TDL meta model.
The exceptions are detailed below.
ElementImport
In TDL ElementImport can holds several Elements, while in UML, the corresponding concept UML::ElementImport concept (direct mapping without stereotype) can have only one. So the model to model transformation can potentially turn one TDL::ElementImport into several UML::ElementImport.
SimpleDataInstance or StructuredDataInstance
Both SimpleDataInstance and StructuredDataInstance are mapped to the same concept UML::InstanceSpecification. To determine wether it is a Simple or Structured Instance, one needs to check the type of the UML::InstanceSpecification. If the InstanceSpecification’s type is a PrimitiveType, then it is a SimpleDataInstance.
Property identification
There are two direct Mapping from UML::Property to TDL concepts; for TDL::Variable and TDL::Member. In order to determine which kind of property it is, one need to check the container. If the property is in a ComponentInstance, then it corresponds to a Variable. Else if the property is in a DataType, then it corresponds to a Member.
[bookmark: _Toc437874511]6.2.4 Edition from the Model Explorer
As shown in section 6.2.1, UP4TDL elements can be created UML elements, then applying the stereotype on those elements. Both steps can be performed in a row from the model explorer, using TDL specific “new child” creation options.
Elements are sorted according in this “new TDL child menu” according to the diagram they are supposed to appear in.
[image:]
[bookmark: _Toc437874512]6.2.5 Edition with the specific property from the “TDL property view”
Editing the properties of UP4TDL model with the standard property view can be troublesome for two reasons. Some property from the UML base meta class are not relevant for the associated TDL Element. Some properties of TDL Element are not properties of the base meta class. Even when properties of TDL Element and the base UML Element match, they might not have the same name. Editing UP4TDL model would then require expertise in both UML, TDL and knowledge of the UP4TDL profile specifics choices. There is a “TDL onglet” for the property view, which makes the TDL property editing task easier.
The caption below shows the property view of a ComponentInstance, which contains its name, type and role.
[image:]
[bookmark: _Toc437874513]6.2.6 Editing TDL specific diagrams
Editing UP4TDL model can be done using exclusively from the property view and model explorer. In order to provide a graphical representation of model being edited, TDL Diagrams, specializing UML Diagram are another edition facilities provided. There are 3 kinds of TDL Diagrams: TDL DataDefinition Diagram, TDL TestConfiguration Diagram and TDL TestDescription Diagram.
There are two specific edition facilities for all of these diagrams: the creation of element using content from the “palette” and the “drag and drop” of an existing element from the model explorer.
The TDL Diagram can be initialized from the model explorer.
[image:]
Figure 1 Initialization of TDL Diagrams
Editing TDL DataDefinition Diagram
The DataDefinition Diagram is based on UML Class Diagram.
The DataDefinition Diagram is supposed to represent the following TDL Elements:
· StructuredDataType
· SimpleDataType
· MemberAssignment
· Member
· DataElementMapping
· DataResourceMapping
· ParameterMapping
· DataInstance

[image:]
Figure 2 palette of DataDefinitionDiagram
Editing TDL TestConfiguration Diagram
The TestConfiguration Diagram is based on UML Composite Diagram.
The TestConfiguration Diagram is supposed to represent the following TDL Elements :
· TestConfiguration
· ComponentInstance
· ComponentType
· GateInstance
· Connection

[image:]
Figure 3 Palette of TestConfiguration Diagram

[image:]
Figure 4 example of TestConfiguration Diagram
Specific behaviors:
· Dragging a ComponentType to a ComponentInstance specify the type of this ComponentInstance
· Dragging a GateType to a ComponentInstance specify the type of this GateInstance
· Creating from the palette a GateInstance on a ComponentInstance actually creates it on its type (the associated ComponentType)

Editing TDL TestDescription Diagram
The TestDescription Diagram is based on UML Sequence Diagram.
The TestDescription Diagram is supposed to represent the following TDL Elements :

[image:]
Figure 5 Palette of TestDescription Diagram

[bookmark: _Toc389039471][bookmark: _Toc437874514]Proforma copyright release text block
This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.
Notwithstanding the provisions of the copyright clause related to the text of the present document, ETSI grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.
<PAGE BREAK>
[bookmark: _Toc300919395][bookmark: _Toc339380250][bookmark: _Toc389039472][bookmark: _Toc437874515]Annexes
[bookmark: _Toc300919400][bookmark: _Toc339380257]Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).
Numbers given to the clauses, tables, figures and mathematical formulae of an annex shall be preceded by the letter designating that annex followed by a full-stop. The numbering shall start afresh with each annex. A single annex shall be designated "Annex A".
Clauses in annex A shall be designated "A.1", "A.2", "A.3", etc. (further details in clause 2.12.1 of the EDRs).
Use the Heading 9 style. Insert a line break ("shift" + "enter") between the colon and the title.
For all annex clause headings use the appropriate Heading styles, starting from Heading 1, e.g. for clause A.1 use Heading 1, for clause A.1.1 use Heading 2. (See clause 6.1, table 8 of the EDRs).
Annex <A>:
Title of annex (style H9)
<Text>.
<PAGE BREAK>
[bookmark: _Toc388868239][bookmark: _Toc389039473]Annex :
Title of annex (style H9)
[bookmark: _Toc296082426][bookmark: _Toc388868240][bookmark: _Toc389039474][bookmark: _Toc437874516]<B.1>	First clause of the annex (style H1)
[bookmark: _Toc296082427][bookmark: _Toc388868241][bookmark: _Toc389039475][bookmark: _Toc437874517]<B.1.1>	First subdivided clause of the annex (style H2)
<Text>.
<PAGE BREAK>
[bookmark: _Toc223236825][bookmark: _Toc289260951][bookmark: _Toc337033752][bookmark: _Toc338076266][bookmark: _Toc338076404][bookmark: _Toc338076468][bookmark: _Toc338076770][bookmark: _Toc338079706][bookmark: _Toc338144178][bookmark: _Toc338144388][bookmark: _Toc339280934]Abstract Test Suite (ATS) text block
This text should be used for ATSs using either TTCN-2 or TTCN-3. In case:
TTCN-2 is used: attach the TTCN.MP;
TTCN-3 is used: attach the TTCN-3 files and other related modules, as well as the HTML documentation of the TTCN-3 files.
[bookmark: _Toc337033753][bookmark: _Toc338076267][bookmark: _Toc338076405][bookmark: _Toc338076469][bookmark: _Toc338076771][bookmark: _Toc338079707][bookmark: _Toc338144179][bookmark: _Toc338144389][bookmark: _Toc339280935][bookmark: _Toc339281006][bookmark: _Toc339284912][bookmark: _Toc339285294][bookmark: _Toc339285454][bookmark: _Toc339285839][bookmark: _Toc388868234][bookmark: _Toc389039476]Annex <C>:
ATS in TTCN-2 (style H9)
This text shall only be used for ATSs using TTCN version 2 (TTCN-2):
[bookmark: _Toc437874518]<C.1> Introduction (style H1)
This ATS has been produced using the Tree and Tabular Combined Notation version 2 (TTCN-2) according to ISO/IEC 9646-3 [<i.x>].
[bookmark: _Toc337033754][bookmark: _Toc338076268][bookmark: _Toc338076406][bookmark: _Toc338076470][bookmark: _Toc338076772][bookmark: _Toc338079708][bookmark: _Toc338144180][bookmark: _Toc338144390][bookmark: _Toc339280936][bookmark: _Toc339281007][bookmark: _Toc339284913][bookmark: _Toc339285295][bookmark: _Toc339285455][bookmark: _Toc339285840][bookmark: _Toc388868235][bookmark: _Toc389039477][bookmark: _Toc437874519]<C.2> The TTCN-2 Machine Processable form (TTCN.MP) (style H1)
The TTCN.MP representation corresponding to this ATS is contained in an ASCII file (<any_name>.MP contained in archive <Shortfilename>.ZIP) which accompanies the present document.
<PAGE BREAK>
[bookmark: _Toc337033755][bookmark: _Toc338076269][bookmark: _Toc338076407][bookmark: _Toc338076471][bookmark: _Toc338076773][bookmark: _Toc338079709][bookmark: _Toc338144181][bookmark: _Toc338144391][bookmark: _Toc339280937][bookmark: _Toc339281008][bookmark: _Toc339284914][bookmark: _Toc339285296][bookmark: _Toc339285456][bookmark: _Toc339285841][bookmark: _Toc388868236][bookmark: _Toc389039478]Annex <D>:
ATS in TTCN-3 (style H9)
This text shall only be used for ATSs using TTCN version 3 (TTCN-3):
[bookmark: _Toc437874520]<D.1>	Introduction (style H1)
This ATS has been produced using the Testing and Test Control Notation (TTCN) according to ES 201 873-1 [<i.x>].
Indicated here which parts of the ES 201 873 series and its versions (editions) have been used; also indicate any extensions which have been used.
[bookmark: _Toc337033756][bookmark: _Toc338076270][bookmark: _Toc338076408][bookmark: _Toc338076472][bookmark: _Toc338076774][bookmark: _Toc338079710][bookmark: _Toc338144182][bookmark: _Toc338144392][bookmark: _Toc339280938][bookmark: _Toc339281009][bookmark: _Toc339284915][bookmark: _Toc339285297][bookmark: _Toc339285457][bookmark: _Toc339285842][bookmark: _Toc388868237][bookmark: _Toc389039479][bookmark: _Toc437874521]<D.2>	TTCN-3 files and other related modules (style H1)
The TTCN-3 and other related modules are contained in archive <Shortfilename>.zip which accompanies the present document.
[bookmark: _Toc337033757][bookmark: _Toc338076271][bookmark: _Toc338076409][bookmark: _Toc338076473][bookmark: _Toc338076775][bookmark: _Toc338079711][bookmark: _Toc338144183][bookmark: _Toc338144393][bookmark: _Toc339280939][bookmark: _Toc339281010][bookmark: _Toc339284916][bookmark: _Toc339285298][bookmark: _Toc339285458][bookmark: _Toc339285843][bookmark: _Toc388868238][bookmark: _Toc389039480][bookmark: _Toc437874522]<D.3>	HTML documentation of TTCN-3 files (style H1)
The HTML documentation of the TTCN-3 and other related modules are contained in archive <Shortfilename>.zip which accompanies the present document.
[bookmark: _Toc300911793][bookmark: _Toc339285299][bookmark: _Toc339285459][bookmark: _Toc339285844]<PAGE BREAK>
[bookmark: _Toc388868243][bookmark: _Toc389039481]Annex <E>:
Bibliography (style H9)
This optional informative clause shall start on a new page and be the last annex of an ETSI deliverable or the last but one if followed by the "Change history/Change request history" annex, if any. The Bibliography shall not contain requirements.
The Bibliography identifies additional reading material not mentioned within the document. Those publications might or might not be publicly available (no check is made by the ETSI Secretariat).
The Bibliography shall include list of standards, books, articles, or other sources on a particular subject which are not referenced in the document.
The Bibliography shall not include references mentioned in the deliverable.
Use Heading 9 style for the "Bibliography" annex, see clause 2.13 for examples.
For the listed material use the Normal style or bulleted lists (e.g. B1+), do not use numbered references.
<Publication>: "<Title>".
OR
<Publication>: "<Title>".
<PAGE BREAK>
[bookmark: _Toc355698257][bookmark: _Toc388868242][bookmark: _Toc389039482][bookmark: _Toc311545442]Annex <F>:
Change History (style H9)
The informative clause shall start on a new page and be the last annex before the "History" clause. It is an optional, informative element and shall not contain requirements.
If it is desired to keep a detailed record of the changes implemented in a new version it is recommended that this is done by inserting a "Change history/Change request" annex, see clause 2.15.
It shall be presented as a table. Apply the normal style format for tables (see clause 5.2.2 of the EDRs).
	Date
	Version
	Information about changes

	October 2011
	1.1.1
	First publication of the TS after approval by TC SPAN at SPAN#19
(30 September - 2 October 2011; Prague)

	February 2012
	1.2.1
	Implemented Change Requests:
SPAN(12)20_019 Error message information clarifications
SPAN(12)20_033 Revised error message information
SPAN(12)20_046 update of figure 3 clause 9.2
These CRs were approved by TC SPAN#20 (3 - 5 February 2012; Sophia)

Version 1.2.1 prepared by the Rapporteur

	July 2013
	1.3.1
	Implemented Changes:

Correction needed because the previously approved version did not contain the last version of the ASN.1 and XML attachments.

Version 1.3.1 prepared by the Rapporteur

<PAGE BREAK>
[bookmark: _Toc389039483][bookmark: _Toc437874523]History (style H1)
This unnumbered clause shall start on a new page and be the last clause of an ETSI deliverable. It is a required informative element and shall not contain requirements.
The "History" identifies the major milestones in the life of an ETSI deliverable through the means of a table. The history box shall be provided by the ETSI Secretariat (all additional information will be removed at the publication stage).
	Document history

	<Version>
	<Date>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

[bookmark: _Toc300919401][bookmark: _Toc339380258][bookmark: _Toc389039484][bookmark: _Toc390250123][bookmark: _Toc418757438][bookmark: _Toc437874524]A few examples:
	Document history

	V1.1.1
	April 2001
	Publication

	V1.3.1
	June 2011
	Pre-Processing done before TB approval
e-mail: mailto:edithelp@etsi.org

	V2.0.0
	March 2013
	Clean-up done by editHelp!
e-mail: mailto:edithelp@etsi.org

	
	
	

	
	
	

Latest changes made on 2015-05-07
ETSI
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image1.png

image2.jpeg

