[image: image2.jpg]

ETSI ES 201 873-11 V0.0.1 (2016-01)
Methods for Testing and Specification (MTS);

The Testing and Test Control Notation version 3;

Part 11: Using JSON with TTCN-3
ETSI Standard
Reference

DES/MTS-00201873-11ed471JSON
Keywords

language, testing, TTCN-3, JSON
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2013.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Contents

5Intellectual Property Rights

5Foreword

61
Scope

62
References

62.1
Normative references

62.2
Informative references

73
Definitions and abbreviations

73.1
Definitions

73.2
Abbreviations

74
Introduction

84.1
Conformance and compatibility

85
Using TTCN-3 as JSON Schema

95.1
Validation of JSON Values

95.2
Mapping of JSON Values

95.2.1
JSON Numbers

95.2.1
JSON Strings

115.2.4
JSON Boolean values

115.2.5
JSON Null

115.2.7
JSON Arrays

125.2.8
JSON Objects

135.2.8.1
Name conversion rules for the fields of JSON object members

146
Using JSON to exchange data between TTCN-3 and other systems

146.1 General rules and restrictions

146.2
JSON Representations of TTCN-3 Values

146.2.1
Simple TTCN-3 types

156.2.2
Structured TTCN-3 types

186.3
JSON Representations of TTCN-3 Values Based on ASN.1 types

186.3.1
Character Strings

196.3.2
Binary Strings

196.3.3
BOOLEAN

196.3.4
ENUMERATED

196.3.5
REAL

196.3.6
INTEGER

196.3.7
OBJID

196.3.8
NULL

196.2.9
SEQUENCE and SET

196.2.10
SEQUENCE OF and SET OF

196.2.11
CHOICE and Open Types

23B.1
General

23B.2
The JSON encode attribute

23B.3
Encoding instructions

24B.3.1
JSON type identification

24B.3.2
Normalizing JSON Values

24B.3.3
Name as

25B.3.4
Number of fraction digits

26B.3.5
Use the Minus sign

26B.3.6
Escape as

27B.3.7
Omit as null

27B.3.8
Default

27B.3.9
As value

28B.3.10
No Type

28B.3.11
Error behaviour

29B.3.12
Metainfo

30History

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

The present document is part 9 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].

1
Scope

The present document defines the mapping rules for JSON (as defined in [Error! Reference source not found.] to [Error! Reference source not found.]) to TTCN-3 as defined in ES 201 873‑1 [1] to enable testing of JSON-based systems, interfaces and protocols.

2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.

2.1
Normative references

The following referenced documents are necessary for the application of the present document.

[1]
ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[2]
IETF RFC7159: "The JavaScript Object Notation (JSON) Data Interchange Format".
NOTE:
Available at http://www.rfc-editor.org/rfc/rfc7159.txt.

[3]
ECMA International Standard ECMA-404 (October 2013): "The JSON Data Interchange Format".
NOTE:
Available at http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.
[4]
ISO/IEC 10646 (2012-06-01): "Information technology -- Universal Coded Character Set (UCS)".
NOTE:
Available at http://standards.iso.org/ittf/PubliclyAvailableStandards/c056921_ISO_IEC_10646_2012.zip.
[5]
IEEE™ 754: "IEEE Standard for Floating-Point Arithmetic".

[6]
ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".

2.2
Informative references

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]
IETF draft-zyp-json-schema-04: "JSON Schema: core definitions and terminology".
NOTE:
Available at http://tools.ietf.org/html/draft-zyp-json-schema-04.
[i.2]
IETF draft-fge-json-schema-validation-00: "JSON Schema: interactive and non interactive validation".

NOTE:
Available at http://tools.ietf.org/html/draft-zyp-json-schema-04.

[i.3]
World Wide Web Consortium W3C Recommendation: "XML Schema Part 1: Structures".

NOTE:
Available at http://www.w3.org/TR/xmlschema11-1.

[i.4]
World Wide Web Consortium W3C Recommendation: "XML Schema Part 2: Datatypes".

NOTE:
Available at http://www.w3.org/TR/xmlschema11-2.

[i.5]
ISO/IEC 646: "Information technology - ISO 7-bit coded character set for information interchange".

[i.6]
ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 7: Using IDL with TTCN-3".
[i.7]
ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".
 [i.8]
ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support".
[i.9]
ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing".
[i.10]
ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization".
[i.11]
ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Behaviour Types".
[i.12]
ETSI ES 202 786: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Support of interfaces with continuous signals".
[i.13]
ETSI ES 202 789: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Extended TRI".
3
Definitions and abbreviations

3.1
Definitions
For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1], and the following apply:

tba: text
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

JSON
Javascript Object Notation
TTCN-3
Testing and Test Control Notation version 3

UCS
Universal Coded Character Set

URI
Uniform Resource Identifier

USI
UCS Sequence Identifier

UTF-8
Unicode Transformation Format-8

4
Introduction

An increasing number of distributed applications use the JSON to exchange data for various purposes like data bases queries or updates or event telecommunications operations such as provisioning. The JSON specification [2] defines the syntax and encoding for JSON values, but no semantics is defined. JSON does not have a schema specification, like the XML Schema Definition Language used for XML documents (see i.3 and i.4).

NOTE: Though an IETF draft proposal exists for JSON schema (see i.1 and i.2), it has not reached the RFC status.
The core language of TTCN-3 is defined in ES 201 873-1 [1] and provides a full text-based syntax, static semantics and operational semantics. Other parts of the ES 201 873 series are defining its use with other specification languages like ASN.1 [6], IDL[i.6],or XSD [i.7] as shown in figure 1, while other documents as ES 202 781 [i.8], ES 202 782 [i.9], ES 202 784 [i.10], ES 202 785 [i.11], ES 202 786 [i.12], ES 202 789 [i.13] specify language extensions and thus may define additional rules to the JSON/TTCN-3 mapping defined in this document.

[image: image1.wmf]

Other

presentation

formats

as

defined in

other parts of

the standard

or user

-

specific

formats

TTCN

-

3

Core

Language

TTCN

-

3 User

JSON

Definitions

Other Types

& Values

n

Other Types

& Values

2

Note:

The shaded boxes are

not defined in this document

Figure 1: User's view of the core language and the various presentation formats

In the context of TTCN-3, JSON may be used for different purposes:

1) TTCN-3 can be used as a JSON Schema definition language what allows generating JSON values from TTCN‑3 and consuming and evaluating received JSON values, i.e. enables testing of JSON-based interfaces and protocols.

2) To exchange type and data information between the TTCN-3 test system and systems written in other languages like Java, C, C++, Python etc. In this way TTCN-3 test systems can be used as a subsystem of a more complex test system; for example, the TTCN-3 system receiving contents of messages to be sent to an SUT, encode and send a message, receive and process the the response and report the result to the other system.
Consequently, there is a need to specify mappings between JSON and TTCN-3 for the above purposes.

4.1
Conformance and compatibility

For an implementation claiming to support the use of TTCN-3 as a JSON schema language, all features specified in clause 5 of the present document shall be implemented consistently with the requirements given in clause 5 and Annex B of the present document and in ES 201 873‑1 [1].

For an implementation claiming to support the exchange of TTCN-3-based data between systems all features specified in clause 6 of the present document shall be implemented consistently with the requirements given in clause 6 and Annex B of the present document and in ES 201 873‑1 [1].

The language mappings presented in the present document is compatible to:

· ES 201 873-1 [1], version V4.8.1.

If later versions of those parts are available and should be used instead, the compatibility of the language mapping presented in the present document has to be checked individually.
5
Using TTCN-3 as JSON Schema

JSON [2 and 3] defines a limited set of JSON types and values. The clauses below defines the TTCN-3 types that can be used to specify a Schema for any JSON interface specification. The TTCN-3 type equivalences will allow the same set of values as JSON permits. Annex A provides a TTCN-3 module containing all TTCN-3 definitions specified in this clause. This module shall either be explicitly present in TTCN-3 test suites or TTCN-3 tools may support these types implicitly. This is left as a tool implementation option.
JSON, in many cases allows different “encoded” formats for a specific value. These can be controlled by the JSON encoding instructions specified in Annex B. JSON encoding instructions are added to TTCN-3 types and fields of types by using TTCN-3 variant attributes (see ES 201 873‑1 [1] clause 27.5).
5.1
Validation of JSON Values
TBA.
5.2
Mapping of JSON Values

5.2.1
JSON Numbers
JSON numbers are represented as base 10 decimal digits, which contains a mandatory integer component that may be prefixed with an optional minus sign, and may be followed by a fraction part, an exponent part or both. Leading zeros are not allowed. JSON doesn’t distinguish numbers based on their value sets like integers and reals, like other languages do. No special values (as –infinity, infinity or NaN) are allowed.
In general, the following TTCN‑3 type shall be used to map JSON numbers to TTCN-3:
 type float Number (!-infinity .. !infinity) with {

 variant "JSON:number"

 }

When the JSON interface specification requires a number to conform to the ANSI/IEEE 754 [5] floating-point number specification, the IEEE 754 floats useful types of clause E.2.1.4 of ES 201 873‑1 [1] can be used in the context of JSON encoding, in which case, by default, the given useful type will contrain the value set and the encoding of the JSON value according to this clause. The JSON encoding instructions in this case can be applied to fields of IEEE 754 useful types.
By default, i.e. without any encoding instruction applied, the form of the JSON representation of JSON.Numbers is a tool implementation option (i.e. the number of fraction digits, using the exponent part etc.)

To make defining JSON Schemas in TTCN-3 easier, the present document, in addition to the generic mapping of JSON numbers, also specifies a TTCN-3 type that can be used where the interface specification allows only numbers without the fraction and the exponent parts:

type integer Integer (-infinity .. infinity) with {

variant "JSON:integer"

}

Trying to decode a JSON number value with either a fraction or an exponent part or both into this JSON.Integer type shall cause a decoding failure.
In addition to the generic encoding instructions like "normalize" and "name as …", the following specific instructions are applicable to types and fields of JSON.Number and the IEEE 754 useful types:

· fractionDigits

see clause B.3.4
· useMinus

see clause B.3.5
NOTE:
Please note that the beginning character of the exponent part can be both “e” and “E”. This is not controlled by any of the encoding instructions but left as a tool implementation option.

and to types and fields of JSON. Integer types:

· useMinus

see clause B.3.5
5.2.1
JSON Strings

JSON strings is a sequence of zero or more Unicode characters, enclosed in a pair of quotaion mark characters (char(U22)). Any characters may be escaped by the escape sequence: "\u<HHHH>", where <HHHH> represents four hexadecimal digits, but the characters: quotation mark (char(U22), reverse solidus (char(U5C) and all C0 control characters (char(U0) through char(U1F) shall be escaped.

Also short, two-character escape sequences are defined for the characters: quotation mark (char(U22)), reverse solidus (char(U5C)), solidus (char(U2F)), backspace (char(U8)), form feed (char(UC)), line feed (char(UA)), carriage return (char(UD)) and horizontal tab (char(U9)).
By default, the form of escaping characters that shall be escaped in a JSON string value is a tool implementation option.

NOTE: Note that the JSON module in Annex A defines useful TTCN-3 constants for the characters listed above.

The following TTCN‑3 type shall be used to map JSON strings to TTCN-3:
 type universal charstring String with {

 variant "JSON:string"

 }

NOTE:
Though Unicode and ISO/IEC 10646 [4] are not necessarily contain the same set of characters at all point in time, JSON strings are expressed using the TTCN-3 universal charstring type.

In addition to the generic encoding instructions like "normalize" and "name as …", the following specific encoding instructions are applicable to JSON.String types:

· escape as …

see clause B.3.6
EXAMPLE: Number of fraction digits

If:

const JSON.String c_string1 := <actual value> with (variant "escape as short");

then

	<actual value>
	encoded JSON value

	""
	""

	""
	""

	""
	""

	""
	""

If:

const JSON.String c_string1 := <actual value> with (variant "escape as usi");

then

	<actual value>
	encoded JSON value

	""
	""

	""
	""

	""
	""

	""
	""

If:

const JSON.String c_string1 := <actual value> with (variant "escape as transparent");

then

	<actual value>
	encoded JSON value

	""
	""

	""
	""

	""
	""

	""
	""

5.2.4
JSON Boolean values

JSON doesn’t specify boolean “type” but specify two literal values: true and false. These are mapped to TTCN-3 via the TTCN-3 boolean type.
The following helper TTCN‑3 type is defined, which will be used to map the above literal values and can also be applied directly in Schemas for JSON values, which according to the interface specification allow both literal values true and false, but no other JSON values:

type boolean Boolean with {

variant "JSON:boolean"

}

The following TTCN‑3 values shall be used to map the JSON true and false literal values:

const JSON.Boolean true_ := true;

const JSON.Boolean false_ := false;

There is no type-specific encoding instructions are defined for JSON.Boolean.

Example:

The following TTCN-3 type, used as a JSON Schema element, will allow the JSON literal value true only:

type JSON.Boolean TrueOnly (JSON.true_);
5.2.5
JSON Null
JSON defines the literal value: null,. The following TTCN‑3 type shall be used in Schemas for JSON values, which, according to the interface specification allow the JSON null literal value only:

type enumerated Null {null_} with {

variant "JSON:null"

}

The TTCN-3 value null_ of the above type shall be used to denote the JSON literal value null.
There is no type-specific encoding instructions are defined for JSON.Boolean, in addition to the generic ones like like "normalize" and "name as …".

5.2.7
JSON Arrays

JSON arrays may contain a sequence of zero or more JSON values, i.e. the array members may be of different JSON “types”.

The following TTCN‑3 type shall be used to map JSON arrays to TTCN-3 (definition of JSON.Types see in clause 5.2.8
JSON Objects):

type record of JSON.Types Array with {

variant "JSON:array"

}

To make specifying JSON Schemas easier for values, when according to the interface specification a specifc array may contain a sequence of values of the same JSON “type”, also the TTCN-3 types below are specified:

NOTE:
Use the below subsidiary types with due precaution. The syntax of TTCN-3 values based on the below helper type differs from the syntax of a JSON.Array value. Therefore, changes in an array description in a JSON interface specification may require changing the TTCN-3 code as well.

type record of JSON.String StringArray with {

variant "JSON:array"

}

type record of JSON.Number NumArray with {

variant "JSON:array"

}

type record of JSON.Integer IntArray with {

variant "JSON:array"

}

type record of JSON.Boolean BoolArray with {

variant "JSON:array"

}

type record of JSON.Object ObjectArray with {

variant "JSON:array"

}

There is no type-specific encoding instructions are defined for JSON.Array, in addition to the generic ones like like "normalize" and "name as …".
EXAMPLE: TTCN-3 Schema for a JSON array

Let's consider the following JSON data
5.2.8
JSON Objects

JSON object values consist unordered sequences of zero or more object members, where each object member constructed of a name-value pair. The JSON specification RFC7159 [2] does not require uniqueness of object member names within a JSON object.

<Editor’s note: In general, there are two ways to translate JSON objects:

1) In the generic case, the JSON object is translated to a set of ObjectMember-s and each object member is a record with a string-type name and a JSON.Type-type value field. E.g:

type set of JSON.ObjectMember Object with {

variant "JSON:object"

}

Though the TTCN-3 set of type represents an unordered sequence, JSON encoders and decoders shall preserve the order of object members when transforming a value between TTCN-3 and JSON forth and back.

type record ObjectMember {

JSON.String name,

JSON.Types value_

} with {

variant "JSON:objectMember"

}

type union Types {

JSON.String string,

JSON.Number number,

JSON.Integer integer_,

JSON.Boolean boolean_,

JSON.True true_,

JSON.False false_,

JSON.Null null_,

JSON.Object object,

JSON.Array array,

JSON.StringArray strArray,

JSON.NumArray numArray,

JSON.BoolArray boolArray,

JSON.ObjectArray objArray

} with {

variant "asValue"

}
Advantages:

· Supports extension of objects, easy to handle, e.g. to ignore, unknown (unspecified) extra object members.

· Easy-to-know object member names, they are present in a natural way in the TTCN-3 code, logs etc.

Disadvantages:

· More complex TTCN-3 code, for each object member a { name := "…", value_ := …} to be typed.

· Object member names are It is not possible to check if object member names are conforming to the interface specification (they are not present just simple string values from the point of view of TTCN-3).

This could be overcome if an object member names type is defined, like
type JSON.String ObjectMemberNames ("name1", "name2", "name3", "name4", "name5");
however, this would kill extensibility, thus would not make much sense…
2) In the specification-dependent case each JSON object (specification) is translated to a record, where each record field represents an object member. The names of the fields are converted from the names of the object members using the same or similar rules than in the case XSD2TTCN mapping. The type of the field is one of the JSON types defined in this document.
i.e.:

type record Coordinates {

JSON.String precision,

JSON.Number Latitude,

JSON.Number Longitude,

JSON.String address_,

JSON.City city, // note: City is another JSON object type

} with {

variant "JSON:object";

variant(address_) "name as 'address'"

}
Advantages:

· Simpler TTCN-3 code, each object member is just a record field, e.g. width := 5; the encoder will serialize this as "width":5.
· It is easy to check if object member names are conforming to the interface specification, as they are preserved in the TTCN-3 record field names and corresponding "name as…" encoding instructions
Disadvantages:

· Extension of objects, i.e. unknown (unspecified) object members shall be handled at the decoding level, i.e. not seen in TTCN-3 (there may be an encoding instruction defined to control this).
· Object member names may require name mangling, similar to that in XSD mapping. In simple cases, like address_ above, the member name still can be identified in TTCN-3 code, logs etc., but in other cases (e.g. if URI-s is used as names, internationalization, the object names may become unrecognizable in value defnitions, logs, it may require to look up the the "name as …" instructions of the type definition, which may not be even available (e.g. when analysing in logs).
The two approach technically doesn’t exclude each other and could be used simultaneously. It’s a matter of decision which conversion(s) we want to support.

As their application area seems to be different (i.e. a strictly defined interface, like telco protocols, internal interfaces of a toolset/SUTs etc. versus potentially loosely defined interfaces like internet applications) it is proposed to include BOTH mappings into the standard. This, in fact, requires no or minimal additional effort from the tools. >
There is no type-specific encoding instructions are defined for JSON.Object, in addition to the generic ones like like "normalize" and "name as …".
5.2.8.1
Name conversion rules for the fields of JSON object members
6
Using JSON to exchange data between TTCN-3 and other systems
The encoder converts abstract TTCN-3 structures (or types) into a JSON representation (see RFC 7159). The decoder converts JSON data into values of abstract TTCN-3 structures.

This clause covers the transformation rules for the different TTCN-3 data types, the encoding instructions influencing the transformation are detailed in Annex B.

6.1 General rules and restrictions

JSON encoding and decoding is allowed for types with the encode attributes specified in clause B.2.

6.2
JSON Representations of TTCN-3 Values

6.2.1
Simple TTCN-3 types

6.2.1.1
Character Strings
TTCN-3 charstring, universal charstring values are encoded as JSON.strings.

Charstrings shall appear exactly like in TTCN-3, with the exception that in the JSON representation of the quotation mark (char(U22), reverse solidus (char(U5C) and all C0 control characters (char(U0) through char(U1F) shall be escaped. Both forms of escaping (i.e. the USI-like \uHHHH and the short format, see clause 5.2.1
JSON Strings) can be used, unless otherwise regulated by the “escaped as…” encoding instruction (see clause B.3.6).
Universal charstrings shall be represented in JSON strings with UTF-8 encoding. JSON strings may contain the escaped character \u followed by 4 hex digit characters, the decoder will convert this into the character represented by the hex digits.
EXAMPLE:
6.2.1.2
Binary Strings
TTCN-3 bitstring, hexstring and octetstring values shall represented in JSON as JSON.strings (see clause 5.2.1
JSON Strings) containing the bits or hex digits as characters followed by one of the two-character sequences "'B", "'H" or "'O", corresponding to the TTCN‑3 type.

EXAMPLE:
6.2.1.3
Integer
All TTCN-3 integer values are represented as the JSON numbers (see clause 5.2.1
JSON Numbers), without the optional fraction and exponent parts.

At encoding the minus sign of the TTCN-3 –0 value shall be preserved. At decoding the JSON -0 value, by default shall be converted to the TTCN-3 value 0, unless the "useMinus" encoding instructin is applied to the TTCN-3 type (see clause B.3.5).

EXAMPLE:
6.2.1.4
Float

Numeric TTCN-3 float values are encoded as JSON numbers (see clause 5.2.1
JSON Numbers).

At encoding the minus sign of the TTCN-3 –0.0 value shall be preserved. At decoding the JSON negative zero values, by default shall be converted to the TTCN-3 value 0.0, unless the "useMinus" encoding instructin is applied to the TTCN-3 type (see clause B.3.5).

The special float values “infinity”, “-infinity” and “not_a_number” are encoded as JSON strings.

EXAMPLE:
6.2.1.5
Boolean
TTCN-3 boolean values are repsented in JSON as the literals true and false (see clause 5.2.4
JSON Boolean values).
EXAMPLE:
6.2.1.6
Enumerated
TTCN-3 enumerated values are encoded as JSON strings.

For enumerated values with a single implicit or explicit associated integer value the string shall contain the name of the enumerated value.

For enumerated values with an associated integer value list or range, the string shall contain the name of the enumerated value and a single integer value, following the enumeration name in a pair of parenthesis, without any space.

NOTE:
Enumared values not defined by the relevant TTCN-3 type may be received from an external system, if the error handling behaviour for the top-level type is set to EB_WARNING or EB_IGNORE (see clause B.3.11), however, in this case the whole received JSON value is handled in TTCN-3 as a universal charstring value.
EXAMPLE:
6.2.1.7
Verdicttype

TTCN-3 verdicttype values are repsented in JSON as JSON.Strings. By default the string shall contain one of the values: "pass", "fail", "inconc” or "none", i.e. these values shall not cause a decoding failure.
NOTE:
Other verdict values may be received from an external system, if the error handling behaviour for the top-level type is set to EB_WARNING or EB_IGNORE (see clause B.3.11), however, in this case the whole received JSON value is handled in TTCN-3 as a universal charstring value.
EXAMPLE:
6.2.2
Structured TTCN-3 types

By default all instances of top-level structured TTCN-3 types shall be encoded as a “wrapper” JSON object with a single object member, where the name of the object member is the name of the TTCN-3 type, and the value of the object member is the JSON representation of the value of the structured instance. Embedded structured fields of the top-level type shall be encoded and decoded according to clauses 6.2.2.1 through 6.2.2.3, i.e. without the “type wrapper”.
EXAMPLE 1:

type record MyRecord {

integer int,

Myset myset,

MyRecordOfInt mylist

}

type set Myset {

float value_,

boolean case

}

type record of integer MyRecordOfInt;

const MyRecord c_myRecord := { 5, { 5.5, true }, {1,2,3} }

Is represented in JSON e.g. as:

{ "MyRecord" : { "int":5 , { "myset" : { "value_":5.5, "case":true }}, "mylist": [1,2,3] }}
Production of the JSON “wrapperobject” of the top-level structured type can be disabled by adding the "noType" encoding instruction to it.

EXAMPLE 2:

Let consider the TTCN-3 defnitions in example1, but add the "noType" instruction to MyRecord

type record MyRecord {

...

} with { variant "noType" }

In which case the above value c_myRecord is represented in JSON e.g. as:

{ "int":5 , { "myset" : { "value_":5.5, "case":true }}, "mylist": [1,2,3] }

6.2.2.1
Record and Set
Embedded TTCN-3 records and sets are encoded as JSON objects.
Each object member shall represent a field, where
· for at least partially initialized fields the object member’s name shall be the name of the field and its value shall be the value of the field and
· for uninitialized fields, if the "metainfo for unbound" encoding instruction (see clause B.3.12) is applied to it, the object member’s name shall be "metainfo " plusz the name of the field and its value shall be "unbound".
NOTE: By default, trying to encode uninitialized values causes encoding failure.

Omitted optional TTCN-3 fields can be represented in different ways in JSON:
· By default (i.e. when the none of the below encoding instruction is applied to the field in its corresponding type definition), it shall be omitted, i.e. no object member is generated for the field.

· If the "omit as null" encoding insruction is applied to the corresponding field of its type definition, the omitted field is represented in JSON as an object member, where the object member’s name shall be the name of the field and its value shall be the null JSON value.
· If the "default" encoding instruction is applied to the corresponding field of its type, at encoding no JSON object member shall be generated for the field, while at decoding, if no object member corresponds to the field, the default value defined in the instruction shall be assigned to the given TTCN-3 field.
At encoding the order of the object members shall be the same as the order of the fields in the TTCN-3 value, for both records and sets. The decoder shall accept the received object members in any order; and in case of record types it shall order the decoded fields according to their textual order in the type definition, while in case of set types, Optional fields that do not appear in the JSON object will be omitted.

EXAMPLE 1:

EXAMPLE 2: Effect of the "metainfo…" encoding instruction

// metainfo applied to a single field

type record Rec {

integer num,

charstring str

}

with {

variant(str) "JSON: metainfo for unbound";

}

// { num := 6, str := <unbound> } is encoded into:

// {"num":6, "metainfo str":"unbound"}

// metainfo for the whole set (with "name as" and optional field)

type set Set {

integer num,

charstring str,

octetstring octets optional

}

with {

variant " metainfo for unbound ";

variant (num) " name as int ";

}

// { num := <unbound>, str := "abc", octets := <unbound> } is encoded into:

// {"metainfo int":"unbound", "str":"abc", "metainfo octets":"unbound"}

// Other values accepted by the decoder (but cannot be produced by the encoder)

// { "int" : 3, "str" : "abc", "octets" : "1234", "metainfo int" : "unbound" }

// is decoded into: { num := <unbound>, str := "abc", octets := '1234'O }

// {"metainfo int" : "unbound", "int" : null, "str" : "abc", "octets" : "1234"}

// is decoded into: { num := <unbound>, str := “abc”, octets := '1234'O }
EXAMPLE 3: Effect of the "omit as null" encoding instruction

type record PhoneNumber {

integer countryPrefix optional,

integer networkPrefix,

integer localNumber

} with {

variant(countryPrefix) "omit as null"

}

var PhoneNumber pn := { omit, 20, 1234567 }

// JSON code without the attribute would be:

// {"networkPrefix":20, "localNumber":1234567}

// JSON code with the attribute:

// {"countryPrefix":null, "networkPrefix":20, "localNumber":1234567}
6.2.2.2
Record of, Set of and Arrays
TTCN-3 record of, set of and array values are represented in JSON as arrays. The elements of the array shall be:

· for at least partially initialized elements, the JSON representation of the corresponding TTCN-3 element and
· for uninitialized TTCN-3 elements a JSON object with a single object member, the name of which shall be "metainfo []" and the its value shall be "unbound".
JSON array elements shall appear in the same order as in the TTCN-3 value.

EXAMPLE:
6.2.2.3
Union and Anytype
TTCN-3 unions and anytypes by default shall be represented as JSON objects. The object shall contain one object member, the name of which shall be the name of the selected TTCN-3 alternative (name of the field for unions and name of the type for anytypes) and its value shall be the value of the selected TTCN-3 field.

EXAMPLE 1: Union
To TTCN-3 unions the "asValue" encoding instruction (see clause B.3.9) can be applied. In this case, the JSON representation shall only contain the value of the chosen alternative, i.e. the TTCN-3 value is represented as the corresponding JSON value, without the name of the selected field.
NOTE:
Pay close attention to the order of the fields when using the "asValue" instruction, as the decoder will choose the first alternative which is able to consume the given JSON value. It’s a good idea to declare more restrictive fields before less restrictive ones (e.g.: hexstring is more restrictive than universal charstring, because hexstring can only decode hex digits, whereas universal charstring can decode any character).
EXAMPLE 2: Union with the "asValue" encoding instruction

type union U1 { // proposed order of fields

integer i,

float f,

octetstring os,

charstring cs

} with {

variant “JSON : as value”

}

type union U2 { // unhealthy order of fields

float f,

integer i,

charstring cs,

octetstring os

} with {

variant “JSON : as value”

}

type record of U1 RoU1;

type record of U2 RoU2;

var RoU1 v_rou1 := { { i := 10 }, { f := 6.4 }, { os := ‘1ED5’O }, { cs := “hello” } };

var RoU2 v_rou2 := { { i := 10 }, { f := 6.4 }, { os := ‘1ED5’O }, { cs := “hello” } };

// Both v_rou1 and v_rou2 will be encoded into:

// [10,6.4,”1ED5”,”hello”]

// This JSON array will be decoded into v_rou1, when decoding as type RoU1,

// however it will not be decoded into v_rou2, when decoding as RoU2, instead

// the float field will decode both numbers and the charstring field will

// decode both strings: { { f := 10.0 }, { f := 6.4 }, { cs := “1ED5” },

// { cs := “hello” } };

6.3
JSON Representations of TTCN-3 Values Based on ASN.1 types
This clause shall be used only if an implementation supports both ES 201 873-7 [6] and this document.
Types imported from ASN.1 modules automatically shall have JSON coding allowed and cannot have JSON encoding instructions (variant attributes).
6.3.1
Character Strings

6.3.2
Binary Strings
6.3.3
BOOLEAN
6.3.4
ENUMERATED
6.3.5
REAL
6.3.6
INTEGER
6.3.7
OBJID
6.3.8
NULL
The ASN.1 NULL value is encoded with the JSON literal “null”.

6.2.9
SEQUENCE and SET
6.2.10
SEQUENCE OF and SET OF
6.2.11
CHOICE and Open Types
Annex A (normative):
TTCN-3 module JSON
This annex defines a TTCN-3 module containing type definitions equivalent to JSON built-in types.

module JSON {

//====================Types to define JSON Schemas =================================

// JSON Number type (generic)

type float Number (!-infinity .. !infinity) with {

variant "JSON:number"

}

// Integer type

type integer Integer (-infinity .. infinity) with {

variant "JSON:integer"

}

// String type

type universal charstring String with {

variant "JSON:string"

}

// Boolean type

type boolean Boolean with {

variant "JSON:boolean"

}

const JSON.Boolean true_ := true;

const JSON.Boolean false_ := false;

// Null type

type enumerated Null {null_} with {

variant "JSON:null"

}

// Array type

type record of JSON.Types Array with {

variant "JSON:array"

}

// Subsidiary array types

type record of JSON.String StringArray with {

variant "JSON:array"

}

type record of JSON.Number NumArray with {

variant "JSON:array"

}

type record of JSON.Integer IntArray with {

variant "JSON:array"

}

type record of JSON.Boolean BoolArray with {

variant "JSON:array"

}

type record of JSON.Object ObjectArray with {

variant "JSON:array"

}

// Objects-member

type record ObjectMember {

JSON.String name,

JSON.Types value_

} with {

variant "JSON:objectMember"

}

// JSON object type

type set of JSON.ObjectMember Object with {

variant "JSON:object"

}

type union Types {

JSON.String string,

JSON.Number number,

JSON.Boolean boolean_,

JSON.Null null_,

JSON.Array array,

JSON.StringArray strArray,

JSON.NumArray numArray,

JSON.BoolArray boolArray,

JSON.ObjectArray objArray

JSON.Object object,

} with {

variant "asValue"

}
} with {

encode "JSON"

}

//================================ Useful values =================================

type JSON.String String_short with {variant "escape as short" };

type JSON.String String_usi with {variant "escape as usi" };

type JSON.String String_tr with {variant "escape as transparent" };

const JSON.String_short cs_bs := char(U8); // encoded as "\b" (Backspace)

const JSON.String_short cs_ht := char(U9); // encoded as "\t" (Horizontal tab)

const JSON.String_short cs_lf := char(UA); // encoded as "\n" (Line feed)

const JSON.String_short cs_ff := char(UC); // encoded as "\f" (Form feed)

const JSON.String_short cs_cr := char(UD); // encoded as "\r" (Carriage return)

const JSON.String_short cs_quot := """; // encoded as "\"" (Quotation mark)

const JSON.String_short cs_sol := "/"; // encoded as "\/" (Solidus or Slash)

const JSON.String_short cs_rs := "\"; // encoded as "\\" (Reverse solidus or Backslash)

const JSON.String_usi cu_nul := char(U0); // encoded as "\u0000" (Null character)

const JSON.String_usi cu_soh := char(U1); // encoded as "\u0001", (Start of Heading

const JSON.String_usi cu_stx := char(U2); // encoded as "\u0002" (Start of Text)

const JSON.String_usi cu_etx := char(U3); // encoded as "\u0003" (End-of-text character)

const JSON.String_usi cu_eot := char(U4); // encoded as "\u0004" (End-of-transmission character)

const JSON.String_usi cu_enq := char(U5); // encoded as "\u0005" (Enquiry character)

const JSON.String_usi cu_ack := char(U6); // encoded as "\u0006" (Acknowledge character)

const JSON.String_usi cu_bel := char(U7); // encoded as "\u0007" (Bell character)

const JSON.String_usi cu_bs := char(U8); // encoded as "\u0008" (Backspace)

const JSON.String_usi cu_ht := char(U9); // encoded as "\u0009" (Horizontal tab)

const JSON.String_usi cu_lf := char(UA); // encoded as "\u000A" (Line feed)

const JSON.String_usi cu_vt := char(UB); // encoded as "\u000B" (Vertical tab)

const JSON.String_usi cu_ff := char(UC); // encoded as "\u000C" (Form feed)

const JSON.String_usi cu_cr := char(UD); // encoded as "\u000D" (Carriage return)

const JSON.String_usi cu_so := char(UE); // encoded as "\u000E" (Shift Out)

const JSON.String_usi cu_si := char(UF); // encoded as "\u000F" (Shift In)

const JSON.String_usi cu_dle := char(U10); // encoded as "\u0010" (Data Link Escape)

const JSON.String_usi cu_dc1 := char(U11); // encoded as "\u0011" (Device Control 1)

const JSON.String_usi cu_dc2 := char(U12); // encoded as "\u0012" (Device Control 2)

const JSON.String_usi cu_dc3 := char(U13); // encoded as "\u0013" (Device Control 3)

const JSON.String_usi cu_dc4 := char(U14); // encoded as "\u0014" (Device Control 4)

const JSON.String_usi cu_nak := char(U15); // encoded as "\u0015" (Negative-acknowledge charac.)

const JSON.String_usi cu_syn := char(U16); // encoded as "\u0016" (Synchronous Idle)

const JSON.String_usi cu_etb:= char(U17); // encoded as "\u0017" (End of Transmission Block)

const JSON.String_usi cu_can := char(U18); // encoded as "\u0018" (Cancel character)

const JSON.String_usi cu_em := char(U19); // encoded as "\u0019" (End of Medium)

const JSON.String_usi cu_sub := char(U1A); // encoded as "\u001A" (Substitute character)

const JSON.String_usi cu_esc := char(U1B); // encoded as "\u001B" (Escape character)

const JSON.String_usi cu_fs := char(U1C); // encoded as "\u001C" (File Separator)

const JSON.String_usi cu_gs := char(U1D); // encoded as "\u001D" (Group Separator)

const JSON.String_usi cu_rs := char(U1E); // encoded as "\u001E" (Record Separator)

const JSON.String_usi cu_us := char(U1F); // encoded as "\u001F" (Unit Separator)

const JSON.String_usi cu_sp := " "; // encoded as "\u0020" (Space)

const JSON.String_usi cu_quot := """; // encoded as "\u0022" (Quotation mark)

const JSON.String_usi cu_sol := "/"; // encoded as "\u002F" (Solidus or Slash)

const JSON.String_usi cu_revs := "\"; // encoded as "\u005C" (Reverse solidus or Backslash)

const JSON.String_usi cu_del := char(U7F); // encoded as "\u007F" (Delete)

//NOTE: see ISO/IEC 10646 [4] and https://en.wikipedia.org/wiki/List_of_Unicode_characters
//end module

Annex B (normative):
Encoding instructions

This annex defines the encoding instructions for the JSON to TTCN-3 mapping. Encoding instructions are contained in TTCN-3 encode and variant attributes associated with the TTCN-3 definition, field or value of a definition.

B.1
General

A single attribute shall contain one encoding instruction only. Therefore, if several encoding instructions shall be attached to a TTCN-3 language element, several TTCN-3 attributes shall be used.

The "syntactical structure" paragraphs of each clause below identify the syntactical elements of the attribute (i.e. inside the with { } statement. The syntactical elements shall be separated by whitespaces, which shall contain one or more spaces (char(U20))) and horizontal tab (char(U9)) characters. No whitespace character is required between the opening and closing quotation marks (char(U22)) and the first and last syntactical elements of the instruction, respectively, though whitespace characters are allowed at those places as well. All characters (including whitespaces) between a pair of apostrophe (or single quote characters, char(U27)) shall be part of the encoding instruction.

Typographical conventions: bold font identify TTCN-3 keywords. The syntactical elements freetext and name are identified by italic font; they shall contain one or more characters and their contents are specified by the textual description of the encoding instruction. Normal font identify syntactical elements that shall occur within the TTCN-3 attribute as appear in the syntactical structure. The following character sequences identify syntactical rules and shall not appear in the encoding instruction itself:

· (|) - identify alternatives.
· [] - identify that the part of the encoding instruction within the square brackets is optional.
· { } - identify zero or more occurrences of the part between the curly brackets.
· """ - identify the opening or the enclosing quotation marks (char(U22)) of the encoding instruction.
B.2
The JSON encode attribute

The TTCN-3 encode attribute shall be used to identify that the definitions in the scope unit to which this attribute is attached shall be encoded in the following formats:
· "JSON" or "JSON RFC7159"
Syntactical structure

encode """ (JSON | JSON RFC7159) """
Applicable to (TTCN-3)

Module, group, definition.
B.3
Encoding instructions

Faults in the JSON encoding/decoding process, by default shall cause errors. This can be modified with the errorbehaviour encoding instruction (see clause B.3.11).

Any number of white spaces (spaces and tabs only) can be added between each word or identifier in the attribute syntax, but at least one is necessary if the syntax does not specify a separator (a comma or a colon). The attribute can also start and end with white spaces.

EXAMPLE:

variant(field1) “omit as null”;

// ok

variant(field2) “ omit as null ”;

// ok (extra spaces)

variant(field3) “
omit
as
null”;
// ok (with tabs)

variant(field4) “omitasnull”;

// not ok

B.3.1
JSON type identification

Syntactical structure(s)

variant """ (JSON:array | JSON:boolean | JSON:integer | JSON:null | JSON:number |

 JSON:string | JSON:object | JSON: objectMember """

Applicable to (TTCN-3)

TTCN-3 type definitions.
Description

These encoding instructions are typically should not appear in TTCN-3 module describing a JSON Schema. They are attached to the TTCN‑3 type definitions of the module named JSON in Annex A of this document, corresponding to JSON “types” and literal values, and normally should be imported from this module.
The encoder and decoder shall handle instances of a type according to the corresponding JSON definition in RFC7159 [2].
B.3.2
Normalizing JSON Values
Syntactical structure(s)

variant """ normalize """

Applicable to (TTCN-3)

All TTCN-3 types or values
Description

JSON allows arbitrary number of whitespaces, composed of space(char(U20)), horizontal tabulator(char(U9)), line feed (char(UA)) or carriage return (char(UD)) characters between JSON syntactical elements.

In the encoding process this instruction shall result that in the encoded JSON value only a single space (char(U32)) character is used between any two JSON syntactical elements.
B.3.3
Name as
Syntactical structure(s)

variant """ name (as ('freetext' | changeCase) | all as <changeCase>) """,

where <changeCase> := (capitalized | uncapitalized | lowercased | uppercased)

Applicable to (TTCN-3)

Fields of records, sets and unions.

Description

Gives the specified field a different name in the JSON representation. The encoder will use this alias instead of the field’s name in TTCN-3, and the decoder will look for this alias when decoding this field. The syntax of the alias is the same as the syntax of an identifier in TITAN (regex: [A-Za-z][A-Za-z0-9_]*).

When the "name as 'freetext'" form is used, freetext shall be used as the name of the JSON object member, instead of the name of the related TTCN-3 field or definition.

The "name as capitalized" and "name as uncapitalized" forms identify that only the first character of the related TTCN‑3 name shall be changed to lower case or upper case respectively.

The "name as lowercased" and "name as uppercased" forms identify that each character of the related TTCN‑3 name shall be changed to lower case or upper case respectively.

EXAMPLE:

type union PersionID {
 integer numericID,
 charstring email,
 charstring name
} with {
 variant(numericID) "JSON:name as ID";
 variant(email) "JSON:name as Email";
 variant(name) "JSON:name as Name";
}
type record of PersionID PersionIDs;
var persionIDs pids := { { numericID := 189249214 }, { email := “jdoe@mail.com” }, { name := “John Doe” } };

// JSON code:
// [{“ID”:189249214},{“Email”:”jdoe@mail.com”},{“Name”:”John Doe”}]

B.3.4
Number of fraction digits

Syntactical structure(s)

variant """ fractionDigits <an integer value>"""

Applicable to (TTCN-3)

Types and fields of JSON.Number type.
Description

By default, the number of fraction digits, and/or the use of the exponent part is a tool implementation option. The "fractionDigits" encoding insruction, at encoding constraints the maximum number of fractional digits following the decimal point in the encoded JSON value. TTCN-3 allows using either the decimal point notation or the E‑notation for float values (see clause 6.1.0 of ETSI ES 201 873-1 [1]). In the encoding process, at most the number of fraction digits specified in the instruction shall be used. If representing the actual value does not require the number of fraction digits specified by this instruction, the encoder shall use the needed number of digits, if If representing the actual (numeric) value would require more fraction digits than specified by this instruction, the encoder shall use a mixed fraction part + exponent part representation.
NOTE: The "fractionDigits 0" instruction will enforce the encoder to use the exponent part exclusively.
EXAMPLE: Number of fraction digits

If:

const JSON.Number c_number1 := <actual value> with (variant "fractionDigits 3");

then

	<actual value>
	encoded JSON value

	0.0
	0.0

	3.14
	3.14

	3.142
	3.142

	3.1415
	31.415E-1or 31.415e-1

If:

const JSON.Number c_number2 := <actual value> with (variant "fractionDigits 0");

then

	<actual value>
	encoded JSON value

	0.0
	0E1 or 0e1

	3.14
	314E-2 or 314e-2

	3.142
	3142E-3 or 3142e-3

	3.1415
	31415E-4 or 31415e-4

This encoding insruction has no effect at decoding of JSON values.
B.3.5
Use the Minus sign
Syntactical structure(s)

variant """ useMinus """

Applicable to (TTCN-3)

Types and fields of JSON.Number and JSON.Integer types.
Description

By default, TTCN-3 values of JSON.Number and JSON.Integer and IEEE 754 float useful types are decoded by their values, i.e. all the -0.0, 0.0, -0e<number>, 0e<number>, -0E<number>, 0E<number>, -0 and 0 JSON values are decoded in TTCN-3 as 0.0 for JSON.Number types and as 0 for JSON.Integer types (i.e. without the minus sign), where <number> is any positive or negative integer number.
The "useMinus" encoding insruction, at decoding instructs the decoder to decode the JSON values -0.0, -0e<number>, -0E<number> and -0 in TTCN-3 as negative numbers, i.e. together with their minus sign.
This encoding insruction has no effect at encoding and at decoding of any other JSON values than specified above.
B.3.6
Escape as
Syntactical structure(s)

variant """ escape as (short | usi | transparent) """,

Applicable to (TTCN-3)

Types and fields of JSON.Number and JSON.String types.
Description

The "escape as short" encoding instruction tells the encoder that all characters in the TTCN-3 value, which has short escape sequences defined (see RFC7159 [2] and clause 5.2.1
JSON Strings), shall be encoded using the short escape sequence.

The "escape as usi" encoding instruction tells the encoder that all characters in the TTCN-3 value shall be encoded using the USI-like escape sequence "\u<HHHH>" (see RFC7159 [2] and clause 5.2.1
JSON Strings),

The "escape as transparent" encoding instruction tells the encoder that characters in the TTCN-3 value shall not be escaped in their JSON representation, except the C0 control characters (present in the TTCN-3 value in the char(…) representation).
NOTE:
This instruction is useful, when a character string is copied from a JSON string, where the needed characters are already have been replaced by their escape sequences, into a TTCN-3 code.
This insruction has no effect at decoding, i.e. all escaped characters, using either the short or the USI-like escaping shall be decoded to and evaluated in its (abstract) character representation in TTCN-3 (e.g. at matching or in any other operations).
B.3.7
Omit as null
Syntactical structure(s)

variant """ omit as null """,

Applicable to (TTCN-3)

Optional fields of records and sets
Description

If set, the value of the specified optional field will be encoded with the JSON literal ‘null’ if the value is omitted. By default omitted fields (both their name and value) are skipped entirely. The decoder ignores this attribute and accepts both versions.
B.3.8
Default
Syntactical structure(s)

variant """ default (<value>)"""
where <value> is a value of the type the instruction is applied to.
Applicable to (TTCN-3)

Fields of records and sets
Description
This encoding attribute has no effect at encoding.

The decoder shall set the given value to the field if it does not appear in the JSON document.
The <value> shall contain a valid TTCN-3 value of the field’s type, but string types don’t need the starting and ending quotes. All JSON escaped characters can be used, plus the escape sequence ‘\)’ will add a ‘)’ (right round bracket) character.
Optional fields with a default value will be set to omit if the field is set to null in the JSON value being decoded, and shall use the default value if the field does not appear in the JSON document.
Example:

type record Product {

charstring name,

float price,

octetstring id optional,

charstring from

} with {

variant(id) “default (FFFF)”

variant(from) “default(Hungary)”

}

// { "name" : "Shoe", "price" : 29.50 } will be decoded into:

// { name := "Shoe", price := 29.5, id := 'FFFF'O, from := "Hungary" }

// { "name" : "Shirt", "price" : 12.99, "id" : null } will be decoded into:

// { name := “Shirt”, price := 12.99, id := omit, from := “Hungary” }
B.3.9
As value
Syntactical structure(s)

variant """ asValue """,

Applicable to (TTCN-3)

Unions types and fields.
Description

The TTCN-3 union value shall be encoded as a JSON value instead of as a JSON object with one object member (see clause 6.2.2.3). This allows the creation of heterogenous arrays in the JSON document (e.g. [“text”,10,true,null]).
Since the field name no longer appears in the JSON document, the decoder shall determine the selected field based on the syntax of the JSON value. The first union field (in the textual order of declaration) that can successfully decode the JSON value will be the selected one.

B.3.10
No Type

Syntactical structure(s)

variant """ noType """

Applicable to (TTCN-3)

TTCN-3 structured types.

Description

The "noType" encoding instruction shall cause that the “type wrapper” of the top-level TTCN-3 type, instance of which is being encoded, is omitted in the JSON representation, and at decoding a JSON value, it is not expected to be present (see clause 6.2.2
Structured TTCN-3 types).
B.3.11
Error behaviour
Syntactical structure(s)

variant """ errorbehavior "(" <error_type> ":" <error_handling>

{ "," <error_type> ":" <error_handling> } ")"""",
where the error types (<error_type>) and possible related decoder behaviours (<error_handling>)are defined in tables and correspondingly.
Table B.1 Common error types
	ET_UNDEF
	Undefined/unknown error.

	ET_UNBOUND
	Encoding of an unbound value.

	ET_DEC_ENUM
	Decoding of an unknown enumerated value.

	ET_INCOMPL_MSG
	Decode error: incomplete message.

	ET_INVAL MSG
	Decode error: invalid message.

	ET_CONSTRAINT
	The value breaks some constraint.

	ET_ALL
	All error types.

Table B.2 Possible values of error_behaviors

	EB_ERROR
	Causes an error if the selected error type occurs.

	EB_WARNING
	Logs a warning but tries to continue the operation. If the decoding fails, it returns the undecoded JSON value to TTCN-3 as a universal value.

	EB_IGNORE
	Like warning but without the log message. If the decoding fails, it returns the undecoded JSON value to TTCN-3 as a universal value.

Applicable to (TTCN-3)

All types.
Description
B.3.12
Metainfo
Syntactical structure(s)

variant """ metainfo for <value> """,
where <value> := unbound | matching

Applicable to (TTCN-3)

Fields of records and sets, record of and set of types.
Description

1)
When <value> := unbound

By default, trying to encode uninitialized values causes encoding failure. This encoding instruction allows the encoding and decoding of unbound fields and elements.

For uninitialized record or set fields

· the encoder shall insert an object member with the name "metainfo <fieldname>", where <fieldname> is the name of the uninitialized TTCN-3 field, and the value "unbound" (as a JSON string).
· The decoder shall accept the meta info object member with the name "metainfo <fieldname>" and value "unbound" regardless of its position in the JSON object and set the related TTCN-3 field to uninitialized. If the meta info field’s value is not “unbound”, or it refers to a field that does not exist or does not have this instruction assigned, this shall cause a decoding failure.

For uninitialized record of, set of or array elements

· the encoder shall insert a JSON object for each uninitialized element, at the position of the given element, with a single object member; the object member’s name shall be "metainfo []" and its value shall be "unbound" (as a JSON string).

· The decoder shall decode meta info object members with the name shall be "metainfo []" and value “unbound” and set the correcponding TTCN-3 element to uninitialized. If the meta info field’s value is not “unbound”, or the given record of, set of or array that does not have this instruction assigned, this shall cause a decoding failure.
2)
When <value> := matching

TBA.
History

	Document history

	V0.0.1
	January 2016
	Initial draft

_1513683378.doc

Note: The shaded boxes are not defined in this document

TTCN-3 User

Other Types & Values 2

Other Types & Values n

JSON Definitions

TTCN-3 Core

Language

Other presentation formats as defined in other parts of the standard or user-specific

formats

