Final draft ETSI ES 203 022 VX.X.X (2018-XX)
21

Final draft ETSI ES 203 022 V1VX.1X.1 X (20172018-04XX)
Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions: Advanced Matching

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
DES/MTS-203022AdvMatch ed111
Keywords
conformance, testing, TTCN-3
[bookmark: _GoBack]
ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2017.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	4
Foreword	4
Modal verbs terminology	4
1	Scope	5
2	References	5
2.1	Normative references	5
2.2	Informative references	5
3	Definitions and abbreviations	6
3.1	Definitions	6
3.2	Abbreviations	6
4	Package conformance and compatibility	6
5	Package Concepts for the Core Language	7
5.0	General	7
5.1	Dynamic Matching	7
5.2	Templates with variable bindings	8
5.2.0	General	8
5.2.1	Value retrieval from matching	8
5.2.2	Declaring out parameters for template definitions	9
5.3	Additional logical operators for combining matching mechanisms	11
5.3.0	General	11
5.3.1	Conjunction	11
5.3.2	Implication	12
5.3.3	Exclusion	13
5.3.4	Disjunction	13
5.4	Repetition	14
5.5	Equality operator for the omit symbol and templates with restriction omit	16
5.5.0	General	16
5.5.1	Modifications to ETSI ES 201 873-1, clause 7 (Expressions)	16
6	TCI Extensions for the Package	17
6.1	Extensions to clause 7.2.2.2.0 of ETSI ES 201 873-6 Basic rules	17
6.2	Extensions to clause 7.2.2.3.1 of ETSI ES 201 873-6 The abstract data type MatchingMechanism	19
6.3	Extensions to clause 7.2.2.3.2 of ETSI ES 201 873-6 The abstract data type MatchingList	19
6.4	Extensions to clause 7.2.2.3 of ETSI ES 201 873-6 The abstract data type MatchingMechanism	19
6.5	Extensions to clause 8 of ETSI ES 201 873-6 JavaTM language mapping	20
6.6	Extensions to clause 9 of ETSI ES 201 873-6 ANSI C language mapping	22
6.7	Extensions to clause 10 of ETSI ES 201 873-6 C++ language mapping	23
6.8	Extensions to clause 12 of ETSI ES 201 873-6 C# language mapping	25
Annex A (normative):	BNF and static semantics	27
A.1	Modified TTCN‑3 syntax BNF productions	27
A.2	Deleted TTCN‑3 syntax BNF productions	27
A.3	Additional TTCN‑3 syntax BNF productions	27
History	29

[bookmark: _Toc481056110]Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
[bookmark: _Toc481056111]Foreword
This final draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.
The present document relates to the multi-part standard ETSI ES 201 873 covering the Testing and Test Control Notation version 3, as identified below:
Part 1:	"TTCN-3 Core Language";
Part 4:	"TTCN-3 Operational Semantics";
Part 5: 	"TTCN-3 Runtime Interface (TRI)";
Part 6: 	"TTCN-3 Control Interface (TCI)";
Part 7: 	"Using ASN.1 with TTCN-3";
Part 8: 	"The IDL to TTCN-3 Mapping";
Part 9: 	"Using XML schema with TTCN-3";
Part 10: 	"TTCN-3 Documentation Comment Specification";
Part 11: 	"Using JSON with TTCN-3".
NOTE:	Part 2 is in status "historical" and part 3 is no longer maintained.
[bookmark: _Toc481056112]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

[bookmark: _Toc481056113]1	Scope
The present document defines the support of advance matching of TTCN-3. TTCN-3 can be used for the specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module testing, testing of OMG CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The specification of test suites for physical layer protocols is outside the scope of the present document.
TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or usages of TTCN-3.
While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language with a number of packages, the concrete usages of and guidelines for this package in combination with other packages is outside the scope of the present document.
[bookmark: _Toc481056114]2	References
[bookmark: _Toc481056115]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ES201873_1][1]	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[bookmark: REF_ES201873_4][2]	ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".
[bookmark: REF_ES201873_5][3]	ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".
[bookmark: REF_ES201873_6][4]	ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".
[bookmark: _Toc481056116]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_ES201873_7][i.1]	ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".
[bookmark: REF_ES201873_8][i.2]	ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".
[bookmark: REF_ES201873_9][i.3]	ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".
[bookmark: REF_ES201873_10][i.4]	ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".
[bookmark: _Toc481056117]3	Definitions and abbreviations
[bookmark: _Toc481056118]3.1	Definitions
For the purposes of the present document, the terms and definitions given in ETSI ES 201 873-1 [1], ETSI ES 201 873‑4 [2], ETSI ES 201 873-5 [3] and ETSI ES 201 873-6 [4] apply.
[bookmark: _Toc481056119]3.2	Abbreviations
For the purposes of the present document, the abbreviations given in ETSI ES 201 873-1 [1], ETSI ES 201 873-4 [2], ETSI ES 201 873-5 [3] and ETSI ES 201 873-6 [4] apply.
[bookmark: _Toc481056120]4	Package conformance and compatibility
The package presented in the present document is identified by the package tag:
	"TTCN-3:2017 Advanced Matching" - to be used with modules complying with the present document.
For an implementation claiming to conform to this package version, all features specified in the present document shall be implemented consistently with the requirements given in the present document and in ETSI ES 201 873‑1 [1] and ETSI ES 201 873‑4 [2].
The package presented in the present document is compatible to:
ETSI ES 201 873-1 [1], version 4.9.1;
ETSI ES 201 873-4 [2], version 4.6.1;
ETSI ES 201 873-5 [3], version 4.8.1;
ETSI ES 201 873-6 [4], version 4.9.1;
ETSI ES 201 873-7 [i.1];
ETSI ES 201 873-8 [i.2];
ETSI ES 201 873-9 [i.3];
ETSI ES 201 873-10 [i.4].
If later versions of those parts are available and should be used instead, the compatibility to the package presented in the present document has to be checked individually.
[bookmark: _Toc481056121]5	Package Concepts for the Core Language
[bookmark: _Toc481056122]5.0	General
This package defines advanced matching mechanisms for TTCN-3, i.e. new matching mechanisms which go beyond the matching mechanisms defined in ETSI ES 201 873-1 [1]. This package realizes the following concepts:
Dynamic matching allows to specify matching in a function-like fashion, i.e. statement blocks and functions can be used to define matching.
Templates with variable bindings ease the retrieval field values of received messages and signatures. For this the "->" symbol is used to denote a value assignment to a variable or an out parameter in the scope of a template definition in case of a successful template matching.
The additional logical operators conjunction, implication, exclusion and disjunction allow the combination matching mechanisms for advanced matching.
Repetition allows to match repetitions of a sub-sequence templates inside values of a certain type.
Restrictions for the omit symbol and templates with restriction omit are relieved allowing omit symbols and templates with restriction omit as operands for the equality operator.
[bookmark: _Toc481056123]5.1	Dynamic Matching
A dynamic matching is a special matching mechanism. Similar to other matching mechanisms, it can be considered as a Boolean function that indicates successful matching for the value to be matched by returning the value true and unsuccessful matching by returning the value false.
Syntactical Structure
@dynamic (StatementBlock | FunctionRef)
Semantic Description
The StatementBlock shall return a value of type boolean. The value to be matched is referenced by the special keyword value. When applying this matching mechanism to a value, the StatementBlock is executed and if and only if the execution returns true, the dynamic matching function matches. Unsuccessful matching shall return false.
A dynamic matching function can only be used in the context of a template, the value expression inside the StatementBlock shall have the same type as the whole template.
The notation @dynamic FunctionRef denotes a shorthand for the special case @dynamic { return FunctionRef(value) } where FunctionRef is a reference to a Boolean function with a single parameter compatible with the template's type. Here, the type of the parameter of the referenced function determines the type context, if this template's place of usage does not provide a type context.
Restrictions
The dynamic matching syntax shall only be used in a typed context.
The StatementBlock shall compute a value of type boolean.
The StatementBlock shall be deterministic and side-effect free and follow the restrictions of clause 16.1.4 of ETSI ES 201 873-1 [1].
The StatementBlock shall not use variables that are declared outside of the StatementBlock.
The StatementBlock shall not use inout or out parameters.
Only if the dynamic matching syntax appears on the right-hand-side of a parameterized template definition, the formal in parameters of that definition may be referenced inside the StatementBlock. All other formal in parameters shall not be used by the StatementBlock.
EXAMPLE:
	type record of integer Numbers;
	template Numbers mw_sorted := @dynamic { // value is of type Numbers
		for (var integer v_i := 1; v_i < lengthof(value); v_i := v_i + 1) {
			if (value[v_i-1] > value[v_i]) { return false }
		}
		return true;
	}	// mw_sorted(v_recInt) matches all values of type Numbers
// if elements of v_recInt do not break an ascending order

	type record Coordinate { float x, float y };
	external function fx_distance(Coordinate p_a, Coordinate p_b) return float;
	template float mw_closeTo(Coordinate p_origin := { 0.0, 0.0 }, float p_maxDistance := 1.0) :=
		// access to in parameters is allowed
		@dynamic { return fx_distance(p_origin, value) <= p_maxDistance; };
		// mw_closeTo(c,d) matches all values of type Coordinate
// which have maximum distance of d from Coordinate c

	external function fx_isPrime(integer p_x) return boolean;
	:
	p.receive(@dynamic fx_isPrime)
	// is the same as p.receive(integer:@dynamic { return fx_isPrime(value) })

[bookmark: _Toc481056124]5.2	Templates with variable bindings
[bookmark: _Toc481056125]5.2.0	General
The possibilities to retrieve field values of received messages and signatures in ETSI ES 201 873-1 [1] are restricted and cumbersome. To overcome this situation, this clause implements the definition of templates with variable bindings that store the actual value matched by a template instance if the matching of all containing templates is successful. This feature is implemented by using the "->" symbol for denoting a value assignment to a variable or an out parameter in the scope of a template definition in case of a successful template matching. Such a value assignment can syntactically be specified at all places where a template matching mechanism or a template reference is used in a template definition or an inline template.
[bookmark: _Toc481056126]5.2.1	Value retrieval from matching
In case of a successful template match, the value which matches the template can be assigned to a variable. This can be specified by using the "->" symbol.
Syntactical Structure
TemplateInstance "->" VariableRef
Semantic Description
If a template successfully matches a value and contains a value retrieval assignment for a TemplateInstance, then, if during the matching process that TemplateInstance and all its containing TemplateInstances contribute to the successful template match, the part of the value the TemplateInstance was matching is assigned to the VariableRef referenced in the value retrieval assignment.
EXAMPLE:
template integer mw_t1 := (?, (1..3) -> v); // mw_t1 always matches, but if the (1..3) does not
								// contribute to the successful match
								// then v is not assigned a value
template integer mw_t2 := ((1..3) -> v_small, (3..5) -> v_big)
	// matching mw_t2 to number in (1..3) will cause only v_small to be assigned,
	// matching it to number in (4..5) will cause only v_big to be assigned (preference of (1..3))

Restrictions
1. If TempateInstance describes the matching of a mandatory element in a template definition, VariableRef shall refer to a variable of the same type as the mandatory element.
1. If TempateInstance describes the matching of an optional element in a template definition, VariableRef shall refer to a template variable of the same type as the optional element. In case of a successful matching, the matching value or omit shall be assigned to the template variable denoted by VariableRef.
1. Value retrieval shall not be used in special places as described in clause 16.1.4 of ETSI ES 201 873-1 [1] with the exception of the matching parts of receiving operations. If value retrieval is used in the matching part of a receiving operation, the assignment to the variables of all the templates is done once the whole matching part matches and all other conditions for the selection of the alternative are met.
1. Value retrieval shall not be applied to templates of set of types or any of their direct or indirect elements, elements of a permutation matching mechanism or any of their direct or indirect elements.
NOTE:	TTCN-3 makes no assumptions about the value of the variable or template variable denoted by VariableRef My in case of an unsuccessful match.
[bookmark: _Toc481056127]5.2.2	Declaring out parameters for template definitions
The retrieval of field values in case of successful matching from a structured value can be specified by means of out parameters of template definitions.
Syntactical Structure
The syntactical structure for global and local template definitions does not change:
template [restriction] [@fuzzy] Type TemplateIdentifier ["(" TemplateFormalParList ")"]
[modifies TemplateRef] ":=" TemplateBody
Only the static semantics restriction for formal template parameters change in such a way that formal template parameters shall evaluate to in or out parameters.
Semantic Description
The semantics of the value retrieval using templates with out parameters can be described by means of the match operation:
	// Given the record type definition
	type record MyRecordType {	
		integer 	field1,
		boolean		field2
	}

	// the constant definition
	const MyRecordType c_myRecord := {
		field1 := 7,
		field2 := true
	}

	// the template definition
	template MyRecordType mw_myTemplate1 := {
		field1 := 7,
		field2 := ?
	}

	// the same template definition with an out parameter matchinstring
	template MyRecordType mw_myTemplate2 (out boolean p_matchingBool):= {
		field1 := 7,
		field2 := ? -> p_matchingBool
	}

	// and the variable declarations
	var boolean v_a, v_b;

	// then the effect of
	v_a := match (c_myRecord, mw_myTemplate2(v_b));

	// is identical to
	if (match (c_myRecord, mw_myTemplate1) {
		v_a := true;
		v_b := c_myRecord.field2		// i.e., true
	}
	else {
		v_a:= false;
	}

Restrictions
1. TempateInstance with out parameters shall not be used as templates of set of types or any of their direct or indirect elements.
TempateInstance with out parameters shall not be used as elements of a permutation matching mechanism or any of their direct or indirect elements. TempateInstance with out parameters shall not used in special places as described in clause 16.1.4 of ETSI ES 201 873-1 [1] with the exception of the matching parts of receiving operations. If TempateInstance with out parameters are used in the matching part of a receiving operation, the assignment to the actual out parameter variables of all the templates is done only once the whole matching part matches and all other conditions for the selection of the alternative are met.
Every formal out parameter of a template with out parameters shall be referenced at most once inside the template body.
NOTE:	In certain cases a template may match without assigning a value to a declared out parameter. In such cases, the boundness of the actual out parameter has to be checked even after a successful match before using it.
EXAMPLE 1:

type union Tree {
	integer leaf,
	Branch branch
}
type record Branch {
	Tree left optional,
	Tree right optional
}

template Branch mw_branch(out omit Tree p_left, out omit Tree p_right) := {
 	left := * -> p_left,
 	right := * -> p_right
}
template Tree mw_treebranch(out omit Tree p_left, out omit Tree p_right) :=
	{ branch := mw_branch(p_left, p_right) }
template Tree mw_leaf(out integer p_value, in template integer p_expected := ?) :=
 	{ leaf := p_expected -> p_value }

// compute the sum of absolute values of all leafs in the given tree
function f_absSum(omit Tree p_tree) return integer {
	var omit Tree v_left, v_right;
	var integer v_value;
 	if (ispresent(p_tree)) {
		select (p_tree) {
			case (mw_treebranch(v_left, v_right)) {
 					return f_absSum(v_left) + f_absSum(v_right);
 				}
			case (mw_leaf(v_value, (0 .. infinity)) { return v_value; }
			case (mw_leaf(v_value) { return -v_value; }
		}
	}
 	else {
 		return 0; }
}

EXAMPLE 2:

var Tree v_tree;
…
template Tree mw_anyTree(out integer p_value,
 									out omit Tree p_left, out omit Tree p_right) :=
 	(mw_leaf(p_value), mw_treebranch(p_left, p_right));

// extraction of leaf or branch from v_tree (any value, if present)
if (match(v_tree, mw_anyTree(v_value, v_left, v_right)) {
	if (isbound(v_value)) {
		// v_value might not have been assigned => needs check
	}
	else if (isbound(v_left)) {
		// v_left and v_right might not have been assigned
		// => needs check
	}
}

EXAMPLE 3:	Receiving with multiple out parameter templates

signature S(out Tree p_tree) return Tree;

alt {
 	[match(v_tree, mw_leaf(v_value)] p.receive { }
 	// NOT allowed to use template with out parameter in alt guard
[] p.getreply(S:{ mw_leaf(v_value) } value mw_treebranch(v_left, v_right)) {
 	// if either mw_leaf or mw_treebranch does not match, v_value, v_left and v_right
 	// all remain unchanged
 	// it is equivalent with the following:
 	// [] p.getreply(S:{mw_leaf(v_value1)} value mw_treebranch(v_left1, v_right1)) {
 	// v_left := v_left1;
 	// v_right := v_right1;
 	//	 v_value := v_value1;
 	// }
 	// where v_value1, v_left1 and v_right1 are all internal unbound variables of the
 	// appropriate ty

[bookmark: _Toc481056128]5.3	Additional logical operators for combining matching mechanisms
[bookmark: _Toc481056129]5.3.0	General
This clause defines the additional logical operators conjunction, implication, exclusion and disjunction for matching mechanisms. Their usage allows the combination matching mechanisms for advanced matching.
[bookmark: _Toc481056130]5.3.1	Conjunction
The conjunction matching mechanism is used when a value shall fulfil several distinct conditions.
Syntactical Structure
conjunct "(" { (TemplateInstance | all from TemplateInstance) [","] } ")"
Semantic Description
The conjunction matching mechanism can be used for matching values of all types.
A template specified by the conjunction matching mechanism matches the corresponding value if and only if the value matches all templates listed in the template list.
Besides specifying individual templates, it is possible to add all elements of an existing record of or set of template into a conjunction matching mechanism using an all from clause.
Restrictions
a)	The type of the conjunction matching mechanism and the member type of the template in the all from clause shall be compatible.
b)	The template in the all from clause as a whole shall not resolve into a matching mechanism (i.e. its elements may contain any of the matching mechanisms or matching attributes with the exception of those described in the following restriction).
c)	Individual fields of the template in the all from clause shall not resolve to any of the following matching mechanisms: AnyElementsOrNone, permutation, disjunction or repetition.
d)	Each value or template in the list shall be compatible with the type declared for the template specified by the conjunction matching mechanism.
e)	Referencing a sub-field within a template to which the conjunction matching mechanism is assigned (both at the right and left hand side of an assignment) shall cause an error.
EXAMPLE:
	// external function returning true for prime numbers
	external function f_isprime (integer p_par) return boolean;
	// the template matches prime numbers greater than 100
	template integer mw_myTemplate:= conjunct((100 .. infinity), @dynamic f_isprime);

	type record of integer MySequenceOfType;
	template MySequenceOfType mw_myTemplate2 := {1,2,3};
	// mw_conjunctTemplate2 does not match any value as no value can be 1, 2 and 3 at the same time.
	template integer mw_conjunctTemplate2 := conjunct(all from mw_myTemplate2);
	
	template MySequenceOfType mw_myTemplate3 := {2,2,2};
	// mw_conjunctTemplate3 matches the single value 2
	template integer mw_conjunctTemplate3 := conjunct(all from mw_myTemplate3);

[bookmark: _Toc481056131]5.3.2	Implication
The implication matching mechanism is used when a match is checked only if specified conditions are met.
Syntactical Structure
TemplateInstance implies TemplateInstance
Semantic Description
The implication matching mechanism is composed of two templates separed by an implies keyword. The first template is called precondition and the second one is called the implied template. The implication matching mechanism can be used for matching values of all types.
A template specified by the implication matching mechanism matches a value if and only if the value does not match the precondition or if the value matches both the precondition and implied template.
Restrictions
1. Both templates used in the implication matching mechanism shall be compatible to the type declared for the template specified by the implication matching mechanism.
Any matching attribute at the end of the implication matching mechanism is related to the whole template (i.e. not only to the implied template).
Referencing a sub-field within a template specified by the implication matching mechanism (both at the right and left hand side of an assignment) shall cause an error.
EXAMPLE:
	// the template matches strings with 5 or more characters ending with "abc" and all shorter
	// strings (i.e. strings with length 0..4)
	template charstring mw_implies1 := ? length (5 .. infinity) implies pattern "*abc";

	// the following template matches all strings with length 0..4 and all strings with length
 // 8..10 ending with "abc".
	template charstring mw_implies2 :=
		? length (5 .. infinity) implies (pattern "*abc" length (8..10));

	// the following template matches all strings with length 2..4 and all strings with length
 // 5..10 ending with "abc" because the length attribute is applied to the whole implication.
	template charstring mw_implies3 :=
		? length (5 .. infinity) implies pattern "*abc" length (2..10);

[bookmark: _Toc481056132]5.3.3	Exclusion
The exclusion matching mechanism is used when a genaral matching rule is to be restricted by an exception.
Syntactical Structure
TemplateInstance except TemplateInstance
Semantic Description
The first template in exclusion matching mechanism is called general template and the second one is called excluded template. The exclusion matching mechanism can be used for matching values of all types.
A template that is specified by the exclusion matching mechanism matches a value if and only if the value matches the general template, but does not match the excluded template.
Restrictions
1. Both templates used in the exclusion matching mechanism shall be compatible to the type declared for the template specified by the exclusion matching mechanism.
Any matching attribute at the end of the exclusion matching mechanism is related to the whole matching mechanism (i.e. not only to the excluded template).
Referencing a sub-field within a template specified by the exclusion matching mechanism (both at the right and left hand side of an assignment) shall cause an error.
EXAMPLE:
	// the template matches all integer in the range 1..100 except 48 and 64
	template integer mw_int := (1..100) except (48, 64);

	// the following template matches all strings with length 0..10 except strings starting
	// with "abc" that contain 3..5 characters.
	template charstring mw_str := ? length (0 .. 10) except (pattern "abc*" length (3..5));

	// the following template matches all strings with length 0..10 starting with "abc", but not
	// ending with "xyz".
	template charstring mw_str2 := pattern "abc*" except pattern "*xyz" length (0..10);

[bookmark: _Toc481056133]5.3.4	Disjunction
The disjunction matching mechanism specifies one or more alternatives for matching multiple elements of record of, set of or array.
Syntactical Structure
disjunct "(" { (TemplateInstance | all from TemplateInstance) [","] } ")"
Semantic Description
The disjunction mechanism is used only inside values of type record of, set of or array. The template instances specified in the disjunction matching mechanism are called disjunction alternatives. It provides a successful match, if and only if one of the disjunction alternatives matches the maximal subset of still unmatched elements inside the value that still allows the containing template to match the whole value. And in case of record of and array values the matched subset shall be a consecutive sub-sequence beginning after the end of the sub-sequence that was matched by the preceding inside-values templates in the containing template.
The disjunction alternatives are matched in the order of their specification inside the disjunction matching mechanism (i.e. from left to right) so that the leftmost alternative that fulfils the above condition contributes to the successful match while the following disjunction alternatives are ignored.
Besides specifying all individual values, it is possible to add all elements of an existing record of or set of template into disjuncion using an all from clause.
Restrictions
1. The type of templates used in the disjunction matching mechanism that are not prefixed with the all from clause and the type of the record of, set of or array containing the disjunction matching mechanism shall be compatible.
The type of the record of, set of or array containing the disjunction matching mechanism and the member type of the template in the all from clause shall be compatible.
The template in the all from clause as a whole shall not resolve into a matching mechanism (i.e. its elements may contain any of the matching mechanisms or matching attributes with the exception of those described in the following restriction).
Individual fields of the template in the all from clause shall not resolve to any of the following matching mechanisms: AnyElementsOrNone, permutation, disjunction or repetition.
Referencing an element located withing the disjunction matching mechanism both at the left or right hand side of an assignment shall cause an error.
In case the templates within the disjunction matching mechanism can match values of different length, referencing an element following the disjunction matching mechanism in the containing template shall cause an error.
If the disjunction mechanism contains items that all match only values of the same fixed length or has a fixed length attribute attached to it and all other required conditions are met, the items following the disjunction in the containing template may be referenced at the left or right hand side of an assignment. The index of the first item following the disjunction is equal to the index of the disjunction matching mechanism increased by its fixed length.
EXAMPLE:
	type record of integer RoI;
	template RoI mw_a := { 1, 2 }
	template RoI mw_b := { 1, *, 4 }
	template RoI mw_disjunction := {0, disjunct(mw_a, mw_b, ? length(2..4)), 10, *};
	// the previous template matches the same values as the following template:
	template RoI mw_list := ({0, 1, 2, 10, *}, {0, 1, *, 4, 10, *}, {0, * length(2..4), 10, *});

[bookmark: _Toc481056134]5.4	Repetition
5.4.1 General
Repetition is a specific symbol used inside record of, array, bitstring, hexstring or octetstring templates to match repeated sequences of items.
5.4.2 Repetition in record of and array
In record of and array templates, the repetition symbol is used to match repetitions of sub-sequence templates inside values of that type.
Repetition is a specific symbol used inside record of or array templates to match repetitions of a sub-sequence templates inside values of that type.
Syntactical Structure
[bookmark: bugnotes]TemplateInstance "#" "(" [SingleExpression] ["," [SingleExpression]] ")"
Semantic Description
The repetition matching mechanism shall be used only inside values. It consists of a TemplateInstance called the repeated template matching a sequence of elements of fixed length followed by a declaration of the number of required consecutive matches of that repeated template. It provides a successful match, if and only if the repeated template can be matched to the required number of consecutive sub-sequences beginning after the elements already matched by preceding templates inside the template.containing the repetition matching mechanism. repeated templateThe number of required matches shall be specified by using one of the following syntaxes: "#(n, m)", "#(n,)", "#(, m)", "#(n)", "#n", "#(,)", "#()".
The form "#(n, m)" specifies that at least n sub-sequence but not more than m sub-sequences shall match the repeated template.
The form "#(n,)" specifies that at least n sub-sequences shall match the repeated template. The maximum number of matches is not restricted in this case.
The form "#(, m)" indicates that at most m sub-sequences shall match the repeated template. The minimum number of matches is not set, thus 0..m positive matches are allowed.
The single value form "#(n)" requires that precisely n sub-sequences shall be matched by the repeated template to produce a successful match.
The forms "#(,)" and "#()" are shorthand notations for "#(0,)", i.e. any number of sub-sequences shall match the repeated template.
The repetition matches the longest number of elements possible tnat still allows the containing template to match the whole value.
The repeated template can reference the current iteration of the repetition by using the special keyword @index. This can be used to assign parts of each matches sub-sequence of the value to different variables when the repeated template uses value retrieval or has out parameters (see section <Value retrieval>).
Restrictions
1. The type of the repeated template and the type of the containing template shall be compatible.
The expressions used for specifying the number of required sub-sequences shall resolve to a non-negative integer value.
In case there are two expressions specifying the number or required sub-sequences, the second value shall be greater or equal to the first one.
Referencing an element located within the repeated template shall cause an error.
In case any other notation than #(n) or #(n,m) where n is equal to m is used (i.e. when the number of required sub-sequences is not a fixed value), referencing an element following the repetition shall cause an error.
If the repetition uses the #(n) notation or #(n,m) notation where n and m are equal and all other required conditions are met, the template items following the repetition matching mechanism may be referenced at the left or right hand side of an assignment. The index of the first item following the repetition is equal to the index of the repetition increased by n * l where l is the fixed length of the repeated template.
The repeated template shall match only sub-sequences of a single fixed length, so that every matched sub‑sequence will have the same length.
NOTE:	To specify a fixed length repeated template, care should be taken when using AnyElementsOrNone, AnyElement, disjunction and repetition matching mechanisms. Normally, they or their sub-templates have to be restricted with a length attribute of fixed length.
EXAMPLE 1:
	type record Name {
		charstring givenName,
		charstring surname
	}
	type record of Name RoN;
	template RoN mw_a := { { { givenName := "John", surname := ?} } #(2, 5) }
		// the template matches values containing 2..5 elements; the givenName field of each
		// element has to be equal to "John"
	template RoN mw_b := { { { givenName := ?, surname := "Doe"} } #() }
		// the template matches only values with the surname field of each element equal to "Doe"
		// and values with no elements

EXAMPLE 2:	Using the @index operator to assign matched values to variables.
	var charstring v_name[5];
	template RoN mw_c(out charstring p_name) :=
		{ { givenName := "John", surname := ? -> p_name } }
	// the following two template are semantically equivalent and will assign the surname field
	// of each matched template in each iteration of the repetition to a different element
	// of the variable v_name
	template RoN mw_d := { { { givenName := "John", surname := ? -> v_name[@index]} } #(2, 5) }
	template RoN mw_e := { mw_c(v_name[@index]) #(2, 5) }

EXAMPLE 3:	Using the @index operator in nested repetitions.
	type record of RoN RRoN;
	type record of charstring RoC;
	type record of RoC RRoC;
	var RRoC v_nestedNames;
	// the inner repletion has to be restricted to a fixed length
	template RoN mv_f(out RoC p_names) := { mw_c(p_names[@index]) #(5) }
	// because we can only access the current index, each repetition layer can be
	// dealt with by adding a new template
	template RRoN mv_nestedRepetition := { mv_f(v_nestedNames[@index])# () }

[bookmark: _Toc481056135]5.4.3 Repetition in string
Inside templates of bitstring, hexstring and octetstring types, the repetition symbol is used to match repeated occurrence of a string element.
Syntactical Structure
"#"(num | (" (" [number]["," [number]] ")"))

The repetition symbol shall be used only inside values. It is used to specify that a preceding symbol of a binary string template (AnyElement or string element) should be matched a number of times. The following syntaxes are available: "#(n, m)", "#(n,)", "#(, m)", "#(n)", "#n", "#(,)" or "#()".
The form "#(n, m)" specifies that the preceding symbol shall be matched at least n times but not more than m times.
The metacharacter postfix "#(n,)" specifies that the preceding symbol shall be matched at least n times while "#(, m)" indicates that the preceding expression shall be matched not more than m times.
Metacharacters (postfixes) "#(n)" and "#n" specify that the preceding expression shall be matched exactly n times (they are equivalent to "#(n, n)"). In the form "#n", n shall be a single digit.
The forms "#(,)" and "#()" are shorthand notations for "#(0,)", i.e. matches the preceding expression any number of times.
Restrictions
1. Using repetition as the first item in the string shall cause an error.
Adding another repetition to a symbol that already has repetition attached shall cause an error.
Applying repetition to AnyElementsOrNone has no effect
EXAMPLE:
template bitstring mw_repe1 := '1?#(3,5)'B;
 // matches bitstrings whose first bit is equal to one, followed by 3..5 other bits

template octetstring mw_repe2 := 'AB#3'O;
 // matches an octestring 'ABABAB'O
5.4.4	Modifications to ETSI ES 201 873-1, clause 15.11 (Concatenating templates of string and list types)
5.4.4.0	General
The modifactions to ETSI ES 201 873-1, clause 15.11 (Concatenating templates of string and list types) shall be done in two steps. Step 2 (described in Clause 5.4.4.2) shall be performed on the result of Step 1 (described in Clause 5.4.4.1).
5.4.4.1	Step 1 of modifications to ETSI ES 201 873-1, clause 15.11
The second and third paragraph of ETSI ES 201 873-1, clause 15.11 are replaced with the following ones:
The single templates of binary string types shall evaluate only to the matching mechanisms specific value, combined template, AnyValue with or without a length attribute or AnyValueOrNone with a length attribute.
The concatenation of templates of binary string types results in the sequential concatenation of the single templates from left to right. All matching symbols AnyValue and AnyValueOrNone are replaced by AnyElement (possibly followed by a repetition symbol) or AnyElementsOrNone matching symbols according to the table 5.1 before concatenation.
[bookmark: table_15_1]Table 5.1: Transformation of binary string templates before concatenation
	Concatenation operand
	Transformed bitstring
	Transformed hexstring
	Transformed octetstring

	?, ? length(0..infinity) or * length(0..infinity)
	'*'B
	'*'H
	'*'O

	? length(0) or * length(0)
	''B
	''H
	''O

	? length(1) or * length(1)
	'?'B
	'?'H
	'?'O

	? length(n) or * length(n)
	'?#(n)'B
	'?#(n)'H
	'?#(n)'O

	? length(n, infinity) or * length(n, infinity)
	'?#(n,)'B
	'?#(n,)'H
	'?#(n,)'O

	? length(n, m) or * length(n, m)
	'?#(n,m)'B
	'?#(n,m)'H
	'?#(n,m)'O

5.4.4.2	Step 2 of modifications to ETSI ES 201 873-1, clause 15.11
The result of the modifications described in Clause 5.4.4.1 shall be amended with the following rules:
In addition to the matching symbols specified in ETSI ES 201 873-1 clause 15.1 and the clause 5.6.2 of this document, it is allowed to use other types of matching symbols in concatenation of templates of string, record of and array types.
A template that is a result of concatenation produces a successful match if a there’s at least one possible way of splitting the value being matched into n consecutive subsections where n is equal to the number of concatenated templates so that all individual operands of the concatenated template produce a successful match when matching the split subsections. Matching of subsections is performed in the textual order; an operand of the concatenated template shall match a subsection at the same ordinal position.
Restrictions
1. The matching symbols used in concatenation of templates of string, record of and array types shall be either one of the matching symbols specified in ETSI ES 201 873-1 clause 15.1 and the clause 5.6.2 of this document or it shall obey the present template restriction.
EXAMPLE:
template octetstring mw_t1 := ('1234'O, '5678'O) & complement('ABCD'O);
 // matches any octetstring that starts either with '1234'O or '5678'O and doesn’t end with
	 // 'ABCD'O:
template charstring mw_activity := ("John", "Jack", "Frank") & ("played " &
 ("football", "basketball", "hockey", "baseball"), "ran " & ("fast", "slowly"));
log(match("John played basketball", mw_activity)); // produces true
log(match("Jack ran slowly", mw_activity)); // produces true
log(match("Frank played fast", mw_activity)); // produces false, because "played" is not
 // concatenated with "fast"

type record of charstring RoCS;
template RoCS mw_rocs := ? & ({"Paris", "London"}, {"New York", "Beijing"}) & ?;
 // matches any record of value that contains "Paris" followed by "London" or "New York"
 // followed by "Beijing"

5.5	Equality operator for the omit symbol and templates with restriction omit
[bookmark: _Toc481056136]5.5.0	General
This clause removes restrictions for the use of the omit symbol and templates with restriction omit. It allows the usage of an omit symbol and templates with restriction omit as operands of the equality operator.
[bookmark: _Toc481056137]5.5.1	Modifications to ETSI ES 201 873-1, clause 7 (Expressions)
Clause 7.1.3	Relational operators
Add the following text before the bullet points:
The omit keyword is allowed to be used in place of an operand for the equality (==) and non-equality (!=) operators, if the other operand is a reference and the referenced field is an optional field or a reference to a template declared with the omit restriction.
Add the following bullets to the list of bullet points:
When the omit keyword is used in place of an operand for the equality operator, the equality check evaluates to true if and only if the other operand is set to omit, otherwise, it evaluates to false.
When the omit keyword is used in place of an operand for the non-equality operator, the non-equality check evaluates to true if and only if the other operand is not set to omit, otherwise, it evaluates to false.
In paragraph EXAMPLE change the text as follows:
 c_s1.a1 == omit;
 // error, omit is neither a value nor a field reference

		c_s1.a1 == omit;
		// returns false
		c_s1.a2 == omit;
		// returns true
		c_u1.d1 == omit; // error, c_u1.d1 is not a reference to an optional field
		omit != c_s1.a2;
		// returns false
		c_s1.a1 != omit;
		// returns true

		function compareToOmit(template(omit) integer i) return boolean {
			if (i == omit) { return true; } else { return false; }
			}

[bookmark: _Toc481056138]6	TCI Extensions for the Package
[bookmark: _Toc481056139]6.1	Extensions to clause 7.2.2.2.0 of ETSI ES 201 873-6 Basic rules
The figure 4 is to be extended.

[image:]
Figure 4: Hierarchy of abstract values
[bookmark: _Toc481056140]6.2	Extensions to clause 7.2.2.3.1 of ETSI ES 201 873-6 The abstract data type MatchingMechanism
The definition of TciMatchingTypeType is to be extended with constants for the matching mechanisms defined in this specification:
TciMatchingTypeType getMatchingType()
Returns the matching mechanism type. A value of TciMatchingTypeType can have one of the following constants: TEMPLATE_LIST, COMPLEMENTED_LIST, ANY_VALUE, ANY_VALUE_OR_NONE, VALUE_RANGE, SUBSET, SUPERSET, ANY_ELEMENT, ANY_ELEMENTS_OR_NONE, PATTERN, DECODED_MATCH, DYNAMIC_MATCHING, CONJUNCTION, IMPLICATION, EXCLUSION, DISJUNCTION, REPETITION.
[bookmark: _Toc481056141]6.3	Extensions to clause 7.2.2.3.2 of ETSI ES 201 873-6 The abstract data type MatchingList
Clause 7.2.2.3.2 The abstract data type MatchingList
The first paragraph of the clause 7.2.2.3.2 is to be extended by adding conjunction and disjunction to the list of allowed matching mechanisms:
The abstract data type MatchingList is used to represent matching mechanisms that contain a list of items of the same type: template list, complemented template list, SubSet, SuperSet, conjunction and disjunction.
[bookmark: _Toc481056142]6.4	Extensions to clause 7.2.2.3 of ETSI ES 201 873-6 The abstract data type MatchingMechanism
In order to support the dynamic match, implication, exclusion and repetition matching mechanism, the DynamicMatch, TwoStepMatch and Repetition abstract data types are added to the clause 7.2.2.3.
Clause 7.2.2.3.6 The abstract data type DynamicMatch
This clause is to be added.
The abstract data type DynamicMatch is used to represent the dynamic matching mechanism. The TCI support of this matching mechanism is limited, e.g. it is only possible to create dynamic matching based on functions.
The following operations are defined on the abstract data type DynamicMatch:
TBoolean isFunctionBased ()	Returns true if the mechanism uses short-hand notation @dynamic FunctionRef and false otherwise.
TciBehaviourIdType getMatchingFunction ()	
Returns the qualified name of the associated function if the mechanism uses the short-hand notation @dynamic FunctionRef. The distinct value null is returned otherwise.
void setMatchingFunction (TciBehaviourIdType functionId)	
Sets the function associated with the matching mechanism. After calling the function, the matching mechanism will behave as a short-hand notation @dynamic fuctionId. The function referenced in the functionId parameter shall fulfil all requirements described in the clause 4.1.
Clause 7.2.2.3.7 The abstract data type TwoStepMatch
This clause is to be added.
The abstract data type TwoStepMatch is used to represent the implication and exclusion matching mechanisms. The data type can access both templates that form these matching mechanism. The first template (i.e. precondition of the implication matching mechanism and general template of the exclusion matching mechanism) is called primary template and the second template (i.e. the implied template of the implication matching mechanism and excluded template of the exclusion matching mechanism) is called secondary template.
When working with instances received from the getPrimaryMatch and getSecondaryMatch methods and passed to the setPrimaryMatch and setSecondaryMatch method, no assumption shall be made on how the data are stored in a matching mechanism. An internal implementation might choose to use a reference to the data or to copy the data. It is safe to assume that the data are copied. Therefore, it should be assumed that subsequent modifications of the data will not be considered in the TwoStepMatch instance.
The following operations are defined on the abstract data type TwoStepMatch:
Value getPrimaryMatch ()	Returns the primary template.
void setPrimaryMatch (Value content)
Sets the primary template.
Value getSecondaryMatch ()	Returns the secondary template.
void setSecondaryMatch (Value content)	
Sets the secondary template.

Clause 7.2.2.3.8 The abstract data type Repetition
This clause is to be added.
The abstract data type Repetition is used to represent the repetition matching mechanism.
When working with instances received from the getRepeatedTemplate method and passed to the setRepeatedTemplate method, no assumption shall be made on how the data are stored in a matching mechanism. An internal implementation might choose to use a reference to the data or to copy the data. It is safe to assume that the data are copied. Therefore, it should be assumed that subsequent modifications of the data will not be considered in the Repetition instance.
The following operations are defined on the abstract data type Repetition:
Value getRepeatedTemplate ()	Returns the repeated template.
void setRepeatedTemplate (Value repeatedTemplate)
Sets the repeated template.
LengthRestriction getRepetitionCount ()	
Returns how many times the template shall match.
void setRepetitionCount (LengthRestriction repetition)	
Sets how many times the template shall match.
[bookmark: _Toc481056143]6.5	Extensions to clause 8 of ETSI ES 201 873-6 JavaTM language mapping
Clause 8.3.2.17 TciMatchingTypeType
This clause is to be extended.
// TCI IDL TciMatchingTypeType
package org.etsi.ttcn.tci;
public interface TciMatchingType {
 public final static int TEMPLATE_LIST = 0 ;
 public final static int COMPLEMENTED_LIST = 1 ;
 public final static int ANY_VALUE = 2 ;
 public final static int ANY_VALUE_OR_NONE = 3 ;
 public final static int VALUE_RANGE 	= 4 ;
 public final static int SUBSET = 5 ;
 public final static int SUPERSET = 6 ;
 public final static int ANY_ELEMENT 	 	= 7 ;
 public final static int ANY_ELEMENTS_OR_NONE = 8 ;
 public final static int PATTERN 	= 9 ;
 public final static int MATCH_DECODED_CONTENT = 10 ;
 public final static int OMIT_TEMPLATE = 11 ;
 public final static int DYNAMIC_MATCHING		= 12 ;
 public final static int CONJUNCTION				= 13 ;
 public final static int IMPLICATION				= 14 ;
 public final static int EXCLUSION				= 15 ;
 public final static int DISJUNCTION				= 16 ;
 public final static int REPETITION				= 17 ;
}

Clause 8.3.5.6 DynamicMatch
This clause is to be added.
DynamicMatch is mapped to the following interface:
// TCI IDL DynamicMatch
package org.etsi.ttcn.tci;
public interface DynamicMatch {
	public Boolean isFunctionBased ();
	public TciBehaviourId getMatchingFunction ();
	public void setMatchingFunction (TciBehaviourId functionId);
}

Methods:
isFunctionBased	Returns true if the mechanism uses the short-hand notation @dynamic FunctionRef and false otherwise.
getMatchingFunction	Returns the qualified name of the associated function.
setMatchingFunction	Sets the function associated with the matching mechanism.
Clause 8.3.5.7 TwoStepMatch
This clause is to be added.
TwoStepMatch is mapped to the following interface:
// TCI IDL TwoStepMatch
package org.etsi.ttcn.tci;
public interface TwoStepMatch {
	public Value getPrimaryTemplate ();
	public void setPrimaryTemplate (Value primaryTemplate);
	public Value getSecondaryTemplate ();
	public void setSecondaryTemplate (Value secondaryTemplate);
}

Methods:
getPrimaryTemplate	Returns the primary template.
setPrimaryTemplate	Sets the primary template.
getSecondaryTemplate	Returns the secondary template.
setSecondaryTemplate	Sets the secondary template.
Clause 8.3.5.8 Repetition
This clause is to be added.
Repetition is mapped to the following interface:
// TCI IDL Repetition
package org.etsi.ttcn.tci;
public interface Repetition {
	public Value getRepeatedTemplate ();
	public void setRepeatedTemplate (Value primaryTemplate);
	public LengthRestriction getRepetitionCount ();
	public void setRepetitionCount (LengthRestriction repetitionCount);
}

Methods:
getRepeatedTemplate	Returns the repeated template.
setRepeatedTemplate	Sets the repeated template.
getRepetitionCount	Returns the repetition count.
setRepetitionCount	Sets the repetition count.
[bookmark: _Toc481056144]6.6	Extensions to clause 9 of ETSI ES 201 873-6 ANSI C language mapping
Clause 9.2 Data
Table 5 is to be extended.
	TCI IDL Interface
	ANSI C representation
	Notes and comments

	:
	
	

	DynamicMatch

	TBoolean isFunctionBased ()
	Boolean tciIsMatchFunctionBased (Value inst)
	

	QualifiedName getMatchingFunction()
	QualifiedName * tciGetMatchingFunction
(Value inst)
	

	void setMatchingFunction (QualifiedName functionId)
	void tciSetMatchingFunction(Value inst, QualifiedName functionId)
	

	TwoStepMatch

	Value getPrimaryTemplate()
	Value getPrimaryTamplate(Value inst)
	

	void setPrimaryTemplate(Value template)
	void setPrimaryTemplate(Value inst, Value template)
	

	Value getSecondaryTemplate()
	Value getSecondaryTamplate(Value inst)
	

	void setSecondaryTemplate(Value template)
	void setSecondaryTemplate(Value inst, Value template)
	

	Repetition

	Value getRepeatedTemplate()
	Value getRepeatedTemplate(Value inst)
	

	void setRepeatedTemplate(Value template)
	void setRepeatedTemplate(Value inst, Value template)
	

	LengthRestriction getRepeatedTemplate()
	TciLengthRestriction getRepetitionCount(Value inst)
	

	void setRepetitionCount (LengthRestriction repetitionCount)
	void setRepetitionCount(Value inst, TciLengthRestriction repetitionCount)
	

Clause 9.5 Data
Table 7 is to be extended.
	TCI IDL ADT
	ANSI C representation (Type definition)
	Notes and comments

	:
	
	

	TciMatchingTypeType
	typedef enum
{
TCI_TEMPLATE_LIST = 0,
TCI_COMPLEMENTED_LIST = 1,
TCI_ANY_VALUE = 2,
TCI_ANY_VALUE_OR_NONE = 3,
TCI_VALUE_RANGE = 4,
TCI_SUBSET = 5,
TCI_SUPERSET = 6,
TCI_ANY_ELEMENT = 7,
TCI_ANY_ELEMENTS_OR_NONE = 8,
TCI_PATTERN = 9,
TCI_MATCH_DECODED_CONTENT = 10,
TCI_OMIT_TEMPLATE = 11,
TCI_DYNAMIC_MATCHING = 12,
TCI_CONJUNCTION = 13,
TCI_IMPLICATION = 14,
TCI_EXCLUSION = 15,
TCI_DISJUNCTION = 16,
TCI_REPETITION = 17
} TciMatchingTypeType;
	

	:
	
	

[bookmark: _Toc481056145]6.7	Extensions to clause 10 of ETSI ES 201 873-6 C++ language mapping
Clause 10.5.2.16 TciMatchingTypeType
This clause is to be extended.
typedef enum
{
 TCI_TEMPLATE_LIST = 0,
 TCI_COMPLEMENTED_LIST = 1,
 TCI_ANY_VALUE = 2,
 TCI_ANY_VALUE_OR_NONE = 3,
 TCI_VALUE_RANGE = 4,
 TCI_SUBSET = 5,
 TCI_SUPERSET = 6,
 TCI_ANY_ELEMENT = 7,
 TCI_ANY_ELEMENTS_OR_NONE = 8,
 TCI_PATTERN = 9,
 TCI_MATCH_DECODED_CONTENT = 10,
 TCI_OMIT_TEMPLATE = 11,
 TCI_DYNAMIC_MATCHING = 12,
 TCI_CONJUNCTION = 13,
 TCI_IMPLICATION = 14,
 TCI_EXCLUSTION = 15,
 TCI_DISJUNCTION = 16,
 TCI_REPETITION = 17
[bookmark: AAAAAAAAKD][bookmark: AAAAAAAAKF][bookmark: AAAAAAAAKG][bookmark: AAAAAAAAKH]} TciMatchingType;

Clause 10.5.3.23 DynamicMatch
This clause is to be added.
TTCN-3 dynamic matching mechanism support. It is mapped to the following pure virtual class:
class DynamicMatch : public virtual MatchingMechanism {
public:
	virtual ~DynamicMatch ();
	virtual Tboolean isFunctionBased () const =0;
	virtual const TciBehaviourId * getMatchingFunction () const =0;
	virtual void setMatchingFunction (const TciBehaviourId & functionId) =0;
	virtual Tboolean operator== (const DynamicMatch &p_dynamicMatch) const =0;
	virtual DynamicMatch * clone () const =0;
	virtual Tboolean operator< (const DynamicMatch &p_content) const =0;
}

Methods:
~DynamicMatch
	Destructor
isFunctionBased
	Returns true if the mechanism uses the short-hand notation @dynamic FunctionRef and false otherwise
getMatchingFunction
	Returns the qualified name of the associated function
setMatchingFunction
	Sets the function associated with the matching mechanism
operator==
	Returns true if both objects are equal
clone
	Return a copy of the matching mechanism
operator<
	Operator < overload
Clause 10.5.3.24 TwoStepMatch
This clause is to be added.
TTCN-3 implication and exclusion matching mechanism support. It is mapped to the following pure virtual class:
class TwoStepMatch : public virtual MatchingMechanism {
public:
	virtual ~TwoStepMatch ();
	virtual Value & getPrimaryTemplate () const =0;
	virtual void setPrimaryTemplate (const Value & template) =0;
	virtual Value & getSecondaryTemplate () const =0;
	virtual void setSecondaryTemplate (const Value & template) =0;
	virtual Tboolean operator== (const TwoStepMatch &p_twoStepMatch) const =0;
	virtual TwoStepMatch * clone () const =0;
	virtual Tboolean operator< (const TwoStepMatch &p_content) const =0;
}

Methods:
~TwoStepMatch
	Destructor
getPrimaryTemplate
	Returns the primary template
setPrimaryTemplate
	Sets the primary template
getSecondaryTemplate
	Returns the secondary template
setSecondaryTemplate
	Sets the secondary template
operator==
	Returns true if both objects are equal
clone
	Return a copy of the matching mechanism
operator<
	Operator < overload
Clause 10.5.3.24	Repetition
This clause is to be added.
TTCN-3 repetition matching mechanism support. It is mapped to the following pure virtual class:
class Repetition : public virtual MatchingMechanism {
public:
	virtual ~Repetition ();
	virtual Value & getRepeatedemplate () const =0;
	virtual void setRepeatedTemplate (const Value & template) =0;
	virtual LengthRestriction & getRepetitionCount () const =0;
	virtual void setRepetitionCount (const LengthRestriction & repetitionCount) =0;
	virtual Tboolean operator== (const Repetition &p_repetition) const =0;
	virtual Repetition * clone () const =0;
	virtual Tboolean operator< (const Repetition &p_content) const =0;
}

Methods:
~Repetition
	Destructor
getRepeatedTemplate
	Returns the repeated template
setRepeatedTemplate
	Sets the repeated template
getRepetitionCount
	Returns repetition count
setRepetitionCount
	Sets repetition count
operator==
	Returns true if both objects are equal
clone
	Return a copy of the matching mechanism
operator<
	Operator < overload
[bookmark: _Toc481056146]6.8	Extensions to clause 12 of ETSI ES 201 873-6 C# language mapping
Clause 12.4.2.16 TciMatchingTypeType
This clause is to be extended.
public enum TciMatchingType {
	TemplateList = 0,
 ComplementedList = 1,
 AnyValue = 2,
 AnyValueOrNone = 3,
 ValueRange = 4,
 Subset = 5,
 Superset = 6,
 AnyElement = 7,
 AnyElementsOrNone = 8,
 Pattern = 9,
 MatchDecodedContent = 10,
 OmitTemplate = 11,
 DynamicMatch = 12,
 Conjunction = 13,
 Implication = 14,
 Exclusion = 15,
 Disjunction = 16,
 Repetition = 17
}

Clause 12.4.5.6 DynamicMatch
This clause is to be added.
The IDL type DynamicMatch is mapped to the following interface:
public interface ITciDynamicMatch : IMatchingMechanism
{
	bool IsFunctionBased { get; }
	ITciBehaviourId MatchingFunction { get; set; }
}

Methods:
IsFunctionBased	Returns true if the mechanism uses short-hand notation @dynamic FunctionRef and false otherwise.
MatchingFunction	Gets or sets the function associated with the matching mechanism.
Clause 12.4.5.7 TwoStepMatch
This clause is to be added.
The IDL type TwoStepMatch is mapped to the following interface:
public interface ITciTwoStepMatch : IMatchingMechanism
{
	ITciValue PrimaryTemplate { get; set; }
	ITciValue SecondaryTemplate { get; set; }
}

Methods:
PrimaryTemplate	Gets or sets the primary template.
SecondaryTemplate	Gets or sets the secondary template.
Clause 12.4.5.8 Repetition
This clause is to be added.
The IDL type Repetition is mapped to the following interface:
public interface ITciRepetition : IMatchingMechanism
{
	ITciValue RepeatedTemplate { get; set; }
	ITciLengthRestriction RepetitionCount { get; set; }
}

Methods:
RepeatedTemplate	Gets or sets the repeated template.
RepetitionCount	Gets or sets the repetition count.

[bookmark: _Toc481056147]Annex A (normative):
BNF and static semantics
[bookmark: _Toc481056148]A.1	Modified TTCN‑3 syntax BNF productions
This clause includes all BNF productions that are modifications of BNF rules defined in the TTCN-3 core language document [1]. When using this package the BNF rules below replace the corresponding BNF rules in the TTCN-3 core language document. The rule numbers define the correspondence of BNF rules.
[bookmark: TMatchingSymbol]92. TemplateBody ::= (SimpleSpec |
 FieldSpecList |
 ArrayValueOrAttrib
) [ExtraMatchingAttributes] [ValueRedirect]

107. MatchingSymbol ::= Complement |
 (AnyValue [WildcardLengthMatch]) |
 (AnyOrOmit [WildcardLengthMatch]) |
 ListOfTemplates |
 Range |
 BitStringMatch |
 HexStringMatch |
 OctetStringMatch |
 CharStringMatch |
 SubsetMatch |
 SupersetMatch |
						DecodedContentMatch |
						DynamicMatch |
						ConjunctionMatch |
						ImplicationMatch |
						ExclusionMatch		
106. ArrayElementSpec ::= 	Minus |
						PermutationMatch |
						TemplateBody |
						DisjunctionMatch |
						RepetitionMatch
[bookmark: TBinOrMatch]112. BinOrMatch ::= Bin [StringRepetition] |
 AnyValue [StringRepetition] |
 AnyOrOmit
114. HexOrMatch ::= Hex [StringRepetition] |
 AnyValue [StringRepetition] |
 AnyOrOmit
[bookmark: TOctOrMatch]116. OctOrMatch ::= Oct [StringRepetition] |
 AnyValue [StringRepetition] |
 AnyOrOmit

413. Value ::= PredefinedValue | ReferencedValue | SpecialValue
414. PredefinedValue ::= Bstring |
 BooleanValue |
 CharStringValue |
 Number | /* IntegerValue */
 Ostring |
 Hstring |
 VerdictTypeValue |
 Identifier | /* EnumeratedValue */
 FloatValue

[bookmark: _Toc481056149]A.2	Deleted TTCN‑3 syntax BNF productions
The rule for the nonterminal AddressValue shall be deleted.
[bookmark: _Toc481056150]A.3	Additional TTCN‑3 syntax BNF productions
This clause includes all additional BNF productions that needed to define the syntax introduced by this package. All rules start with the digits "0222".
022001. DynamicMatch ::= DynamicModifier (StatementBlock | FunctionRef)
022002. DynamicModifier::= "@dynamic"

022003. RepetitionMatch ::= TemplateBody RepetitionCountSpec
022004. RepetitionCountSpec ::= "#" "(" [SingleExpression] ["," [SingleExpression]] ")"

/** STATIC SEMANTICS The ValueKeyword has only meaning as a value in the StatementBlock of a 022001. DynamicMatch. The IndexModifier has only meaning as a value in the TemplateBody of a RepetitionMatch. **/
022005. SpecialValue ::= ValueKeyword | NullValue | IndexModifier | OmitKeyword
022006. NullValue ::= "null"

022007. ConjunctionMatch ::= ConjunctKeyword ListOfTemplates
022008. ConjunctKeyword ::= "conjunct"
022009. ImplicationMatch ::= TemplateInstance ImpliesKeyword InfixTemplateOperand
022010. ImpliesKeyword ::= "implies"
022011. InfixTemplateOperand ::= (TemplateInstanceNoAttr | ("(" TemplateInstance ")"))
022012. TemplateInstanceNoAttr ::= [(Type | Signature) Colon] [DerivedRefWithParList AssignmentChar]
 TemplateBodyNoAttr
022013. TemplateBodyNoAttr ::= SimpleSpec |
 FieldSpecList |
 ArrayValueOrAttrib
022014. ExclusionMatch ::= TemplateInstance ExceptKeyword InfixTemplateOperand
022015. DisjunctionMatch ::= DisjunctKeyword ListOfTemplates
022016. DisjunctKeyword ::= "disjunct"
022017. ValueRedirect ::= "->" VariableRef
022018. StringRepetition ::= "#" (Num | ("(" [Number] [","] [Number] ")"))
022017. ValueRedirect ::= "->" VariableRef

[bookmark: _Toc481056151]History
	Document history

	V1.1.1
	April 2017
	Membership Approval Procedure	MV 20170627:	2017-04-28 to 2017-06-27

	
	
	

	
	
	

	
	
	

	
	
	

ETSI
image2.emf

image1.jpeg

