Final draft ETSI ES 2DD DDD V1.1.1 (2018-XX)
18

[bookmark: doctype][bookmark: _GoBack][bookmark: docnumber][bookmark: docversion][bookmark: docdate]Final draft ETSI ES 2DD DDD V1.1.1 (2018-XX)
[bookmark: doctitle]Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions: Object Oriented features
[bookmark: docdiskette]The ES (ETSI Standard) shall be chosen when the document contains normative provisions and it is considered preferable or necessary that the document be submitted to the whole ETSI membership for its approval.
[image: 600px-Warning_icon_svg] The guidance text (green) shall be removed when no longer needed or the skeleton without guidance text also available via the editHelp! website should be used.
<

[bookmark: doctypelong]ETSI STANDARD
[image: ETSI_BG_final_new]

[bookmark: page2]Reference
RES/MTS-2DD DDD -ed111
Keywords
TTCN-3, Object Orientated Test Design

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© ETSI yyyy.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

[bookmark: _Toc442706602][bookmark: _Toc486242493][bookmark: _Toc486242524][bookmark: _Toc486242769][bookmark: _Toc486252310][bookmark: _Toc486322457][bookmark: _Toc487466716]Copyrights on page 2
This paragraph should be used for deliverables processed before WG/TB approval and used in meetings.
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: _Toc486242494][bookmark: _Toc486242525][bookmark: _Toc486242770][bookmark: _Toc486252311][bookmark: _Toc486322458][bookmark: _Toc487466717]If an additonal copyright is necessary, it shall appear on page 2 after the ETSI copyright notification
The additional EBU copyright applies for EBU and DVB documents.
© European Broadcasting Union yyyy.

The additional CENELEC copyright applies for ETSI/CENELEC documents.
© Comité Européen de Normalisation Electrotechnique yyyy.

The additional CEN copyright applies for CEN documents.
© Comité Européen de Normalisation yyyy.

The additional WIMAX copyright applies for WIMAX documents.
© WIMAX Forum yyyy.

Contents (style TT)
To unlock the Table of Contents: select the Table of Contents, click simultaneously: Ctrl + Shift + F11.
To update the Table of Contents: F9.
To lock it: select the Table of Contents and then click simultaneously: Ctrl + F11.
Copyrights on page 2	3
Intellectual Property Rights (style H1)	6
Foreword (style H1)	6
Multi-part documents	6
Modal verbs terminology (style H1)	7
Executive summary (style H1)	7
Introduction (style H1)	7
1	Scope (style H1)	7
2	References (style H1)	7
2.1	Normative references (style H2)	7
2.2	Informative references (style H2)	8
3	Definitions, symbols and abbreviations (style H1)	8
3.1	Definitions (style H2)	8
3.2	Symbols (style H2)	9
3.3	Abbreviations (style H2)	9
4	User defined clause(s) from here onwards (style H1)	9
4.1	User defined subdivisions of clause(s) from here onwards (style H2)	10
Proforma copyright release text block	10
Annexes		10
Annex A (normative or informative):	Title of annex (style H8)	10
Annex B (normative or informative):	Title of annex (style H8)	11
B.1	First clause of the annex (style H1)	11
B.1.1	First subdivided clause of the annex (style H2)	11
Annex <X> (normative or informative):	ATS in TTCN-2 (style H8)	11
<X.1>	Introduction (style H1)		11
<X.2> The TTCN-2 Machine Processable form (TTCN.MP) (style H1)	11
Annex <X+1> (normative or informative):	ATS in TTCN-3 (style H8)	11
<X+1>.1	Introduction (style H1)		11
<X+1>.2	TTCN-3 files and other related modules (style H1)	12
<X+1>.3	HTML documentation of TTCN-3 files (style H1)	12
Annex <Y> (informative):	Bibliography (style H8)	12
Annex <Z> (informative):	Change History (style H8)	12
History (Style H1)	13
A few examples:	13

<PAGE BREAK>
[bookmark: _Toc442706604][bookmark: _Toc486242495][bookmark: _Toc486242526][bookmark: _Toc486242771][bookmark: _Toc486252312][bookmark: _Toc486322459][bookmark: _Toc487466718]Intellectual Property Rights
Essential patents
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks	Comment by Jens Grabowski: New? Paragraph has not been part of previous documents?
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc442706605][bookmark: _Toc486242496][bookmark: _Toc486242527][bookmark: _Toc486242772][bookmark: _Toc486252313][bookmark: _Toc486322460][bookmark: _Toc487466719]Foreword
[bookmark: _Toc442706607][bookmark: _Toc486242498][bookmark: _Toc486242529][bookmark: _Toc486242774][bookmark: _Toc486252315][bookmark: _Toc486322462][bookmark: _Toc487466721]This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
The present document relates to the multi-part standard ETSI ES 201 873 covering the Testing and Test Control Notation version 3, as identified below:
Part 1:	"TTCN-3 Core Language";
Part 4:	"TTCN-3 Operational Semantics";
Part 5:	"TTCN-3 Runtime Interface (TRI)";
Part 6:	"TTCN-3 Control Interface (TCI)";
Part 7:	"Using ASN.1 with TTCN-3";
Part 8:	"The IDL to TTCN-3 Mapping";
Part 9:	"Using XML schema with TTCN-3";
Part 10:	"TTCN-3 Documentation Comment Specification";
Part 11:	"Using JSON with TTCN-3".
NOTE:	Part 2 is in status "historical" and part 3 is no longer maintained.	Comment by Jens Grabowski: Why have part 2 and part 3 a different status?
Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc442706610][bookmark: _Toc486242501][bookmark: _Toc486242532][bookmark: _Toc486242777][bookmark: _Toc486252318][bookmark: _Toc486322465][bookmark: _Toc487466724]1	Scope
[bookmark: _Toc442706611][bookmark: _Toc486242502][bookmark: _Toc486242533][bookmark: _Toc486242778][bookmark: _Toc486252319][bookmark: _Toc486322466][bookmark: _Toc487466725]The present document defines the support of advance matching of TTCN-3. TTCN-3 can be used for the specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module testing, testing of OMG CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The specification of test suites for physical layer protocols is outside the scope of the present document.
TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or usages of TTCN-3.
While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language with a number of packages, the concrete usages of and guidelines for this package in combination with other packages is outside the scope of the present document.
[bookmark: _Toc487025558]2	References
[bookmark: _Toc487025559]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ES201873_1][1]	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[bookmark: REF_ES201873_4][2]	ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".
[bookmark: REF_ES201873_5][3]	ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".
[bookmark: REF_ES201873_6][4]	ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".
[bookmark: _Toc487025560]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_ES201873_7][i.1]	ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".
[bookmark: REF_ES201873_8][i.2]	ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".
[bookmark: REF_ES201873_9][i.3]	ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".
[bookmark: REF_ES201873_10][i.4]	ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".
[i.5]	ETSI ES 201 873-11: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 11: Using JSON with TTCN-3".
[bookmark: _Toc442706614][bookmark: _Toc486242505][bookmark: _Toc486242536][bookmark: _Toc486242781][bookmark: _Toc486252322][bookmark: _Toc486322469][bookmark: _Toc487466728]3	Definitions, symbols and abbreviations
[bookmark: _Toc442706615][bookmark: _Toc486242506][bookmark: _Toc486242537][bookmark: _Toc486242782][bookmark: _Toc486252323][bookmark: _Toc486322470][bookmark: _Toc487466729]3.1	Definitions
For the purposes of the present document, the terms and definitions given in ETSI ES 201 873-1 [1], ETSI ES 201 873‑4 [2], ETSI ES 201 873-5 [3], ETSI ES 201 873-6 [4] and given in the following apply:	Comment by Jens Grabowski: Text if we add further definitions.
Use the Normal style.
The term shall be in bold, and shall start with a lower case letter (unless it is always rendered with a leading capital) followed by a colon, one space, and the definition starting with a lower case letter and no ending full‑stop.
accessor: function, altstep or testcase which is either a direct accessor or, directly or indirectly, calls a direct accessor to access private definitions of the type of the component it runs on.
direct accessor: an accessor function, alststep or testcase which declares a runs on clause with an @accessor modifier. A direct accessor has access to the private definitions defined directly in the component type of its runs on clause.

<defined term>: <definition>
EXAMPLE: text used to clarify abstract rules by applying them literally
NOTE:	This may contain additional information.
[bookmark: _Toc442706617][bookmark: _Toc486242508][bookmark: _Toc486242539][bookmark: _Toc486242784][bookmark: _Toc486252325][bookmark: _Toc486322472][bookmark: _Toc487466731]3.2	Abbreviations)
For the purposes of the present document, the terms and definitions given in ETSI ES 201 873-1 [1], ETSI ES 201 873‑4 [2], ETSI ES 201 873-5 [3], ETSI ES 201 873-6 [4] and given in the following apply:	Comment by Jens Grabowski: Text if we add further abbreviations
Abbreviation format
Use the EW style and separate this from the definition with a tab. Use the EX style for the last term.
<1st ACRONYM> [tab]<Explanation> (style EW)
<2nd ACRONYM> [tab]<Explanation> (style EW)
<3rd ACRONYM> [tab]<Explanation> (style EX)
[bookmark: _Toc487025564][bookmark: _Toc442706618][bookmark: _Toc486242509][bookmark: _Toc486242540][bookmark: _Toc486242785][bookmark: _Toc486252326][bookmark: _Toc486322473][bookmark: _Toc487466732]4	Package conformance and compatibility
The package presented in the present document is identified by the package tag:
	"TTCN-3:2017 Advanced Matching" - to be used with modules complying with the present document.
For an implementation claiming to conform to this package version, all features specified in the present document shall be implemented consistently with the requirements given in the present document and in ETSI ES 201 873‑1 [1] and ETSI ES 201 873‑4 [2].
The package presented in the present document is compatible to:
ETSI ES 201 873-1 [1], version 4.9.1;	Comment by Jens Grabowski: To be updated
ETSI ES 201 873-4 [2], version 4.6.1;
ETSI ES 201 873-5 [3], version 4.8.1;
ETSI ES 201 873-6 [4], version 4.9.1;
ETSI ES 201 873-7 [i.1];
ETSI ES 201 873-8 [i.2];
ETSI ES 201 873-9 [i.3];
ETSI ES 201 873-10 [i.4].
If later versions of those parts are available and should be used instead, the compatibility to the package presented in the present document has to be checked individually.
[bookmark: _Toc487025565]5	Package Concepts for the Core Language
5.0	General

5.1	Classes and Objects
[bookmark: _Toc487025566]5.1.0	General
Explanation of the concepts added to the core language.
5.1.1	Classes
Syntactical Structure
[public | private] [@final |@abstract] [external]
type class Identifier [extends Identifier] ‘{‘ {ClassMember} ‘}’
[finally StatementBlock]
Semantic Description
A class is a type where the values are called objects. A class can declare fields (variables, constants, templates, ports, timers) and methods as its members. Each member name inside the class shall be unique, there is no overloading. The private and protected fields and methods are only accessible by the methods of the class, while the public members of the class can be accessed also from behaviour not defined in the class. The private members of the class can be accessed directly only by members of the class itself.
A class can extend another class. The extended class is called the superclass, while the extending class is called the subclass. The resulting type of a class definition is the set of object instances of the class itself and all instances of its direct or indirect subclasses. A subclass is a subtype of its direct and indirect superclasses and its object instances are type compatible with them.
A class can have optional runs on, mtc and system clauses. This restricts the type of component context that can create objects of that class and all methods of this class. If does not have one of these clauses, it inherits it from its superclass, if the superclass has one. If the superclass has or inherits a runs on, mtc or system clause, the subclass may declare each of these clauses with a more specific component type than the one inherited.
 Restrictions:
· No templates can be used for classes (feature later maybe used for case-class-like pattern matching)
· No passing of object references to the create function of a component type or a function started on another component is allowed.
· No subtyping definition is allowed for class types via the normal subtype definition.
· A field of a class type cannot be constrained.
· No local/global constants or module parameters of class type or containing class type fields or elements are allowed.
· The type anytype only comprises data types and thus no class types.
· Multiple inheritance of classes is only allowed in the special case of component types.
· External classes shall not contain functions with a body and shall not be derived from non-external classes other than object. Internal classes shall not be derived from external classes.
· If the class has a runs on clause, the runs on type for any method shall be a subtype of the class’s runs on type.
· The runs on type of a class must be runs on compatible with the runs on type of the behaviour creating a class.
· The runs on type of a class shall be runs on compatible with the runs on type of the superclass.
· The mtc and system type of a class shall be

5.1.1.1	Abstract classes
A class can be declared as @abstract. In that case, it is allowed that it also declares abstract members who shall be defined by all non-abstract subclasses. Abstract classes cannot be explicitly instantiated, so variables of an abstract class type can only contain references to instances of non-abstract subclasses.

5.1.1.2	External classes
A class may also be declared as external. In that case, all are external functions without a function body. When instantiating an external class, the object being created is provided by the platform adapter and the method calls to the object are delegated via the platform adapter to the corresponding method of the external object.
NOTE: External classes are a way to use object-oriented library functionality to TTCN-3 while still remaining abstract and independent of actual implementation. Libraries for common constructs like stacks, collections, tables can be defined or automatic import mechanisms could be provided.
If an object of an external class is instantiated, it implicitly creates an external object and the internal object has a handle to the external one. The reference to the external object is called a handle. When an external method is invoked on the internal object, the call is delegated to the handle.
NOTE: External objects are possibly shared between different parts of the test system. Therefore, racing conditions and deadlocks must be avoided by the external implementation.

EXAMPLE:
external type class Stack {
 function push(integer v);
 function pop() return integer;
 function isEmpty() return boolean;
}

· Abstract external classes
5.1.1.3	Refinement
If a class shall not be subclassed, it may be declared as @final. Final classes cannot be abstract.
· Refinement of external classes
· No mixing with internal classes
5.1.1.4	Constructors
Syntactic Structure
create ‘(‘ { FormalParameter , }* ‘)’
[‘:’ SuperClass ‘(‘ { ActualParameter , }+ ‘)’]
StatementBlock
Semantic Description
A class can define a constructor called create. If no constructor is defined, a default constructor is implicitly provided where the formal parameters of the constructor are the parameters of the (implicit or explicit) constructor of the direct superclass and one formal in parameter for each declared member field of the class itself in their order of declaration with equivalent type. The constructor is invoked on a type reference to the class and the result of this invocation is a new instance object of the constructor’s specific class. If a class is extending another class with an explicit constructor, that constructor shall be invoked by adding a super-constructor clause with an actual parameter list to the constructor declaration. An implicit constructor will automatically pass the required actual parameters to the constructor of its superclass.
In the constructor, it is allowed to refer to the object being constructed as ‘this’ to reference the fields of the object to be created in case that the names of the formal parameters clash with the names of those fields. The names of the parameters are not in the scope of the class body, but on the same scope level as the class itself. They are explicitly allowed to have the same names as class members.
EXAMPLE:
type class MyClass {
	var integer a;
	const float b;
// implicit constructor:
	create(integer a, float b) {
this.a := a;
this.b := b
	}
}

type class MyClass2 extends MyClass {
	template integer t;
	create(template integer t) : MyClass(2, 0.5) {
		this.t := t;
	}
	// explicit
}5.1.1.5	Destructors
Syntactic Structure
	finally StatementBlock
Semantic Description
A destructor may be provided using a finally declaration following the class body. This destructor will be invoked automatically at the latest before the system deallocates an object instance (which is tool specific and out of the scope of this document) or when the owning component is terminates. The StatementBlock has access to all definitions of the class. The StatementBlock is semantically a function body of a function without return clause.

5.1.1.6	Methods
A method is a function defined inside the class body. It has the same properties and restrictions as any normal function, but it is invoked in an object which can be referred to by the ‘this’ object reference. A method invocation can access the class’s own fields and also the inherited protected fields and methods of its superclasses.
A method inherited from a superclass can be overridden by the subclass by redefining a function of the same name and with the same formal parameter list. When a method is called in an object the version of the most specific class that defines the method in its body will be invoked. The overridden method can be invoked from the overriding class by using the keyword ‘super’ as the object reference of the invocation. If a method shall not be overridden by any subclass, it can be declared as final.
Public methods, if not overridden by the subclass, are inherited from the superclasses. If a public method is declared in a class, it can be invoked also in all objects of its direct or indirect subclasses.
If a public method is overridden, the overriding method shall have the same formal parameters in the same order as the overridden method, but can add additional parameters which either have a default value or are out parameters. If the method known in class A is called in an instance of a subclass of A which has more parameters, all additional actual parameters are left out. Public methods shall be overridden only by public methods. Protected methods may be overridden by public or protected methods.
Private methods are not visible to any scope except the class body that declares them and its members. However, it is not allowed to override them.
The return type of an overriding function shall be the same as the return type of the overridden function with the same template restrictions and modifiers.
Methods shall have no runs on, system or mtc clause directly attached to them. However, they may inherit these clauses from their surrounding class.
NOTE: The runs on compatibility rules still apply normally when calling the super method from the overriding method. That means that the super method can only called by the overriding method if their runs on types are the same.
Method invocation
Syntactical Structure
	[Object ‘.’] FunctionInstance
A method invocation is a function call associated with a certain object defined in the class of that object.
Methods are invoked using the dotted notation on an object reference. Inside the scope of a class, methods of the same class or any visible inherited methods can be invoked without the Object prefix if the object the method shall be invoked in is the same object as the one invoking it. The usual restrictions on actual parameters, as well as runs on, mtc and system types apply also on method invocations. All other restrictions that apply to called functions also apply to method invocation.

5.1.1.7	Member elements
5.1.1.8	Properties
Syntactical Structure
	[@readonly] property Type Name [:= DefaultValue] [‘{‘ {GetFunctionDef | SetFunctionDef} ‘}’]
If a field is declared as a property, it can be accessed via either explicit or implicit setter and getter function or via the dotted notation that uses these setter and getter function if it occurs on the left-hand side or right-hand side respectively.

(Sidenote: Maybe we can use var/const for writable/readonly properties. Simple properties without GetFunctionDef/SetFunctionDef would then just work like normal variables/consts.)

5.1.1.9	Visibility
· Public, private, (protected)
· Members not public (default)
5.1.1.10	Built-in classes
Class Hierarchy
There are some predefined class types for builtin class-type constructions. They can be imported from the module TTCN3BuiltinClasses
· Object
· Runnable
· Component
· Timer
· Port
· MessagePort
· ProcedurePort
· MixedPort

Each class that does not extend another class in the definition implicitly has Object as its superclass. Therefore, a variable of type Object can contain any object of any class.

Port and Component Classes
Port and component types are special class definitions where the resulting type allows additional predefined operations on the objects that are not allowed for other objects. Defining a class type extending a component type has the same effect as declaring the type as a component type.
A component type which does not extend another component type in the definition implicitly has Component as its superclass.
A message port type has the type ‘message port’ as its superclass.
A procedure port type has the type ‘procedure port’ as its superclass.
A mixed port type has the type ‘mixed port’ as its superclass. (Deprecated)
A port subclass can not refine or change the list of in or out types of the original port type.
NOTE: Subclassing port types where the sets of in and out types are different than in the superclass would be problematic because of the covariance contravariance problem for the in and the out types. There are two sets of operations on ports, those that are invoked from the inside of a component owning the port and the configuration operations that are possibly used outside of the owning component. Allowing a port subtype to have a larger in-list (because of contra-variance), this would work fine for receive operations, but not for the connect and map operations. Likewise, allowing a port subtype to have a smaller out-list (because of co-variance) would work fine for send operations but again not for connect and map operations.
PROPOSAL: allow port type subtyping for the ‘inner port view’, i.e. allow larger in lists and smaller out lists. Only port operations are allowed on such references, but not configuration operations.
EXAMPLE:
type port GeneralPort message { in integer, float; out integer; }
type class RefinedPort extends GeneralPort { in integer; out integer, float; }
function myFunction(GeneralPort p) {
 // p can be an instance of GeneralPort or RefinedPort
 p.send(integer:3); // works both for GeneralPort and RefinedPort
 p.receive(integer:?); // works both for GeneralPort and RefinedPort
 p.receive(float:?); // never gets activated if p is an instance of RefinedPort,
 // but that’s the same situation as if no such message arrives for GeneralPort
}

· Timers
· Classes from extension packages (stream ports, monitor)

5.1.2	Objects
Objects are the instances of classes. Each instance comprises an instance of the data of the fields of the class (including all superclasses) and allows invocation of its public methods by other behaviour and protected or private methods by behaviour defined by the object’s class itself.

5.1.2.1	Ownership
Each object that is not a component is owned by the component on which it was created. Component objects are owned by themselves. The owning component of an object can be referenced via the ‘self’ component reference. Methods of objects can only be invoked by behaviour that also runs on the owning component. An object is created on a component if its constructor was invoked by a behaviour running on that component.

5.1.2.2	Object References
Objects are always passed by reference (even though their formal parameters can still be in, inout or out, dependent on the usage of that parameter). A variable of a class type contains only a reference to the object instance and the object is not copied when used as an actual parameter or assigned to a variable, but only the reference to the object. Therefore, multiple variables can contain a reference to the same object simultaneously.
Restrictions:
Object References shall not be passed as actual parameter or part of an actual parameter to either the create function of a component type or a function started on a component. If a structured type contains a field of a class type, this type is not seen as a data type and its values cannot be used for sending and receiving or as an argument to any expression other than the equality/inequality operator.
NOTE: Since objects cannot be shared by different component contexts and for each component at most one behaviour is running, no parallel conflicting access to any of the objects fields or methods is possible.

5.1.2.3	Null reference
An object variable that is not initialized with an object instance contains the special value ‘null’. An object variable or parameter may be compared with the special value ‘null’ or can be assigned the special value ‘null’ explicitly.

5.1.2.4	Select class-statement
Syntactical Stucture
Object ‘.’ class
Semantic Description
The class of an object can be referenced via the ‘class’ operation. The result can be used in a select statement that is similar to a select union statement insofar that it allows only superclasses and known subclasses of the object reference’s class in the context.
EXAMPLE:
type class A {}
type class B extends A {}
var A v_a := B.create();
select (v_a.class) {
	case (B) { … } // will be chosen
	case (A) { … } // will not be chosen
}

5.1.2.5	Of-operator (Dynamic Class Discrimination)
Syntactical Structure
Object of ClassReference
Semantic Description
To check whether an object is an instance is of a certain class, the ‘of’ operator may be used.
It yields a Boolean value which is true if and only if the most specific class of the object referenced on the left-hand side is either equal to or a subclass derived from the class type reference on the right-hand side.
5.1.2.6	Casting
Syntactical Structure
	ClassReference ‘:’ Object
Semantic Description
	An object reference that is declared with a class can be cast to another class of the declared class’s class hierarchy. This operation yields an object reference to the same object but can be used as being of the type being cast to.

Future Extensions
· Multiple Inheritance
· Traits/Mixins/Interfaces
· Mixed external/internal classes
· Object Templates (Case Classes?)
· Covariant/contravariant refinement of overriding method signatures
· Intercomponent (remote) method calls – synchronized methods
· Shared objects
· Explicit destructor invocation

5.1.3	Interworking of OO and core language (better headline needed)
List of issues (provided by Kristof):
· we need to address equality check for objects (maybe other operators too).
· equality check could return true for the variables if they point to the same object.
· maybe some predefined functions also need some attention, e.g., ispresent, isbound, etc…
· if it is possible to create a module level const of a component type (although it can only have the value null), it might be expected to create a module level const object … although with null being the only permitted value.
(the starting premise does not make much sense … but already exists in the standard)
· If we wish to have “record of objects” and classes of field types of records …. + timers being object => we also get “record of timer” and timers as fields of records.
This is currently not allowed in the standard.
· This would also clear up a bit of an inconsistency, where arrays are described as short hands for record of -s … but while it is possible to create arrays of timer, it is not possible to create record of -s of timers currently.
· if both classes and data types can be used as field type of structured types …. maybe we should think about classes as a kind of type, to keep the system logical/easy to describe.
· currently the standard allows templates of component type …. but so far we said we don’t want to deal with template classes just yet.

5.2	Exception handling
5.2.0	General

5.2.1	Extension to ETSI ES 201 873-1, clause 16.1.0 (Functions)
Clause 16.1.0 		General

The syntax of functions is extended with the optional exception, catch and finally clauses.
Syntactical Structure
function [@deterministic] FunctionIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"
[runs on ComponentType]
[mtc ComponentType]
[system ComponentType]
[return [template] Type]
[exception "(" {Type [","]}+ ")"]
StatementBlock
{catch "(" Type Identifier ")" StatementBlock }
[finally StatementBlock]

Clause 16.1.0 		General

The semantic description part is extended.

Functions may have an exception list. The exception list declares, what exception types may be raised during the execution of the function either directly or indirectly.
NOTE 1:	The exception list can be used to communicate to the callers of the function what exceptions to prepare for and by tools to perform stronger static checks. For backward compatibility reasons the exception list is optional.
NOTE 2: The exception list might not be exhaustive. With activated altsteps it might not be possible to precisely know what exceptions might be raised within a function directly or indirectly
Functions may have catch clauses, that can be used to handle exceptions raised directly or indirectly within the function. When an exception is raised directly in a function or can not be handled in the called function raising it, the catch clauses are tried in order of appeareance to find one of the same type. Execution continues with the stamentblock of the first clause, whose type exactly matches the type of the raised exception.
The catch clause declares a variable of an exception, with the type and identifier provided, to hold the value of the exception within the catch clause. The scope of this variable is limited to the statement block of the catch clause, i.e. it is only visible inside the body of the catch clause.
Functions may have a finally block. If present the finally block is always executed before control returns to the location of the call of the function.
Clause 16.1.0 		General

The list of restrictions is extended

k)	The control transfer statements return, and raise shall not be used in the finally clause.

5.2.3	Extension to ETSI ES 201 873-1, clause 16.1.3 (External Functions)
Clause 16.1.3 		General

The sysntax of external functions is extended with the optional exception clause.

Syntactical Structure
external function [@deterministic] ExtFunctionIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"
[return [template [Restriction]] Type] [exception "(" {Type [","]}+ ")"]

Clause 16.1.3 		General

The semantic description part is extended.

External functions may have an exception list. The exception list declares, what exception types may be raised during the execution of the external function.
NOTE 0:	The exception list can be used by tools to perform stronger static checks. For backward compatibility reasons the exception list is optional.
NOTE 1: The exception list might not be exhaustive. It might not be possible to precisely know what exceptions might be raised within an external function directly or indirectly.
5.2.4	Extension to ETSI ES 201 873-1, clause 16.1.4 (Invoking functions from specific places)
Clause 16.1.4 		General

The list of restrictions is extended to avoid side effects.

m)	Raising an exception with the raise exception statement.
5.2.5	Extension to ETSI ES 201 873-1, clause 16.2 (Altsteps)
Clause 16.2.0 		General

The sysntax of altstep is extended with the optional exception, catch and finally clauses.

Syntactical Structure
altstep AltstepIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"
[runs on ComponentType]
[mtc ComponentType]
[system ComponentType]
[exception "(" {Type [","]}+ ")"]
"{"
		{ (VarInstance | TimerInstance | ConstDef | TemplateDef) [";"] }
		AltGuardList
"}"
{catch "(" Type Identifier ")" StatementBlock }
[finally StatementBlock]

Clause 16.2.0 		General

The semantic description part is extended.

Altsteps may have an exception list. The exception list declares, what exception types may be raised during the execution of the altstep either directly or indirectly.
NOTE 0:	The exception list can be used to communicate to the callers of the function what exceptions to prepare for and by tools to perform stronger static checks. For backward compatibility reasons the exception list is optional.
NOTE 1: The exception list might not be exhaustive. With activated altsteps it might not be possible to precisely know what exceptions might be raised within an altstep directly or indirectly
Altsteps may have catch clauses, that can be used to handle exceptions raised directly or indirectly within the altstep. When an exception is raised directly in an altstep or can not be handled in the called function raising it, the catch clauses are tried in order of appeareance to find one of the same type. Execution continues with the stamentblock of the first clause, whose type exactly matches the type of the raised exception.
The catch clause declares a variable of an exception, with the type and identifier provided, to hold the value of the exception within the catch clause. The scope of this variable is limited to the statement block of the catch clause, i.e. it is only visible inside the body of the catch clause.
Altsteps may have a finally block. If present the finally block is always executed before control returns to the location of the call of the altstep.
Clause 16.2.0 		General

The list of restrictions is extended

g)	The control transfer statements return, and raise shall not be used in the finally clause.

5.2.6	Extension to ETSI ES 201 873-1, clause 16.3 (Test cases)
Clause 16.3 	

The sysntax of test cases is extended with the optional catch and finally clauses.

Syntactical Structure
testcase TestcaseIdentifier
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
runs on ComponentType
[system ComponentType]
StatementBlock
{catch "(" Type Identifier ")" StatementBlock }
[finally StatementBlock]

Clause 16.3 		

The semantic description part is extended.

A test case may have catch clauses, that can be used to handle exceptions raised directly or indirectly within the test case. When an exception is raised directly in the test case or can not be handled in the called function raising it, the catch clauses are tried in order of appeareance to find one of the same type. Execution continues with the stamentblock of the first clause, whose type matches the type of the raised exception.
The catch clause declares a variable of an exception, with the type and identifier provided, to hold the value of the exception within the catch clause. The scope of this variable is limited to the statement block of the catch clause, i.e. it is only visible inside the body of the catch clause.
Test cases may have a finally block. If present the finally block is always executed before the test case terminates.
Exceptions raised directly or indirectly within the test case and not handled latest by the catch clauses of the testcase results in the testcase finishing with a dynamic error. In this situation the dynamic error has to reference not handling the exception as the reason of error.
NOTE 0:	The reason for the dynamic error is not the raising of the exception, but the lack of handling within the testcase.
Clause 16.3 		

The list of restrictions is extended

c)	The control transfer statements return, and raise shall not be used in the finally clause.
5.2.6	Extension to ETSI ES 201 873-1, clause 18 (Overview of program statements and operations)
The list of statements in table 15. needs to be extended with raise exceptionstatement as indicated below.
	Statement
	Associated keyword or symbol
	Can be directly or indirectly invoked by module control, but not by test components
	Can be invoked by functions, test cases and altsteps running on test components
	Can be directly or indirectly invoked from specific places (see note 1)

	Expressions
	(…)
	Yes
	Yes
	Yes

	Basic program statements

	Assignments
	:=
	Yes
	Yes
	Yes (see note 4)

	If-else
	if (…) {…} else {…}
	Yes
	Yes
	Yes

	Select case
	select case (…) { case (…) {…} case else {…}}
	Yes
	Yes
	Yes

	For loop
	for (…) {…}
	Yes
	Yes
	Yes

	While loop
	while (…) {…}
	Yes
	Yes
	Yes

	Do while loop
	do {…} while (…)
	Yes
	Yes
	Yes

	Label and Goto
	label / goto
	Yes
	Yes
	Yes

	Stop execution
	stop
	Yes
	Yes
	

	Returning control
	return
	
	Yes (see note 5)
	Yes

	Leaving a loop, alt, altstep or interleave
	break
	Yes
	Yes
	Yes

	Next iteration of a loop
	continue
	Yes
	Yes
	Yes

	Raise exception
	raise
	Yes
	Yes
	Yes

	Logging
	log
	Yes
	Yes
	Yes

	Statements and operations for alternative behaviours

	Alternative behaviour
	alt {…}
	Yes (see note 2)
	Yes
	

	Re-evaluation of alternative behaviour
	repeat
	Yes
	Yes
	

	Interleaved behaviour
	interleave {…}
	Yes (see note 2)
	Yes
	

	Activate a default
	activate
	Yes
	Yes
	

	Deactivate a default
	deactivate
	Yes
	Yes
	

	Configuration operations

	Create parallel test component
	create
	
	Yes
	

	Connect component port to component port
	connect
	
	Yes
	

	Disconnect two component ports
	disconnect
	
	Yes
	

	Map port to test interface
	map
	
	Yes
	

	Unmap port from test system interface
	unmap
	
	Yes
	

	Get MTC component reference value
	mtc
	
	Yes
	Yes

	Get test system interface component reference value
	system
	
	Yes
	Yes

	Get own component reference value
	self
	
	Yes
	Yes

	Start execution of test component behaviour
	start
	
	Yes
	

	Stop execution of test component behaviour
	stop
	
	Yes
	

	Terminating the testcase with an error verdict
	testcase.stop
	
	Yes
	Yes

	Remove a test component from the system
	kill
	
	Yes
	

	Check termination of a PTC behaviour
	running
	
	Yes
	

	Check if a PTC exists in the test system
	alive
	
	Yes
	

	Wait for termination of a PTC behaviour
	done
	
	Yes
	

	Wait a PTC cease to exist
	killed
	
	Yes
	

	Communication operations

	Send message
	send
	
	Yes
	

	Invoke procedure call
	call
	
	Yes
	

	Reply to procedure call from remote entity
	reply
	
	Yes
	

	Raise exception (to an accepted call)
	raise
	
	Yes
	

	Receive message
	receive
	
	Yes
	

	Trigger on message
	trigger
	
	Yes
	

	Accept procedure call from remote entity
	getcall
	
	Yes
	

	Handle response from a previous call
	getreply
	
	Yes
	

	Catch exception (from called entity)
	catch
	
	Yes
	

	Check (current) message/call received
	check
	
	Yes
	

	Clear port queue
	clear
	
	Yes
	

	Clear queue and enable sending & receiving at a to port
	start
	
	Yes
	

	Disable sending and disallow receiving operations to match at a port
	stop
	
	Yes
	

	Disable sending and disallow receiving operations to match new messages/calls
	halt
	
	Yes
	

	Check the state of a port
	checkstate
	
	Yes
	

	Timer operations

	Start timer
	start
	Yes
	Yes
	

	Stop timer
	stop
	Yes
	Yes
	

	Read elapsed time
	read
	Yes
	Yes
	

	Check if timer running
	running
	Yes
	Yes
	

	Timeout event
	timeout
	Yes
	Yes
	

	Verdict operations

	Set local verdict
	setverdict
	
	Yes
	

	Get local verdict
	getverdict
	
	Yes
	Yes

	External actions

	Stimulate an (SUT) action externally
	action
	Yes
	Yes
	

	Execution of test cases

	Execute test case
	execute
	Yes
	Yes
(see note 3)
	

	NOTE 1:	Specific places are defined in clause 16.1.4. Only operations that do not have any potential side effects on snapshot evaluation are allowed.
NOTE 2:	Can be used to control timer operations only.
NOTE 3:	Can only be used in functions and altsteps that are used in module control.
NOTE 4:	Changing of component variables is disallowed.
NOTE 5:	Can be used in functions and altsteps but not in test cases.

5.2.7	Extension to ETSI ES 201 873-1, clause 19 (Basic program statements)
Clause 19.0 		General

The list of statements in table 16. needs to be extended with the raise exception statment as indicated below.
	Basic program statements

	Statement
	Associated keyword or symbol

	Assignments
	:=

	If-else
	if (…) {…} else {…}

	Select case
	select case (…) { case (…) {…} case else {…}}

	For loop
	for (…) {…}

	While loop
	while (…) {…}

	Do while loop
	do {…} while (…)

	Label and Goto
	label / goto

	Stop execution
	stop

	Returning control
	return

	Leaving a loop, alt, altstep or interleave
	break

	Next iteration of a loop
	continue

	Raise exception
	raise

	Logging
	log

Clause 19 		

Section 19 is extended with a new sub-section.
[bookmark: _Toc488920066][bookmark: _Toc474744319][bookmark: _Toc474749215][bookmark: _Toc474750454][bookmark: _Toc474843888][bookmark: _Toc482175967]19.14		The Raise exception statement
The raise exception statement raises an exception, causing the execution to continue at the catch block closest in the procedure call hierarchy, also executing all finally blocks it encounters while traversing the procedure call hierarchy.
Syntactical Structure
raise TemplateInstance

Semantic Description
The raise statement is used to raise an exception. On executing a raise exception statement the statement blocks, loops, alt statements or interleave statement within the encompassing function/altstep/testcase are left. If the encompassing function, altstep or testcase has a catch block with the exact same type as that of the raised exception value, execution continues in that catch block. If the encompassing function or altstep does not have catch blocks or none of the catch blocks can handle the raised exception, execution leaves the function or altstep to handle the exception in the calling function, altstep or testcase. An exception not handled before reaching a testcase and by the testcase itself causes a dynamic error.
If a function, altstep or testcase has a finally block, this finally block is always executed before the function, altstep, testcase terminates. If an exception was raised and handled in a catch block, the finally block is executed after the catch block. If there was no exception raised, or an exception was raised but not handled in any catch blocks the finally block is executed before the function, altstep or testcase terminates.
The parameter of the raise operation shall evaluate to a value, that the exception will have.
Exceptions are specified as types. Therefore the exception value may either be derived from a template conforming to the template(value) restriction or be the value resulting from an expression (which of course can be an explicit value). The type of the value specification to the raise operation shall be determinable as it is necessary to avoid any ambiguity of the type of the value being raised.
NOTE 0:	The type of the raised exception should be provided explicitly for literal values. Catch clauses with synonym types or restricted types will only catch exceptions of the same type.

Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5 and shown in table 15, the following restrictions apply:
a)	An exception shall only be raised inside a function, altstep or testcase.
b)	Exceptions raised directly inside a function or altstep that provides an exceptions clause and not handled by a catch clause of the same function or altstep, shall be of a type listed in the exception clause.
c)	The TemplateInstance shall conform to the template(value) restriction (see clause 15.8).
d)	Exceptions shall not be raised directly or indirectly inside finally blocks of functions, altsteps or testcases.
Examples
Example 1:
	raise (v_myVariable + v_yourVariable - 2);
	// Raises an exception with a value which is the result of the arithmetic expression

	raise integer:5;	// Raises an exception with the integer value 5

	raise charstring:"My string";
	// Raises an exception with the charstring value "My string"

Example 2: catching an exception raised in a called function.

	type record of charstring t_registeredNames;
	type component myComponent {
		var t_registerdNames v_registeredNames;
	}
	function f_init(in charstring name) exception (charstring, integer) runs on myComponent
	{
 	 ...
 	 if (name_was_not_registered) {
	 raise ("Could not initialize " & name); // when the exception is raised f_init teminates
 	 }
	 ...
	}

	function f_operation(in charstring user1, in charstring user2) exception (integer)
	runs on myComponent {
	 f_init(user1);
	 f_init(user2);
	 ...
	} catch (charstring e) {
	 // the exception is available for processing in the e variable
	 // release resources and terminate function
	} catch (integer e) {
	 //there was some other issue
	 // release resources
	 raise e; /// the exception is raised again to be handled in the calling function
	}

Example 3: finally is always executed

	function f_operation2(in charstring user1, in charstring user2) exception (charstring)
	runs on myComponent {
	 f_init(user1);
	 f_init(user2);
	 …
	} finally {
	 // finally is executed wether there was an exception or not before the function terminates
	}

Example 4: the exception can travel through several functions in the call hierarchy until handled

	function f_operation3(in charstring user1, in charstring user2) exception (charstring)
	runs on myComponent {
	 operation2(user1, user2); // an exception is raised in f_init
	 …
	} finally {
	 // after the finally block in f_operation2 this finally block is also executed
	 // the exception is not cought.
	}

Example 5: exception not cought latest in a testcase is reported as dynamic error
	
	testcase t_myTest1() runs on myComponent {
	 f_init("user1");
	 f_init("unknown user");// bad argument will raise an exception in f_init
	 … // because of the raised exception execution continues in the finally block
	} finally {
	 … // via the runs on component resources can be freed
	 // as the exception is not cought dynamic error is reported
	}

Example 6: the type of the exception must match the type of the catch clause exactly
	
	function f_example() exception (integer) {
	 raise integer:5;
	}

	type integer MyIntegerSynonim;
	type integer MyIntegerRange (0 .. 255);

	function f_example2() {
	 f_example();
	} catch (MyIntegerRange e) {
	 // The exception is not cought here.
	 // The type of the raised exception and the type of the catch type has to be the same
	} catch (MyIntegerSynonim e) {
	 // The exception is not cought here.
	 // The type of the raised exception and the type of the catch type has to be the same
	} catch (integer e) {
	 // As the exception raised in f_example was raise with the integer type it is handled here
	}

5.2.8	Extension to ETSI ES 201 873-1, clause A.1 (TTCN 3 BNF)
Clause A.1.5.0 		General

The list of reserved terminals which are keywords in table A.3 needs to be extended with finally as indicated below.
	action
activate
address
alive
all
alt
altstep
and
and4b
any
anytype

bitstring
boolean
break

case
call
catch
char
charstring
check
clear
complement
component
connect
const
continue
control
create

deactivate
decmatch
default
disconnect
display
do
done

else
encode
enumerated
error
except
exception
execute
extends
extension
external
	fail
false
finally
float
for
friend
from
function

getverdict
getcall
getreply
goto
group

halt
hexstring

if
ifpresent
import
in
inconc
infinity
inout
integer
interleave

kill
killed

label
language
length
log

map
match
message
mixed
mod
modifies
module
modulepar
mtc
	noblock
none
not
not4b
nowait
null

octetstring
of
omit
on
optional
or
or4b
out
override

param
pass
pattern
permutation
port
present
private
procedure
public

raise
read
receive
record

recursive
rem
repeat
reply
return
running
runs
	select
self
send
sender
set
setverdict
signature
start
stop
subset
superset
system

template
testcase
timeout
timer
to
trigger
true
type

union
universal
unmap

value
valueof
var
variant
verdicttype

while
with

xor
xor4b

Clause A.1.6.1.4 		Function definitions

The BNF for the FunctionDef production needs to be extended.
[bookmark: TFunctionDef]FunctionDef ::= FunctionKeyword [DeterministicModifier] Identifier
 "(" [FunctionFormalParList] ")" [RunsOnSpec] [MtcSpec]
 [SystemSpec] [ReturnType] [ExceptionSpec] StatementBlock
					[CatchBlocks] [FinallyBlock]

Clause A.1.6.1.4 		Function definitions

The BNF needs to be extended with the following clauses and productions.

CatchBlocks ::= CatchBlock { CatchBlock }
CatchBlock ::= CatchOpKeyword "(" Type Identifier ")" StatementBlock
FinallyBlock ::= FinallyKeyword StatementBlock
FinallyKeyword ::= "finally"

Clause A.1.6.1.6 		Testcase definitions

The BNF for test case definitions needs to be extended.
[bookmark: TTestcaseDef]TestcaseDef ::= TestcaseKeyword Identifier "(" [TemplateOrValueFormalParList]
 ")" ConfigSpec StatementBlock
					[CatchBlocks] [FinallyBlock]

Clause A.1.6.1.7 		Altstep definitions

The BNF for altstep definitions needs to be extended.
[bookmark: TAltstepDef]AltstepDef ::= AltstepKeyword Identifier "(" [FunctionFormalParList]
 ")" [RunsOnSpec] [MtcSpec] [SystemSpec] [ExceptionSpec] "{" AltstepLocalDefList
 AltGuardList "}"
					[CatchBlocks] [FinallyBlock]

Clause A.1.6.1.10 		External function definitions

The BNF for external functions definitions needs to be extended.
[bookmark: TExtFunctionDef]ExtFunctionDef ::= ExtKeyword FunctionKeyword [DeterministicModifier]
 Identifier "(" [FunctionFormalParList] ")" [ReturnType]
						[ExceptionSpec]

Clause A.1.6.8.2 		Behaviour statements

The BNF for behaviour statements needs to be extended with the RaiseExceptionStatement.
[bookmark: TBehaviourStatements]BehaviourStatements ::= TestcaseInstance |
 FunctionInstance |
 ReturnStatement |
 AltConstruct |
 InterleavedConstruct |
 LabelStatement |
 GotoStatement |
 RepeatStatement |
 DeactivateStatement |
 AltstepInstance |
 ActivateOp |
 BreakStatement |
 ContinueStatement |
							 RaiseExceptionStatement

Clause A.1.6.8.2 		Behaviour statements

The BNF needs to be extended with the following clause.

RaiseExceptionStatement ::= RaiseKeyword TemplateInstance
/* STATIC SEMANTICS - The TemplateInstance shall evaluate to an explicit value. */

Visibility of component definitions
Extension to ETSI ES 201 873-1, clause 6 (Types and Values)
Clause 6.2.10.1 		Component type definition

The text is modified as follows:
It is also possible to declare constants, variables, templates, and timers and functions local to a particular component type with either private or non-private visibility. These Non-private declarations are visible to all testcases, functions and altsteps that run on an instance of the given component type. This shall be explicitly stated using the runs on keyword (see clause 16) in the testcase, function or altstep header. Component type definitions are associated with the component instance and follow the scope rules defined in clause 5.2. Each new instance of a component type will thus have its own set of constants, variables, templates and timers as specified in the component type definition (including any initial values, if stated). Constants used in the constant expressions of type declarations for variables, constants or ports shall meet with the restrictions in clause 10, however constants used in the constant expressions of initial values for variables, constants, templates or timers do not have to obey these restrictions.
Clause 6.2.10.1 		Component type definition

The syntax of component type definittion is extended with the optional private clause and the FunctionDef clause.
Syntactical Structure
type component ComponentTypeIdentifier "{"
		{ [private]
 (PortInstance
		| VarInstance
		| TimerInstance
		| ConstDef
 | TemplateDef
 | FunctionDef)
 }
"}"

Clause 6.2.10.1 		Component type definition

The semantic description part is extended.
Each component local definition may optionally be declared private. All local private component definitions are only accessible to functions defined in the same component type. All non-private component local definitions are accessible to all functions, altsteps and testcases with a runs on clause referencing a component type that is runs-on compatible with this component type.
Functions defined within a component, implicitly have a runs on clause referencing that component type and they may additionally use all private definitions of the directly containing component type. When a function defined within a component type has a runs on clause, the component type referenced in the caluse must be the one containing the function definition.
Clause 6.2.10.1 		Component type definition

Examples
EXAMPLE 4:	Component type with private variable and function
	type component MyCompWithPrivateDataType
	{
		private var charstring secretText;
		function getSecretText() returns charstring {
			… // potentially some decryption operations
			return secretText;
		}
		function setSecretText(in charstring text) {
			…// potentially some encryption operations
			secretText := text;
		}

		// Defines a component type which has a private variable that can only be accessed via 2
		// functions (getSecretText and setSecretText) disallowing potential corruption of content.
	}
	function manipulate_data() runs on MyCompWithPrivateDataType {
		var charstring temp;
		temp := secretText; // error, direct access to private field not allowed.
		secretText[5] := "T"; // error, direct access to private field not allowed.
		temp := getSecretText(); // allowed, internal function can safely access private members
		setSecretText("My new password");
			// allowed, internal functions can safely access private members
	}

Clause 6.2.10.2 		Reuse of Component types

The syntax of component type definittion is extended with the optional private clause.
Syntactical Structure
type component ComponentTypeIdentifier extends ComponentTypeIdentifier
		{ "," ComponentTypeIdentifier} "{"
		{ [private]
		(PortInstance
		| VarInstance
		| TimerInstance
		| ConstDef
 | TemplateDef
		| FunctionDef) }
"}"

Clause 6.2.10.2 		Reuse of Component types

The semantic description part is modified as follows:
In such a definition, the new type definition is referred to as the extended type, and the type definition references following the extends keyword areis referred to as the parent types. The effect of this definition is that the extended type will implicitly also contain all definitions from the parent type. It is called the effective type definition.
It is allowed to have one component type extending several parent types in one definition, which have to be specified as a comma-separated list of component type references in the definition. Any of the parent types may also be defined by means of extension. The effective component type definition of the extended type is obtained as the collection of all constant, variable, template, timer, and port and function definitions contributed by the parent types (determined recursively if a parent type is also defined by means of an extension) and the definitions declared in the extended type directly. The effective component type definition shall be name clash free for all non-private definitions.
Even though the private definitions of the parent types are also inherited by the extended type, they can not be accessed by functions or altsteps with a runs on clause referencing the extended component type. Only the private definitions, declared directly in the extended type are accessible and only by functions declared in the body of the extended component type.
The definitions of every direct or indirect parent type are added exactly once to the extended type, even if the same type appears multiple times in the set of direct or indirect parent types.
NOTE 1:	It is not considered to be a different declaration and hence causes no error if a specific constant, variable, template, timer or port definition is contributed to the extended type by different parent types (via different extension paths).
The semantics of component types with extensions are defined by simply replacing each component type definition by its effective component type definition as a pre-processing step prior to using it.
NOTE 2:	For component type compatibility, this means that a component reference c of type CT1, which extends CT2 directly or indirectly, is compatible with CT2, and test cases, functions and altsteps specifying CT2 in their runs on clauses can be executed on c (see clause 6.3.3).
Restrictions
In addition to the general static rules of TTCN‑3 given in clause 5, the following restrictions apply:
a)	When defining component types by extension, there shall be no name clash between the non-private definitions being taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port, variable, constant, template, or timer or function identifier that is declared both in the parent type (directly or by means of extension) and the extended type. It is not considered to be a name clash if a specific port, variable, constant or timer definition is contributed to the extended type via different extension paths.
b)	When defining component types by extending more than one parent type, there shall be no name clash between the non-private definitions of the different parent types, i.e. there shall not be a port, variable, constant, or timer or function identifier that is declared in any two of the parent types (directly or by means of extension). It is not considered to be a name clash if a specific port, variable, constant or timer definition is contributed to the extended type via different extension paths.
c)	It is allowed to extend component types that are defined by means of extension, as long as no cyclic chain of definition is created.

Clause 6.2.10.2 		Reuse of Component types

Examples
EXAMPLE 4:	Component type extension from several parent types
	type component MyCompB { timer T };
	type component MyCompC { var integer T };
	type component MyCompD extends MyCompB, MyCompC {}
		// ERROR - name clash between MyCompB and MyCompC

	// MyCompB is defined above
	type component MyCompE extends MyCompB {
		var integer MyVar1 := 10;
	}

	type component MyCompF extends MyCompB {
		var float MyVar2 := 1.0;
	}

	type component MyCompG extends MyCompB, MyCompE, MyCompF {
		// No name clash.
		// All three parent types of MyCompG have a timer T, either directly or via extension of
		// MyCompB; as all these stem (directly or via extension) from timer T declared in MyCompB,
		// which make this form of collision legal.
		/* additional definitions here */
	}
	type component MyCompH { private integer MyVar1 := 20; }
	type component MyCompI extends MyCompH { private float MyVar1 := 2.0 } // no name clash
	type component MyCompJ extends MyCompH, MyCompI {
		private boolean MyVar1 := true
		// no nameclash with inherited MyVar1 from MyCompH and MyCompI
		// MyVar1 from MyCompH is added only once
	}

Clause 6.3.3 		Compatibility of component types

The text has been modified as follows:
Type compatibility of component types has to be considered in different conditions:
Compatibility of a component reference value with a component type (e.g. when passing a component reference as an actual parameter to a function or an altstep or when assigning a component reference value to a variable of different component type): a component reference "b" of component type "B" is compatible with component type "A" if "B" directly or indirectly extends "A". all definitions of "A" have identical definitions in "B".

Runs on compatibility: a function or altstep referring to component type "A" in its runs on clause may be called or started on a component instance of type "B"'B' if the component instance is compatible with component type "A" according to condition 1).all the definitions of "A" have identical definitions in "B".
If the runs on clause of the function or altstep has the @accessor modifier or the function directly or indirectly calls a function or altstep with the @accessor modifier, the function or alstep may only be called or started if component type "B" directly or indirectly extend type "A".
Mtc compatibility: a function or altstep referring to component type "A" in its mtc clause may be called or started in any context that has a mtc clause of type "B" or a testcase with a runs on clause of type "B" if all the non-private port definitions of "A" have identical non-private definitions in "B". If the type of the mtc is unknown in the calling function, this can lead to runtime errors if the component type "A" is not mtc-compatible with the type of the running mtc.
System compatibility: a function or altstep referring to component type "A" in its system clause may be called or started in any context that has a system clause of type "B" or a test case with a runs on clause of type "B" and no system clause if all the non-private port definitions of "A" have identical non-private definitions in "B". If the type of the system is unknown in the calling function, this can lead to runtime errors if the component type "A" is not system-compatible with the type of the system the current test case was started on.
Identity of definitions in "A" with definitions of "B" is determined based on the following rules:
a)	For port instances, both the type and the identifier shall be identical.
b)	For timer instances, identifiers shall be identical and either both shall have identical initial durations or both shall have no initial duration.
c)	For variable instances and constant definitions, the identifiers, the types and initialization values shall be identical (in case of variables this means that either the values are missing in both definitions or are the same).
d)	For local template definitions, the identifiers, the types, the formal parameter lists and the assigned template or template field values shall be identical.
Extension to ETSI ES 201 873-1, clause 16 (Functions, altsteps and testcases)
Clause 16.1		Functions

The syntax of function definittion is extended with the optional @accessor clause.
function [@deterministic] FunctionIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"
[[@accessor] runs on ComponentType]
[mtc ComponentType]
[system ComponentType]
[return [template] Type]
StatementBlock
Clause 16.1		Functions

The semantic description part is extended.
Functions may have a runs on clause, referencing a component type. If a function has a runs on clause, it may use all non-private definitions of the effective type referenced by this runs on clause. If the runs on clause has the @accessor modifier and the function is defined in the same module as the referenced component type or a friend module of that, it may additionally use all private definitions defined directly in the type definition referenced by the runs on clause.
Clause 16.2		Altsteps

The syntax of function definittion is extended with the optional @accessor clause.
altstep AltstepIdentifier
"(" [{ (FormalValuePar | FormalTimerPar | FormalTemplatePar | FormalPortPar) [","] }] ")"
[[@accessor] runs on ComponentType]
[mtc ComponentType]
[system ComponentType]
"{"
		{ (VarInstance | TimerInstance | ConstDef | TemplateDef) [";"] }
		AltGuardList
"}"

Clause 16.2		Altsteps

The semantic description part is extended.
Altsteps may have a runs on clause. If an altstep has a runs on clause, it may use all non-private definitions of the effective type referenced by this runs on clause. If the runs on clause has the @accessor modifier and the altstep is defined in the same module as the referenced type or a friend module of that, it may additionally use all private definitions defined directly in the type definition of the type referenced by the runs on clause.
Clause 16.3		Test cases

The syntax of function definittion is extended with the optional @accessor clause.
testcase TestcaseIdentifier
"(" [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
[@accessor] runs on ComponentType
[system ComponentType]
StatementBlock

Clause 16.3		Test cases

The semantic description part is modified as follows:
A test case is considered to be a self-contained and complete specification that checks a test purpose. The result of a test case execution is a test verdict.
A test case header has two parts:
1. interface part (mandatory): denoted by the keyword runs on which references the required component type for the MTC and makes the associated port definition names visible within the MTC behaviour; and
1. test system part (optional): denoted by the keyword system which references the component type which defines the required ports for the test system interface. The test system part shall only be omitted if, during test execution, only the MTC is instantiated. In this case, the MTC type defines the test system interface ports implicitly.

Clause 16.3		Test cases

The semantic description part is extended.
A testcase may use all non-private definitions of the effective type referenced by its runs on clause. If the runs on clause has the @accessor modifier and the testcase is defined in the same module as the referenced type or a friend module of that, it may additionally use all private definitions defined directly in the type definition of the type referenced by the runs on clause.
Extension to ETSI ES 201 873-1, clause A.1 (TTCN 3 BNF)
Clause A.1.5.0 		General

The list of reserved terminals which are modifiers in table A.4 needs to be extended with accessor as indicated below.
	@decoded
@deterministic
	@fuzzy
@accessor
	@index
	@lazy
@nocase

Clause A.1.6.1.1 		Typedef definitions

The BNF for component definition needs to be extended.
[bookmark: TComponentDefList]ComponentDefList ::= {["private"] ComponentElementDef [WithStatement] [SemiColon]}
[bookmark: TComponentElementDef]ComponentElementDef ::= PortInstance |
 VarInstance |
 TimerInstance |
 ConstDef |
 TemplateDef |
							FunctionDef

Clause A.1.6.1.4 		Function definitions

The BNF for runson Specification needs to be extended.
[bookmark: TRunsOnSpec]RunsOnSpec ::= ["@accessor"] RunsKeyword OnKeyword ComponentType

6	TRI extensions for object oriented features
6.0	General

6	TCI extensions for object oriented features
6.0	General

5	User defined clause(s) from here onwards (style H1)
From clause 4, the technical content of the deliverable shall be inserted. Each clause shall have a title which shall be placed after its number separated by a tab.
A clause can have numbered subdivisions, e.g. 5.1, 5.2, 5.1.1, 5.1.2, etc. This process of subdivisions may be continued as far as the sixth heading level (e.g. 6.5.4.3.2.1).
For numbering issues, see clause 2.12.1 of the EDRs.
Use the Heading style appropriate to its level (see clause 6.1, table 8 of the EDRs).
Separate the number of the heading and the text of the heading with a tab.
Treat clause titles as normal text (i.e. no additional capitalization), but no full stop.
IF YOUR DOCUMENT CONTAINS FIGURES, TABLES AND/OR MATHEMATICAL FORMULAE, THIS IS THE WAY THEY SHALL BE PREPARED:
- Figures shall be prepared in accordance to clauses 7.5.2 and/or 7.1 of the EDRs. The figure number and title shall be below the figure. An explicit figure title is optional. See clause 5.1.5 if you need to include notes to figures.
Use TF style for the figure number and title.
Use FL style on the paragraph which contains the figure itself.
If applicable, the figure number is followed by a colon, a space and the table title.
Maximum width for figures is 17 cm and maximum height is 22 cm.
Should you wish to number figures automatically, "Sequence numbering and bookmarking" (see clause 6.9.2 of the EDRs) is highly recommended.
- Tables shall be prepared in accordance to clause 5.2 of the EDRs. If you have tables in your document, the table number and title shall be above the table itself. An explicit table title is optional.
Use TH style for the table number and title.
If applicable, the table number is followed by a colon, a space and the table title.
Should you wish to number tables automatically, "Sequence numbering and bookmarking" (see clause 6.9.2 of the EDRs) is highly recommended.
- Mathematical formulae shall be prepared in accordance to clause 5.3 of the EDRs.
Numbers given to the clauses, tables, figures and mathematical formulae of an annex shall be preceded by the letter designating that annex followed by a full-stop (e.g. figure B.1, table C.4). The numbering shall start afresh with each annex. A single annex shall be designated "Annex A".
NOTE:	For an easy application of the ETSI styles download "the ETSI styles toolbar" from website.
[bookmark: _Toc442706619][bookmark: _Toc486242510][bookmark: _Toc486242541][bookmark: _Toc486242786][bookmark: _Toc486252327][bookmark: _Toc486322474][bookmark: _Toc487466733]5.1	User defined subdivisions of clause(s) from here onwards (style H2)
<Text>.
THE FOLLOWING TEXT IS TO BE USED WHEN APPROPRIATE:
[bookmark: _Toc442706620][bookmark: _Toc486242511][bookmark: _Toc486242542][bookmark: _Toc486242787][bookmark: _Toc486252328][bookmark: _Toc486322475][bookmark: _Toc487466734]Proforma copyright release text block
This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.
Notwithstanding the provisions of the copyright clause related to the text of the present document, ETSI grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.
[bookmark: _Toc486242512][bookmark: _Toc486242543][bookmark: _Toc486242788][bookmark: _Toc486252329][bookmark: _Toc486322476][bookmark: _Toc487466735]Annexes
Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).
Numbers given to the clauses, tables, figures and mathematical formulae of an annex shall be preceded by the letter designating that annex followed by a full-stop. The numbering shall start afresh with each annex. A single annex shall be designated "Annex A".
Clauses in annex A shall be designated "A.1", "A.2", "A.3", etc. (further details in clause 2.12.1 of the EDRs).
Use the Heading 8 style. Insert a line break ("shift" + "enter") between the colon and the title.
For all annex clause headings use the appropriate Heading styles, starting from Heading 1, e.g. for clause A.1 use Heading 1, for clause A.1.1 use Heading 2. (See clause 6.1, table 8 of the EDRs).
<PAGE BREAK>
[bookmark: _Toc442706622][bookmark: _Toc486242513][bookmark: _Toc486242544][bookmark: _Toc486242789][bookmark: _Toc486252330][bookmark: _Toc486322477][bookmark: _Toc487466736]Annex A (normative or informative):
Title of annex (style H8)
<Text>.
<PAGE BREAK>
[bookmark: _Toc442706623][bookmark: _Toc486242514][bookmark: _Toc486242545][bookmark: _Toc486242790][bookmark: _Toc486252331][bookmark: _Toc486322478][bookmark: _Toc487466737]Annex B (normative or informative):
Title of annex (style H8)
[bookmark: _Toc442706624][bookmark: _Toc486242515][bookmark: _Toc486242546][bookmark: _Toc486242791][bookmark: _Toc486252332][bookmark: _Toc486322479][bookmark: _Toc487466738]B.1	First clause of the annex (style H1)
[bookmark: _Toc442706625][bookmark: _Toc486242516][bookmark: _Toc486242547][bookmark: _Toc486242792][bookmark: _Toc486252333][bookmark: _Toc486322480][bookmark: _Toc487466739]B.1.1	First subdivided clause of the annex (style H2)
<Text>.
Abstract Test Suite (ATS) text block
This text should be used for ATSs using either TTCN-2 or TTCN-3. In case:
TTCN-2 is used: attach the TTCN.MP;
TTCN-3 is used: attach the TTCN-3 files and other related modules, as well as the HTML documentation of the TTCN-3 files.
[bookmark: _Toc442706626]<PAGE BREAK>
[bookmark: _Toc451528310][bookmark: _Toc486233489][bookmark: _Toc486233593][bookmark: _Toc486233750][bookmark: _Toc486234804][bookmark: _Toc486234961][bookmark: _Toc486242793][bookmark: _Toc486252334][bookmark: _Toc486322481][bookmark: _Toc487466740]Annex <X> (normative or informative):
ATS in TTCN-2 (style H8)
This text shall only be used for ATSs using TTCN version 2 (TTCN-2):
[bookmark: _Toc451528311][bookmark: _Toc486233490][bookmark: _Toc486233594][bookmark: _Toc486233751][bookmark: _Toc486234805][bookmark: _Toc486234962][bookmark: _Toc486242794][bookmark: _Toc486252335][bookmark: _Toc486322482][bookmark: _Toc487466741]<X.1>	Introduction (style H1)
This ATS has been produced using the Tree and Tabular Combined Notation version 2 (TTCN-2) according to ISO/IEC 9646-3 [<bookmark reference>].
[bookmark: _Toc451528312][bookmark: _Toc486233491][bookmark: _Toc486233595][bookmark: _Toc486233752][bookmark: _Toc486234806][bookmark: _Toc486234963][bookmark: _Toc486242795][bookmark: _Toc486252336][bookmark: _Toc486322483][bookmark: _Toc487466742]<X.2> The TTCN-2 Machine Processable form (TTCN.MP) (style H1)
The TTCN.MP representation corresponding to this ATS is contained in an ASCII file (<any_name>.MP contained in archive <Shortfilename>.ZIP) which accompanies the present document.
<PAGE BREAK>
[bookmark: _Toc451528313][bookmark: _Toc486233492][bookmark: _Toc486233596][bookmark: _Toc486233753][bookmark: _Toc486234807][bookmark: _Toc486234964][bookmark: _Toc486242796][bookmark: _Toc486252337][bookmark: _Toc486322484][bookmark: _Toc487466743]Annex <X+1> (normative or informative):
ATS in TTCN-3 (style H8)
This text shall only be used for ATSs using TTCN version 3 (TTCN-3):
[bookmark: _Toc451528314][bookmark: _Toc486233493][bookmark: _Toc486233597][bookmark: _Toc486233754][bookmark: _Toc486234808][bookmark: _Toc486234965][bookmark: _Toc486242797][bookmark: _Toc486252338][bookmark: _Toc486322485][bookmark: _Toc487466744]<X+1>.1	Introduction (style H1)
This ATS has been produced using the Testing and Test Control Notation (TTCN) according to ETSI ES 201 873-1 [<bookmark reference >].
Indicated here which parts of the ES 201 873 series and its versions (editions) have been used; also indicate any extensions which have been used.
[bookmark: _Toc451528315][bookmark: _Toc486233494][bookmark: _Toc486233598][bookmark: _Toc486233755][bookmark: _Toc486234809][bookmark: _Toc486234966][bookmark: _Toc486242798][bookmark: _Toc486252339][bookmark: _Toc486322486][bookmark: _Toc487466745]<X+1>.2	TTCN-3 files and other related modules (style H1)
The TTCN-3 and other related modules are contained in archive <Shortfilename>.zip which accompanies the present document.
[bookmark: _Toc451528316][bookmark: _Toc486233495][bookmark: _Toc486233599][bookmark: _Toc486233756][bookmark: _Toc486234810][bookmark: _Toc486234967][bookmark: _Toc486242799][bookmark: _Toc486252340][bookmark: _Toc486322487][bookmark: _Toc487466746]<X+1>.3	HTML documentation of TTCN-3 files (style H1)
The HTML documentation of the TTCN-3 and other related modules are contained in archive <Shortfilename>.zip which accompanies the present document.
<PAGE BREAK>
[bookmark: _Toc442706633][bookmark: _Toc486242517][bookmark: _Toc486242548][bookmark: _Toc486242800][bookmark: _Toc486252341][bookmark: _Toc486322488][bookmark: _Toc487466747]Annex <Y> (informative):
Bibliography (style H8)
This optional informative clause shall start on a new page and be the last annex of an ETSI deliverable or the last but one if followed by the "Change history/Change request history" annex, if any. The Bibliography shall not contain requirements.
The Bibliography identifies additional reading material not mentioned within the document. Those publications might or might not be publicly available (no check is made by the ETSI Secretariat).
The Bibliography shall include list of standards, books, articles, or other sources on a particular subject which are not referenced in the document.
The Bibliography shall not include references mentioned in the deliverable.
Use Heading 8 style for the "Bibliography" annex, see clause 2.13 for examples.
For the listed material use the Normal style or bulleted lists (e.g. B1+), do not use numbered references.
<Publication>: "<Title>".
OR
<Publication>: "<Title>".
<PAGE BREAK>
[bookmark: _Toc442706634][bookmark: _Toc486242518][bookmark: _Toc486242549][bookmark: _Toc486242801][bookmark: _Toc486252342][bookmark: _Toc486322489][bookmark: _Toc487466748]Annex <Z> (informative):
Change History (style H8)
The informative clause shall start on a new page and be the last annex before the "History" clause. It is an optional, informative element and shall not contain requirements.
If it is desired to keep a detailed record of the changes implemented in a new version it is recommended that this is done by inserting a "Change history/Change request" annex, see clause 2.15.
It shall be presented as a table. Apply the normal style format for tables (see clause 5.2.2 of the EDRs).
	Date
	Version
	Information about changes

	October 2011
	1.1.1
	First publication of the ES after approval by TC SPAN at SPAN#19
(30 September - 2 October 2011; Prague)

	February 2012
	1.2.1
	Implemented Change Requests:
SPAN(12)20_019 Error message information clarifications
SPAN(12)20_033 Revised error message information
SPAN(12)20_046 update of figure 3 clause 9.2
These CRs were approved by TC SPAN#20 (3 - 5 February 2012; Sophia)

Version 1.2.1 prepared by the Rapporteur

	July 2013
	1.3.1
	Implemented Changes:

Correction needed because the previously approved version did not contain the last version of the ASN.1 and XML attachments.

Version 1.3.1 prepared by the Rapporteur

<PAGE BREAK>
[bookmark: _Toc442706635][bookmark: _Toc486242519][bookmark: _Toc486242550][bookmark: _Toc486242802][bookmark: _Toc486252343][bookmark: _Toc486322490][bookmark: _Toc487466749]History (Style H1)
This unnumbered clause shall start on a new page and be the last clause of an ETSI deliverable. It is a required informative element and shall not contain requirements.
The "History" identifies the major milestones in the life of an ETSI deliverable through the means of a table. The history box shall be provided by the ETSI Secretariat (all additional information will be removed at the publication stage).
	Document history

	<Version>
	<Date>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

[bookmark: _Toc486242520][bookmark: _Toc486242551][bookmark: _Toc486242803][bookmark: _Toc486252344][bookmark: _Toc486322491][bookmark: _Toc487466750]A few examples:
	Document history

	V1.1.1
	April 2001
	Publication

	V1.2.1
	February 2002
	Membership approval Procedure	MV XXXX: yyyy-mm-dd to yyyy-mm-dd

	V1.3.1
	June 2011
	Pre-Processing done before TB approval
e-mail: mailto:edithelp@etsi.org

	V1.3.2
	July 2013
	Clean-up done by editHelp!
e-mail: mailto:edithelp@etsi.org

	
	
	

Latest changes made on 2017-07-10
ETSI
image1.png

image2.jpeg

