ETSI TS 103 597-1 V0.1.2 (2020-09)
2
Release #1

[bookmark: _Hlk16084872][bookmark: pages12][bookmark: docnumber][bookmark: docdate]ETSI TS 103 597-1 V0.1.2 (2020-09)
[bookmark: doctitle]Test Specification for MQTT;
Part 1: Conformance Tests;
Release #1
<

[bookmark: GSBox]
[bookmark: doctypelong]TECHNICAL SPECIFICATION
[image: ETSI_BG_final_new]

[bookmark: page2]Reference
[bookmark: docworkitem]DTS/MTS-TSTMQTT-1
Keywords
MQTT, Conformance, TDL-TO, TSS&TP

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx.
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© ETSI 2020.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M logo is protected for the benefit of its Members.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.
[bookmark: _Toc50379972]
Contents
Contents	3
Intellectual Property Rights	4
Foreword	4
Modal verbs terminology	4
Introduction	4
1	Scope	5
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definitions, symbols and abbreviations	7
3.1	Definitions	7
3.2	Abbreviations	7
4	Test Suite Structure	8
4.1	Broker as SUT	8
4.2	Client as SUT	9
4.3	TP naming convention	9
4.4	TP structure	10
5	Test Purposes for MQTT Broker	11
6	Test Purposes for MQTT Client	72
Annex A (normative): MQTT Test Purposes (TPs)	89
History	90

[bookmark: _Toc418757512][bookmark: _Toc486258482][bookmark: _Toc486258520][bookmark: _Toc486323633]

[bookmark: _Toc50379973]Intellectual Property Rights
Essential patents
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc418757513][bookmark: _Toc486258483][bookmark: _Toc486258521][bookmark: _Toc486323634][bookmark: For_tbname][bookmark: _Toc50379974]Foreword
This Technical Specification (TS) has been produced by ETSI Working Group Methods for Testing & Specification Testing (MTS TST).
The present document is part 1 of a multi-part deliverable covering the MQTT protocol concerning the following topics:
ETSI TS 103 597-1:		"Test Specification for MQTT; Part 1: Conformance Tests"
ETSI TS 103 597-2:		"Test Specification for MQTT; Part 2: Security Tests"
ETSI TS 103 597-3:		"Test Specification for MQTT; Part 3: Performance Tests"
[bookmark: _Toc418757515][bookmark: _Toc486258485][bookmark: _Toc486258523][bookmark: _Toc486323636][bookmark: _Toc50379975]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc418757517][bookmark: _Toc486258487][bookmark: _Toc486258525][bookmark: _Toc486323638][bookmark: _Toc50379976]Introduction
While the Internet of Things (IoT) is on the rise, the quality assurance of interconnected systems becomes an ever-increasing challenge. Within the last years, many different IoT protocols came to the fore. The MQ Telemetry Transport (MQTT) protocol is one of the most popular representatives as many surveys have shown.
Although many implementations for the MQTT protocol exist, it lacks in satisfying quality assurance. While many IoT components communicate over standardized protocols, communication protocols for IoT like MQTT or CoAP evolved over time without a holistic approach for quality assurance.
In this document the conformance testing is presented. It provides a basis for interoperability testing and performance testing. The latter is presented in Part 3 ETSI TS 103 597-3.

[bookmark: _Toc418757518][bookmark: _Toc486258488][bookmark: _Toc486258526][bookmark: _Toc486323639][bookmark: _Toc50379977]1	Scope
This present document provides a test specification, i.e. an overall test suite structure and catalogue of test purposes for the MQ Telemetry Transport (MQTT). It will be a reference base for both client-side test campaigns and server-side test campaigns addressing the conformance issues.

[bookmark: _Toc418757519][bookmark: _Toc486258489][bookmark: _Toc486258527][bookmark: _Toc486323640][bookmark: _Toc50379978]2	References
[bookmark: _Toc418757520][bookmark: _Toc486258490][bookmark: _Toc486258528][bookmark: _Toc486323641][bookmark: _Toc50379979]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long-term validity.
The following referenced documents are necessary for the application of the present document.
[1]	OASIS Standard: "MQTT Version 3.1.1".
[2]	ETSI ES 203 119-4: "TDL: Structured Test Objective Specification (Extension)"

[bookmark: _Toc418757521][bookmark: _Toc486258491][bookmark: _Toc486258529][bookmark: _Toc486323642][bookmark: _Toc50379980]2.2	Informative references
Not applicable.

[bookmark: _Toc418757522][bookmark: _Toc486258492][bookmark: _Toc486258530][bookmark: _Toc486323643][bookmark: _Toc50379981]3	Definitions, symbols and abbreviations
[bookmark: _Toc418757523][bookmark: _Toc486258493][bookmark: _Toc486258531][bookmark: _Toc486323644][bookmark: _Toc50379982]3.1	Definitions
For the purposes of the present document, the following terms and definitions apply:
conformance: extent to which an implementation of a standard satisfies the requirements expressed in that standard
conformance testing: process to verify to what extent the IUT conforms to the standard
implementation under test: an implementation of one or more Open Systems Interconnection (OSI) protocols in an adjacent user/provider relationship, being the part of a real open system, which is to be studied by testing (ISO/IEC 9646-1)

system under test: real open system in which the implementation under test resides (ETSI ES 202 951)

test purpose: non-formal high-level description of a test, mainly using text

test suite structure: document defining (hierarchical) grouping of test cases according to some rules

[bookmark: _Toc418757525][bookmark: _Toc486258495][bookmark: _Toc486258533][bookmark: _Toc486323646][bookmark: _Toc50379983]3.2	Abbreviations
For the purposes of the present document, the following abbreviations apply:
IUT	Implementation Under Test
MQTT	MQ Telemetry Transport
SUT	System Under Test
TDL	Test Description Language
TDL-TO	Test Description Language – Test Objectives
[bookmark: _Hlk40095235]TSS	Test Suite Structure
[bookmark: _Toc418757526][bookmark: _Toc486258496][bookmark: _Toc486258534][bookmark: _Toc486323647]

[bookmark: _Toc50379984]4	Test Suite Structure
The following two chapters describe the TSS. In the first one we consider a MQTT server as SUT and in the latter, we consider a MQTT client as SUT.
The structure itself is partly derived from the MQTT spec [1] but changed due to overlapping functions that can’t be tested separately.
[bookmark: _Toc50379985]4.1	Broker as SUT
1. All mandatory message data fields
a. CONNECT Control Packet
i. Fixed Header
1. Header Flags
ii. Variable Header
1. Protocol Name
2. Protocol Level
3. Reserved Flags
4. Last Will Testament Flags
5. Credentials Flags
iii. Payload
1. Client Identifier
2. Will Topic
3. Credentials
b. CONNACK Control Packet
i. Fixed Header
ii. Variable Header
1. Clean Session
2. Present Session
3. Return Codes
c. SUBSCRIBE Control Packet
i. Fixed Header
1. Header Flags
ii. Variable Header
1. Packet Identifier
iii. Payload
1. UTF-8 Encoding
2. Topic Filter
3. Requested QoS
d. SUBACK Control Packet
i. Fixed Header
1. Header Flags
ii. Variable Header
1. Packet Identifier
iii. Payload
1. Return Codes
e. UNSUBSCRIBE Control Packet
i. Fixed Header
1. Header Flags
ii. Variable Header
1. Packet Identifier
iii. Payload
1. UTF-8 Encoding
2. Topic Filters
f. UNSUBACK Control Packet
i. Fixed Header
ii. Variable Header
g. PINGREQ Control Packet
i. Fixed Header
h. PINGRESP Control Packet
i. Fixed Header
i. DISCONNECT Control Packet
i. Fixed Header
2. Protocol features
a. General
i. QoS levels
ii. Delivery retransmission
iii. Retained messages
iv. Message ordering
v. Anonymous client identifier
b. Connect/disconnect (session handling)
i. Credentials
ii. Session initiation
iii. Session states
c. Subscribe
d. Unsubscribe
e. Immediate publish (w/o awaiting for CONNACK)
f. Last Will and Testament message
g. Heartbeats: keepAlive values
h. Topic names/filters
i. Error handling

[bookmark: _Toc50379986]4.2	Client as SUT
1. All mandatory message data fields
a. CONNECT Control Packet
b. CONNACK Control Packet
c. PUBLISH Control Packet
d. PUBACK Control Packet
e. PUBREC Control Packet
f. UNSUBACK Control Packet
g. PUBREL Control Packet
h. PUBCOMP Control Packet
i. SUBSCRIBE Control Packet
j. UNSUBSCRIBE Control Packet
k. DISCONNECT Control Packet

2. Protocol features
a. keepAlive values

[bookmark: _Toc50379987]4.3	TP naming convention
TPs are numbered, starting at 001, within each main scope. The main scopes are organized according to the TSS. Some TPs may not have a second level scope.
Table 1: TP identifier naming convention scheme
	Identifier: TP_<protocol>_<iut>_<scope>_<2nd_lvl_scope>*_<number>*

	TP
	=
	Test Purpose
	Fixed to TP

	<protocol>
	=
	Protocol name
	Fixed to MQTT

	<iut>
	=
	Type of IUT
	Client or Broker

	<scope>
	=
	Main scope
	Scope of the protocol (feature)
<CONTROL PACKET> Name of the scoped Control Packet
FEAT	 Protocol Features

	<2nd_lvl_scope>
	=
	Second level scope
	RTND	 Retained Messages			

	<number>
	=
	Sequential number
	From 001 to 999

	
	
	
	

	*optional
	
	
	

[bookmark: _Toc50379988]4.4	TP structure
Each TP has been written in TDL-TO and thus in a structured manner which is consistent with all other TPs. The intention of this is to make the TPs more formal. In addition, a more readable format is provided by generating tables out of the TDL-TO format. The defined structure, that has been used, is illustrated in table 2. This table should be read in conjunction with any TP, i.e. please use a TP as an example to facilitate the full comprehension of table 2. All structures are defined formally in the TDL Specification Part 4 [2].

Table 2: Structure of a single TP
	TP part
	Text
	Example

	Header
	<Identifier>
<Test objective>
<Reference>
<PICS reference>
	see table 1
“The IUT must close network connect …”
[MQTT-3.2.2-6]
PIC_BROKER_BASIC

	Initial condition (optional)
	Free text description of the condition that the IUT has reached before the test purpose applies.
	… the IUT entity having a present session for the CLIENT_ID entity …

	Start point
	Describes the full logic of the test purpose. Includes trigger and expected behavior of the IUT.
	Expected behavior
ensure that { … }

	Trigger
	One or more actions that trigger an expected response of the IUT. Mostly a set of different messages the IUT receives.
	when {
 the IUT entity receives a CONNECT message
 containing header_flags indicating value
 '1111'B;
}

	Expected behavior
	Describes the response that the IUT sends after receiving a certain (set of) messages. This response describes the pass criteria
	then {
 the IUT entity closes the TCP_CONNECTION
}

[bookmark: _Toc50379989]5	Test Purposes for MQTT Broker

	TP Id
	TP_MQTT_BROKER_CONNECT_001

	Test Objective
	Verify that the IUT closes the network connection if fixed header flags in CONNECT Control Packet are invalid.

	Reference
	[MQTT-2.2.2-1], [MQTT-2.2.2-2], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '1111'B;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_002

	Test Objective
	Verify that the IUT either disconnects the client or continues processing the CONNECT Control Packet if the protocol name does not correspond to 'MQTT'.

	Reference
	[MQTT-3.1.2-1], [MQTT-3.1.4-4]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME_INVALID,
 protocol_level indicating value 0x04;
 }
 then {
 the IUT closes the TCP_CONNECTION
 // TODO: missing in TTCN-3 Implementation
 or the IUT sends a CONNACK message containing
 connect_return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_003

	Test Objective
	Verify that the IUT responds to supported protocol levels (in scope: MQTT-3.1.1) with the return code 0x00.

	Reference
	[MQTT-3.1.2-2], [MQTT-3.1.4-4]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04;
 }
 then {
 the IUT sends a CONNACK message containing
 connect_return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_004

	Test Objective
	Verify that the IUT validates the reserved flags in the CONNECT Control Packet.

	Reference
	[MQTT-3.1.2-3], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 reserved_field indicating value '1'B;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_005

	Test Objective
	Verify that the IUT validates the will_topic and will_message fields if the will_flag is set to 1.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_LWT

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 will_flag indicating value '1'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 will_topic indicating value omit,
 will_message indicating value omit;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_006

	Test Objective
	Verify that the IUT validates the the will_topic and will_message fields to be omitted if the will_flag is set to 0.

	Reference
	[MQTT-3.1.2-11], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_LWT and PICS_BROKER_RTND

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 will_flag indicating value '0'B,
 will_qos corresponding to AT_LEAST_ONCE,
 will_retain indicating value '1'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 will_topic corresponding to PX_WILL_TOPIC,
 will_message corresponding to PX_WILL_MESSAGE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_007

	Test Objective
	Verify that the IUT validates the will_qos field to be set to 0 if the will_flag is set to 0.

	Reference
	[MQTT-3.1.2-13], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 will_flag indicating value '0'B,
 will_qos corresponding to AT_LEAST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_008

	Test Objective
	Verify that the IUT validates the will_qos field and rejects connections with an invalid will_qos value.

	Reference
	[MQTT-3.1.2-14], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_LWT

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 will_flag indicating value '1'B,
 will_qos corresponding to INVALID_QOS,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_009

	Test Objective
	Verify that the IUT validates the will_qos field if the will_flag is set to 1.

	Reference
	[MQTT-3.1.2-14], [MQTT-3.1.4-4]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_LWT

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 will_flag indicating value '1'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 connect_return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_010

	Test Objective
	Verify that the IUT validates the will_flag and will_retain flags to be set correctly.

	Reference
	[MQTT-3.1.2-15], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '1'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 will_topic indicating value omit,
 will_message indicating value omit;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_011

	Test Objective
	Verify that the IUT validates the will_retain flag to be set to 0 if the will_flag is set to 0.

	Reference
	[MQTT-3.1.2-15], [MQTT-3.1.4-4]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 will_topic indicating value omit,
 will_message indicating value omit;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 connect_return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_012

	Test Objective
	Verify that the IUT validates the password flag to be set to 0 if the user_name_flag is set to 0.

	Reference
	[MQTT-3.1.2-22], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_AUTH

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 user_name_flag indicating value '0'B,
 password_flag indicating value '1'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_013

	Test Objective
	Verify that the IUT validates the username field to be omitted if the user_name_flag is set to 0.

	Reference
	[MQTT-3.1.2-18], [MQTT-3.1.2-22], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_AUTH

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 user_name corresponding to PX_MQTT_USER_NAME,
 password indicating value omit;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_014

	Test Objective
	Verify that the IUT validates a payload is present if the user_name_flag is set to 1.

	Reference
	[MQTT-3.1.2-19], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_AUTH

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 user_name_flag indicating value '1'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 user_name indicating value omit,
 password indicating value omit;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_015

	Test Objective
	Verify that the IUT validates the password field to be omitted if the password_flag is set to 0.

	Reference
	[MQTT-3.1.2-20], [MQTT-3.1.2-22], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_AUTH

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 user_name indicating value omit,
 password corresponding to PX_MQTT_PASSWORD;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_016

	Test Objective
	Verify that the IUT validates the password field to be present if the password_flag is set to 1.

	Reference
	[MQTT-3.1.2-21], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_AUTH

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 user_name corresponding to PX_MQTT_USER_NAME,
 password indicating value omit;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_017

	Test Objective
	Verify that the IUT validates the client_identifier to be between 1 and 23 UTF-8 encoded bytes in length.

	Reference
	[MQTT-3.1.3-5], [MQTT-3.1.4-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '1'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to CLIENT_ID_24_BYTES;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_018

	Test Objective
	Verify that the IUT validates the client_identifier to contain only alphanumeric characters [0-9a-zA-Z].

	Reference
	[MQTT-3.1.3-5], [MQTT-3.1.4-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '1'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to CLIENT_ID_NON_ALPHA_NUM;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_019

	Test Objective
	Verify that the IUT accepts client_identifiers of zero byte length.

	Reference
	[MQTT-3.1.3-6], [MQTT-3.1.3-7], [MQTT-3.1.4-4]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '1'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to CLIENT_ID_ZERO_BYTES;
 ;
 }
 then {
 // TODO: Standards says: MAY allow
 the IUT sends a CONNACK message containing
 connect_return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_020

	Test Objective
	Verify that the IUT validates the client_identifier to be a well-formed UTF-8 encoded string.

	Reference
	[MQTT-1.5.3-1], [MQTT-3.1.3-4], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to CLIENT_ID_D800;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_021

	Test Objective
	Verify that the IUT validates the client_identifier to be a well-formed UTF-8 encoded string.

	Reference
	[MQTT-1.5.3-2], [MQTT-3.1.3-4], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to CLIENT_ID_0000;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_022

	Test Objective
	Verify that the IUT validates the will_topic to be a well-formed UTF-8 encoded string.

	Reference
	[MQTT-1.5.3-1], [MQTT-3.1.3-10], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_LWT

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '1'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 will_topic indicating value WILL_TOPIC_D800,
 will_message corresponding to PX_WILL_MESSAGE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_023

	Test Objective
	Verify that the IUT validates the will_topic to be a well-formed UTF-8 encoded string.

	Reference
	[MQTT-1.5.3-2], [MQTT-3.1.3-10], [MQTT-3.1.4-1], [MQTT-3.2.2-6], [MQTT-4.7.3-2]

	PICS Selection
	PICS_BROKER_LWT

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '1'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 will_topic indicating value WILL_TOPIC_0000,
 will_message corresponding to PX_WILL_MESSAGE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_024

	Test Objective
	Verify that the IUT validates the will_topic to not contain single-level topic filters.

	Reference
	[MQTT-4.7.1-1], [MQTT-3.1.4-1]

	PICS Selection
	PICS_BROKER_LWT

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 connect_flags containing
 will_flag indicating value '1'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 will_topic indicating value TOPIC_FILTER_SINGLE_LEVEL,
 will_message corresponding to PX_WILL_MESSAGE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_025

	Test Objective
	Verify that the IUT validates the will_topic to not contain multi-level topic filters.

	Reference
	[MQTT-4.7.1-1], [MQTT-3.1.4-1]

	PICS Selection
	PICS_BROKER_LWT

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 connect_flags containing
 will_flag indicating value '1'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 will_topic indicating value TOPIC_FILTER_MULTI_LEVEL,
 will_message corresponding to PX_WILL_MESSAGE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_026

	Test Objective
	Verify that the IUT validates the user_name to be a well-formed UTF-8 encoded string.

	Reference
	[MQTT-1.5.3-1], [MQTT-3.1.3-11], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_AUTH

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 user_name corresponding to MQTT_USER_NAME_INVALID_UTF8,
 password corresponding to PX_MQTT_PASSWORD;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_027

	Test Objective
	Verify that the IUT validates the user_name to be a well-formed UTF-8 encoded string.

	Reference
	[MQTT-1.5.3-2], [MQTT-3.1.3-11], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_AUTH

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 user_name corresponding to MQTT_USER_NAME_INVALID_UTF8,
 password corresponding to PX_MQTT_PASSWORD;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_028

	Test Objective
	Verify that the IUT validates the first MQTT Control Packet sent from the client to the server after a TCP connection is a MQTT CONNECT.

	Reference
	[MQTT-3.1.0-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a TCP_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_029

	Test Objective
	Verify that the IUT detects multiple MQTT CONNECT Control Packets sent from a client within a single session as a protocol violation.

	Reference
	[MQTT-3.1.0-2]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_030

	Test Objective
	Verify that the IUT detects multiple clients with the same client_identifier and disconnects the existing client.

	Reference
	[MQTT-3.1.4-2]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 established the MQTT_CONNECTION containing
 payload containing
 client_identifier corresponding to PX_CLIENT_ID;
 ;
 to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 payload containing
 client_identifier corresponding to PX_CLIENT_ID;
 ;
 from the CLIENT_2
 }
 then {
 the IUT closes the TCP_CONNECT to the CLIENT_1
 and
 the IUT sends a CONNACK message to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_031

	Test Objective
	Verify that the IUT validates all topic names to be at least one character long.

	Reference
	[MQTT-4.7.3-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 will_flag indicating value '1'B,
 will_qos corresponding to AT_LEAST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 will_topic corresponding to TOPIC_NAME_ZERO_CHARS,
 will_message corresponding to PX_WILL_MESSAGE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNECT_032

	Test Objective
	Verify that the IUT does not process any data sent by the client after a rejected CONNECT Control Packet.

	Reference
	[MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_AUTH

	Initial Conditions

	with {
 the IUT received a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B,
 payload containing
 user_name corresponding to MQTT_USER_NAME_INVALID,
 password corresponding to MQTT_PASSWORD_INVALID;;;
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message
 }
 then {
 the IUT sends a CONNACK message containing
 connect_return_code indicating value 0x05;
 and
 the IUT sends no SUBACK message
 and
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNACK_001

	Test Objective
	Verify that the IUT replies with a CONNACK Control Packet with valid header flags.

	Reference
	[MQTT-2.2.2-1], [MQTT-3.1.4-4], [MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 header_flags indicating value '0000'B,
 connect_return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNACK_002

	Test Objective
	Verify that the IUT responds to a CONNECT Control Packet with clean_session set to 1 with a CONNACK Control Packet with session_present_flag set to 0.

	Reference
	[MQTT-3.2.2-1], [MQTT-3.1.4-4], [MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '1'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to VALID_CLIENT_ID;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 header_flags indicating value '0000'B,
 session_present_flag indicating value '0'B,
 connect_return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNACK_003

	Test Objective
	Verify that the IUT responds to a CONNECT Control Packet for a present session with a CONNACK Control Packet with session_present_flag set to 1.

	Reference
	[MQTT-3.2.2-2], [MQTT-3.1.4-4], [MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_RTND

	Initial Conditions

	with {
 the IUT having a present session for the CLIENT_ID
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to PX_CLIENT_ID;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 header_flags indicating value '0000'B,
 session_present_flag indicating value '1'B,
 connect_return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNACK_004

	Test Objective
	Verify that the IUT responds to a CONNECT Control Packet with clean_session set to 1 but not having a present session for this client_identifier with a CONNACK Control Packet with session_present_flag set to 0.

	Reference
	[MQTT-3.2.2-3], [MQTT-3.1.4-4], [MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_RTND

	Initial Conditions

	with {
 the IUT having no present session for the CLIENT_ID
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to PX_CLIENT_ID;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 header_flags indicating value '0000'B,
 session_present_flag indicating value '0'B,
 connect_return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNACK_005

	Test Objective
	Verify that the IUT responds to protocol levels which it does not support with return code 0x01.

	Reference
	[MQTT-3.1.2-2], [MQTT-3.2.2-4], [MQTT-3.2.2-5], [MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0xFF,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to PX_CLIENT_ID;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 header_flags indicating value '0000'B,
 session_present_flag indicating value '0'B,
 connect_return_code indicating value 0x01;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNACK_006

	Test Objective
	Verify that the IUT responds to CONNECT Control Packets with a zero-byte client_identifier and clean_session set to 0 with CONNACK with connect_return_code set to 0x02 and close the network connection.

	Reference
	[MQTT-3.1.3-8], [MQTT-3.1.3-9], [MQTT-3.2.2-4], [MQTT-3.2.2-5], [MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_RTND

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to CLIENT_ID_ZERO_BYTES;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 header_flags indicating value '0000'B,
 session_present_flag indicating value '0'B,
 connect_return_code indicating value 0x02;
 and the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNACK_007

	Test Objective
	Verify that the IUT responds to a CONNECT Control Packet with a malformed user_name with CONNACK with connect_return_code set to 0x04.

	Reference
	[MQTT-3.2.2-4], [MQTT-3.2.2-5], [MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_AUTH

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to PX_CLIENT_ID,
 user_name corresponding to MQTT_USER_NAME_INVALID_UTF8,
 password corresponding to PX_MQTT_PASSWORD;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 header_flags indicating value '0000'B,
 session_present_flag indicating value '0'B,
 connect_return_code indicating value 0x04;
 and the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNACK_008

	Test Objective
	Verify that the IUT responds to a CONNECT Control Packet with a invalid user_name with CONNACK with connect_return_code set to 0x05.

	Reference
	[MQTT-3.2.2-4], [MQTT-3.2.2-5], [MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_AUTH

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to PX_CLIENT_ID,
 user_name corresponding to MQTT_USER_NAME_INVALID,
 password corresponding to PX_MQTT_PASSWORD;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 header_flags indicating value '0000'B,
 session_present_flag indicating value '0'B,
 connect_return_code indicating value 0x05;
 and the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNACK_009

	Test Objective
	Verify that the IUT responds to a CONNECT Control Packet with a invalid password with CONNACK with connect_return_code set to 0x05.

	Reference
	[MQTT-3.2.2-4], [MQTT-3.2.2-5], [MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_AUTH

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to PX_CLIENT_ID,
 user_name corresponding to PX_MQTT_USER_NAME,
 password corresponding to MQTT_PASSWORD_INVALID;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 header_flags indicating value '0000'B,
 session_present_flag indicating value '0'B,
 connect_return_code indicating value 0x05;
 and the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_CONNACK_010

	Test Objective
	Verify that the IUT responds with CONNECT with connect_return_code set to 0x03 if the MQTT service is unavailable.

	Reference
	[MQTT-3.2.2-4], [MQTT-3.2.2-5], [MQTT-3.2.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the IUT having no available service for the MQTT_CONNECTION
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNECT message containing
 header_flags indicating value '0000'B,
 protocol_name corresponding to PROTOCOL_NAME,
 protocol_level indicating value 0x04,
 connect_flags containing
 clean_session indicating value '0'B,
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B,
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B,
 reserved_field indicating value '0'B;
 ,
 payload containing
 client_identifier corresponding to PX_CLIENT_ID;
 ;
 }
 then {
 the IUT sends a CONNACK message containing
 header_flags indicating value '0000'B,
 session_present_flag indicating value '0'B,
 connect_return_code indicating value 0x03;
 and the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_001

	Test Objective
	Verify that the IUT accepts only QoS 0 PUBLISH Control Packets with the dup_flag set to 0.

	Reference
	[MQTT-3.3.1-2]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 dup_flag indicating value '1'B,
 qos_level corresponding to AT_MOST_ONCE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_002

	Test Objective
	Verify that the IUT accepts only PUBLISH Control Packets with a valid QoS level.

	Reference
	[MQTT-2.2.2-1], [MQTT-3.3.1-4]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to INVALID_QOS;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_003

	Test Objective
	Verify that the IUT validates the topic_name in a PUBLISH Control Packet to be a well-formed UTF-8 encoded string.

	Reference
	[MQTT-3.3.2-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 topic_name corresponding to TOPIC_NAME_INVALID_UTF8;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_004

	Test Objective
	Verify that the IUT validates the topic_name in a PUBLISH Control Packet to not contain multi-level wildcard characters.

	Reference
	[MQTT-3.3.2-2], [MQTT-4.7.1-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 topic_name corresponding to TOPIC_NAME_WC_MULTI_LVL;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_005

	Test Objective
	Verify that the IUT validates the topic_name in a PUBLISH Control Packet to not contain single-level wildcard characters.

	Reference
	[MQTT-3.3.2-2], [MQTT-4.7.1-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 topic_name corresponding to TOPIC_NAME_WC_SINGLE_LVL;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_006

	Test Objective
	Verify that the IUT validates the topic_name in a PUBLISH Control Packet to be at least on character long.

	Reference
	[MQTT-4.7.3-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 topic_name corresponding to TOPIC_NAME_ZERO_CHARS;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_007

	Test Objective
	Verify that the IUT validates the topic_name in a PUBLISH Control Packet to not contain the null character (Unicode U+0000).

	Reference
	[MQTT-4.7.3-2], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 topic_name corresponding to TOPIC_NAME_0000;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_008

	Test Objective
	Verify that the IUT rejects QoS 0 PUBLISH Control Packets with the dup_flag set to 1.

	Reference
	[MQTT-4.3.1-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 dup_flag indicating value '1'B,
 qos_level corresponding to AT_MOST_ONCE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_009

	Test Objective
	Verify that the IUT validates a QoS 0 PUBLISH Control Packet to not contain a packet_identifier.

	Reference
	[MQTT-2.3.1-5], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_MOST_ONCE,
 packet_identifier corresponding to PACKET_ID;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_010

	Test Objective
	Verify that the IUT validates a QoS 1 PUBLISH Control Packet to contain a non-zero 16-bit Packet Identifier.

	Reference
	[MQTT-2.3.1-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_QOS_1

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 packet_identifier corresponding to PACKET_ID_ZERO;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_011

	Test Objective
	Verify that the IUT validates a QoS 2 PUBLISH Control Packet to contain a non-zero 16-bit Packet Identifier.

	Reference
	[MQTT-2.3.1-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 packet_identifier corresponding to PACKET_ID_ZERO;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBLISH_012

	Test Objective
	Verify that the IUT handles not authorized PUBLISH Control Packets with either a positive PUBACK Control Packet or by closing the network connection.

	Reference
	[MQTT-3.3.5-2]

	PICS Selection
	PICS_BROKER_QOS_1

	Initial Conditions

	with {
 the TEST_SYSTEM having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to TOPIC_NAME_RESTRICTED;
 ;
 }
 then {
 the IUT sends a PUBACK message
 or
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBACK_001

	Test Objective
	Verify that the IUT closes the network connection if fixed header flags in PUBACK Control Packet are invalid.

	Reference
	[MQTT-2.2.2-1], [MQTT-2.2.2-2]

	PICS Selection
	PICS_BROKER_QOS_1

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to AT_LEAST_ONCE;
 and
 the CLIENT_1 delivered a PUBLISH message containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC;
 to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC;
 ;
 to the CLIENT_2
 and
 the IUT receives a PUBACK message containing
 header_flags indicating value '1111'B;
 from the CLIENT_2
 }
 then {
 the IUT closes the TCP_CONNECTION to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBACK_002

	Test Objective
	Verify that the IUT sends PUBACK Control Packets in the order in which the corresponding QoS 1 PUBLISH Control Packets were received.

	Reference
	[MQTT-4.6.0-2], [MQTT-3.3.4-1], [MQTT-4.6.0-6], [MQTT-2.3.1-6]

	PICS Selection
	PICS_BROKER_QOS_1

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1;
 ;
 and
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2;
 ;
 }
 then {
 the IUT sends a PUBACK message containing
 packet_identifier corresponding to PACKET_ID_1;
 and
 the IUT sends a PUBACK message containing
 packet_identifier corresponding to PACKET_ID_2;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBREC_001

	Test Objective
	Verify that the IUT closes the network connection if fixed header flags in PUBREC Control Packet are invalid.

	Reference
	[MQTT-2.2.2-1], [MQTT-2.2.2-2]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to EXACTLY_ONCE;
 and
 the CLIENT_1 delivered a PUBLISH message containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC;
 to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC;
 ;
 to the CLIENT_2
 and
 the IUT receives a PUBREC message containing
 header_flags indicating value '1111'B;
 from the CLIENT_2
 }
 then {
 the IUT closes the TCP_CONNECTION to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBREC_002

	Test Objective
	Verify that the IUT sends PUBREC Control Packets in the order in which the corresponding QoS 2 PUBLISH Control Packets were received.

	Reference
	[MQTT-4.6.0-3], [MQTT-3.3.4-1], [MQTT-4.6.0-6], [MQTT-2.3.1-6]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1;
 ;
 and
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2;
 ;
 }
 then {
 the IUT sends a PUBREC message containing
 packet_identifier corresponding to PACKET_ID_1;
 and
 the IUT sends a PUBREC message containing
 packet_identifier corresponding to PACKET_ID_2;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBREL_001

	Test Objective
	Verify that the IUT closes the network connection if fixed header flags in PUBREL Control Packet are invalid.

	Reference
	[MQTT-2.2.2-1], [MQTT-2.2.2-2], [MQTT-3.6.1-1]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC;;
 from the CLIENT_1
 and
 the IUT sends a PUBREC message
 from the CLIENT_1
 and
 the IUT receives a PUBREL message containing
 header_flags indicating value '1101'B;
 from the CLIENT_1
 }
 then {
 the IUT closes the TCP_CONNECTION to the CLIENT_1
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBREL_002

	Test Objective
	Verify that the IUT sends PUBREL Control Packets in the order in which the corresponding PUBREC Control Packets were received.

	Reference
	[MQTT-4.6.0-4], [MQTT-4.6.0-6], [MQTT-2.3.1-6]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to EXACTLY_ONCE;
 and
 the CLIENT_1 delivered a PUBLISH message containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1;
 to the IUT
 and
 the CLIENT_1 delivered a PUBLISH message containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2;
 to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1;;
 to the CLIENT_2
 and
 the IUT receives a PUBREC message containing
 packet_identifier corresponding to PACKET_ID_1;
 from the CLIENT_2
 and
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2;;
 to the CLIENT_2
 and
 the IUT receives a PUBREC message containing
 packet_identifier corresponding to PACKET_ID_2;
 from the CLIENT_2
 }
 then {
 the IUT sends a PUBREL message containing
 packet_identifier corresponding to PACKET_ID_1;
 and
 the IUT sends a PUBREL message containing
 packet_identifier corresponding to PACKET_ID_2;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PUBCOMP_001

	Test Objective
	Verify that the IUT closes the network connection if fixed header flags in PUBCOMP Control Packet are invalid.

	Reference
	[MQTT-2.2.2-1], [MQTT-2.2.2-2]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to EXACTLY_ONCE;
 and
 the CLIENT_1 delivered a PUBLISH message containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC;
 to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC;;
 to the CLIENT_2
 and
 the IUT receives a PUBREC message
 from the CLIENT_2
 and
 the IUT sends a PUBREL message
 to the CLIENT_2
 and
 the IUT receives a PUBCOMP message containing
 header_flags indicating value '1111'B;
 from the CLIENT_2
 }
 then {
 the IUT closes the TCP_CONNECTION to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_001

	Test Objective
	Verify that the IUT closes the network connection if fixed header flags in SUBSCRIBE Control Packet are invalid.

	Reference
	[MQTT-2.2.2-1], [MQTT-2.2.2-2], [MQTT-3.8.1-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '1101'B;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_002

	Test Objective
	Verify that the IUT validates a SUBSCRIBE Control Packet to contain a non-zero 16-bit Packet Identifier.

	Reference
	[MQTT-2.3.1-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID_ZERO,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to AT_LEAST_ONCE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_003

	Test Objective
	Verify that the IUT validates the topic_filter in a SUBSCRIBE Control Packet to be a well-formed UTF-8 encoded string and do not contain code points between U+D800 and U+DFFF.

	Reference
	[MQTT-1.5.3-1], [MQTT-3.8.3-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to TOPIC_FILTER_D800,
 requested_qos corresponding to AT_LEAST_ONCE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_004

	Test Objective
	Verify that the IUT validates the topic_filter in a SUBSCRIBE Control Packet to be a well-formed UTF-8 encoded string and do not contain the null character (Unicode U+0000).

	Reference
	[MQTT-1.5.3-2], [MQTT-3.8.3-1], [MQTT-4.7.3-2], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to TOPIC_FILTER_0000,
 requested_qos corresponding to AT_LEAST_ONCE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_005

	Test Objective
	Verify that the IUT validates the topic_filter in a SUBSCRIBE Control Packet to be at least on character long.

	Reference
	[MQTT-4.7.3-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to TOPIC_FILTER_ZERO_CHARS,
 requested_qos corresponding to AT_LEAST_ONCE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_006

	Test Objective
	Verify that the IUT validates a SUBSCRIBE Control Packet to contain at least one topic filter/QoS pair.

	Reference
	[MQTT-3.8.3-3], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 omit;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_007

	Test Objective
	Verify that the IUT validates in a SUBSCRIBE Control Packet the upper 6 bits of a requested QoS byte (reserved bits) to be set to 0.

	Reference
	[MQTT-3.8.3-4], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to AT_MOST_ONCE,
 requested_qos_flags indicating value '111111'B;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_008

	Test Objective
	Verify that the IUT validates the requested_qos field to be a valid QoS level.

	Reference
	[MQTT-3.8.3-4], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to INVALID_QOS;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_009

	Test Objective
	Verify that the IUT validates topic_filter field to be a valid multi-level Topic Fiilter.

	Reference
	[MQTT-4.7.1-2], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to TOPIC_FILTER_MULTI_LEVEL_INVALID,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_010

	Test Objective
	Verify that the IUT validates topic_filter field to be a valid single-level Topic Fiilter.

	Reference
	[MQTT-4.7.1-3], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to TOPIC_FILTER_SINGLE_LEVEL_INVALID,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBSCRIBE_011

	Test Objective
	Verify that the IUT allows topic_filter field to include the 'zero width no-break space character'

	Reference
	[MQTT-1.5.3-3]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to TOPIC_FILTER_WITH_ZWNBS,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 }
 then {
 the IUT sends a SUBACK message containing
 packet_identifier corresponding to PACKET_ID;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBACK_001

	Test Objective
	Verify that the IUT replies with a SUBACK Control Packet with valid header flags.

	Reference
	[MQTT-2.2.2-1], [MQTT-3.8.1-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B;
 }
 then {
 the IUT sends a SUBACK message containing
 header_flags indicating value '0000'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBACK_002

	Test Objective
	Verify that the IUT replies with a SUBACK Control Packet containing a packet identifier corresponding to the SUBSCRIBE Control Packet.

	Reference
	[MQTT-2.3.1-1], [MQTT-2.3.1-7], [MQTT-3.8.4-1], [MQTT-3.8.4-2]

	PICS Selection
	PICS_BROKER_QOS_1

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to AT_LEAST_ONCE;
 ;
 }
 then {
 the IUT sends a SUBACK message containing
 header_flags indicating value '0000'B,
 packet_identifier corresponding to PACKET_ID;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBACK_003

	Test Objective
	Verify that the IUT replies with a SUBACK Control Packet with a valid maximum QoS level.

	Reference
	[MQTT-3.9.3-1], [MQTT-3.9.3-2]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 }
 then {
 the IUT sends a SUBACK message containing
 header_flags indicating value '0000'B,
 packet_identifier corresponding to PACKET_ID,
 return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBACK_004

	Test Objective
	Verify that the IUT replies with a SUBACK Control Packet with a valid maximum QoS level.

	Reference
	[MQTT-3.9.3-1], [MQTT-3.9.3-2]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_QOS_1

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to AT_LEAST_ONCE;
 ;
 }
 then {
 the IUT sends a SUBACK message containing
 header_flags indicating value '0000'B,
 packet_identifier corresponding to PACKET_ID,
 return_code indicating value 0x01;
 or
 the IUT sends a SUBACK message containing // Note: if the IUT supports only QoS 0
 header_flags indicating value '0000'B,
 packet_identifier corresponding to PACKET_ID,
 return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBACK_005

	Test Objective
	Verify that the IUT replies with a SUBACK Control Packet with a valid maximum QoS level.

	Reference
	[MQTT-3.9.3-1], [MQTT-3.9.3-2]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_QOS_1 and PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to EXACTLY_ONCE;
 ;
 }
 then {
 the IUT sends a SUBACK message containing
 header_flags indicating value '0000'B,
 packet_identifier corresponding to PACKET_ID,
 return_code indicating value 0x02;
 or
 the IUT sends a SUBACK message containing // Note: if the IUT supports only up to QoS 1
 header_flags indicating value '0000'B,
 packet_identifier corresponding to PACKET_ID,
 return_code indicating value 0x01;
 or
 the IUT sends a SUBACK message containing // Note: if the IUT supports only QoS 0
 header_flags indicating value '0000'B,
 packet_identifier corresponding to PACKET_ID,
 return_code indicating value 0x00;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_SUBACK_006

	Test Objective
	Verify that the IUT replies to a failed subscription with a SUBACK Control Packet with the return code 0x80.

	Reference
	[MQTT-3.9.3-1], [MQTT-3.9.3-2]

	PICS Selection
	PICS_BROKER_BASIC or PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to TOPIC_FILTER_INVALID,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 }
 then {
 the IUT sends a SUBACK message containing
 header_flags indicating value '0000'B,
 packet_identifier corresponding to PACKET_ID,
 return_code indicating value 0x80;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_UNSUBSCRIBE_001

	Test Objective
	Verify that the IUT closes the network connection if fixed header flags in UNSUBSCRIBE Control Packet are invalid.

	Reference
	[MQTT-2.2.2-1], [MQTT-2.2.2-2], [MQTT-3.10.1-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a UNSUBSCRIBE message containing
 header_flags indicating value '1101'B;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_UNSUBSCRIBE_002

	Test Objective
	Verify that the IUT validates a UNSUBSCRIBE Control Packet to contain a non-zero 16-bit Packet Identifier.

	Reference
	[MQTT-2.3.1-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a UNSUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID_ZERO;
 }
 then {
 the IUT closes the TCP_CONNECTION
 or
 the IUT sends a UNSUBACK message containing
 packet_identifier corresponding to PACKET_ID_ZERO;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_UNSUBSCRIBE_003

	Test Objective
	Verify that the IUT validates the topic_filter in a UNSUBSCRIBE Control Packet to be a well-formed UTF-8 encoded string and do not contain code points between U+D800 and U+DFFF.

	Reference
	[MQTT-1.5.3-1], [MQTT-3.10.3-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a UNSUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to TOPIC_FILTER_D800;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_UNSUBSCRIBE_004

	Test Objective
	Verify that the IUT validates all topic filters to be at least one character long.

	Reference
	[MQTT-4.7.3-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a UNSUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to TOPIC_FILTER_ZERO_CHARS;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_UNSUBSCRIBE_005

	Test Objective
	Verify that the IUT validates the topic filter in a UNSUBSCRIBE Control Packet not to contain the null character (Unicode U+0000).

	Reference
	[MQTT-4.7.3-2], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a UNSUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to TOPIC_FILTER_0000;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_UNSUBSCRIBE_006

	Test Objective
	Verify that the IUT validates a UNSUBSCRIBE Control Packet to contain at least on topic filter.

	Reference
	[MQTT-3.10.3-2], [MQTT-4.8.0-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a UNSUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 omit;
 ;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_UNSUBACK_001

	Test Objective
	Verify that the IUT replies with an UNSUBACK Control Packet with valid header flags.

	Reference
	[MQTT-2.2.2-1], [MQTT-3.10.1-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a UNSUBSCRIBE message containing
 header_flags indicating value '0010'B;
 }
 then {
 the IUT sends a UNSUBACK message containing
 header_flags indicating value '0000'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_UNSUBACK_002

	Test Objective
	Verify that the IUT replies with a UNSUBACK Control Packet containing a packet identifier corresponding to the UNSUBSCRIBE Control Packet.

	Reference
	[MQTT-3.10.4-4], [MQTT-2.3.1-7]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
 and
 the CLIENT subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to AT_MOST_ONCE;
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a UNSUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_PUBLISH_TOPIC;
 ;
 }
 then {
 the IUT sends a UNSUBACK message containing
 header_flags indicating value '0000'B,
 packet_identifier corresponding to PACKET_ID;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_UNSUBACK_003

	Test Objective
	Verify that the IUT replies with an UNSUBACK Control Packet even if no topic subscriptions are deleted.

	Reference
	[MQTT-3.10.4-5]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
 and
 the CLIENT not subscribed the PX_PUBLISH_TOPIC
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a UNSUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_PUBLISH_TOPIC;
 ;
 }
 then {
 the IUT sends a UNSUBACK message containing
 header_flags indicating value '0000'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_UNSUBACK_004

	Test Objective
	Verify that the IUT replies to UNSUBSCRIBE Control Packets with multiple topic filters with one single UNSUBACK Control Packet.

	Reference
	[MQTT-3.10.4-6]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a UNSUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_PUBLISH_TOPIC,
 topic_filter corresponding to TOPIC_FILTER_VALID; // second topic filter
 ;
 }
 then {
 the IUT sends a UNSUBACK message
 and
 the IUT sends no second UNSUBACK message
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PINGREQ_001

	Test Objective
	Verify that the IUT closes the network connection if fixed header flags in PINGREQ Control Packet are invalid.

	Reference
	[MQTT-2.2.2-1], [MQTT-2.2.2-2], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PINGREQ message containing
 header_flags indicating value '1111'B;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_PINGRESP_001

	Test Objective
	Verify that the IUT replies with a PINGRESP Control Packet with valid header flags.

	Reference
	[MQTT-2.2.2-1], [MQTT-3.12.4-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PINGREQ message containing
 header_flags indicating value '0000'B;
 }
 then {
 the IUT sends a PINGRESP message containing
 header_flags indicating value '0000'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_DISCONNECT_001

	Test Objective
	Verify that the IUT closes the network connection if fixed header flags in DISCONNECT Control Packet are valid.

	Reference
	[MQTT-2.2.2-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a DISCONNECT message containing
 header_flags indicating value '0000'B;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_DISCONNECT_002

	Test Objective
	Verify that the IUT closes the network connection if fixed header flags in DISCONNECT Control Packet are valid.

	Reference
	[MQTT-2.2.2-2], [MQTT-3.14.1-1], [MQTT-4.8.0-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a DISCONNECT message containing
 header_flags indicating value '1111'B;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_REMLEN_001

	Test Objective
	Verify that the IUT forwards PUBLISH Control Packets with Remaining Length fields encoded in one byte.

	Reference
	MQTT 2.2.3

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to AT_MOST_ONCE;
 to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier indicating value omit,
 payload corresponding to PAYLOAD;
 ;
 from the CLIENT_1
 }
 then {
 the IUT sends a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier indicating value omit,
 payload corresponding to PAYLOAD;
 ;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_REMLEN_002

	Test Objective
	Verify that the IUT forwards PUBLISH Control Packets with Remaining Length fields encoded in two bytes.

	Reference
	MQTT 2.2.3

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to AT_MOST_ONCE;
 to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier indicating value omit,
 payload corresponding to PAYLOAD_REM_LEN_2;
 ;
 from the CLIENT_1
 }
 then {
 the IUT sends a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier indicating value omit,
 payload corresponding to PAYLOAD_REM_LEN_2;
 ;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_REMLEN_003

	Test Objective
	Verify that the IUT forwards PUBLISH Control Packets with Remaining Length fields encoded in three bytes.

	Reference
	MQTT 2.2.3

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to AT_MOST_ONCE;
 to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier indicating value omit,
 payload corresponding to PAYLOAD_REM_LEN_3;
 ;
 from the CLIENT_1
 }
 then {
 the IUT sends a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier indicating value omit,
 payload corresponding to PAYLOAD_REM_LEN_3;
 ;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_REMLEN_004

	Test Objective
	Verify that the IUT forwards PUBLISH Control Packets with Remaining Length fields encoded in four bytes.

	Reference
	MQTT 2.2.3

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to AT_MOST_ONCE;
 to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier indicating value omit,
 payload corresponding to PAYLOAD_REM_LEN_4;
 ;
 from the CLIENT_1
 }
 then {
 the IUT sends a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier indicating value omit,
 payload corresponding to PAYLOAD_REM_LEN_4;
 ;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_KEEPALIVE_001

	Test Objective
	Verify that the IUT disconnects a client if it does not receive a Control Packet from it within one and a half times of the given Keep Alive time period.

	Reference
	[MQTT-3.1.2-24]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
 and
 the CLIENT established the MQTT_CONNECTION containing
 keep_alive corresponding to PX_KEEP_ALIVE;
}

	Expected Behaviour

	ensure that {
 when {
 the IUT times_out
 }
 then {
 the IUT closes the TCP_CONNECTION to the CLIENT
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_RTND_001

	Test Objective
	Verify that the IUT does not delete Retained Messages when a session with the corresponding client ends.

	Reference
	[MQTT-3.1.2-7]

	PICS Selection
	PICS_BROKER_RTND

	Initial Conditions

	with {
 the IUT having a UTF8_MESSAGE_VALID in the RETAIN_TOPIC
 and
 the CLIENT having a MQTT_CONNECTION to the IUT
 and
 the CLIENT having a CLEAN_SESSION
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 }
 then {
 the IUT sends a SUBACK message containing
 return_code indicating value 0x00;
 and the IUT sends a PUBLISH message containing
 topic_name corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 payload corresponding to UTF8_MESSAGE_VALID;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_RTND_002

	Test Objective
	Verify that the IUT stores Retained Messages for future deliveries.

	Reference
	[MQTT-3.3.1-5], [MQTT-3.3.1-6], [MQTT-3.3.1-8]

	PICS Selection
	PICS_BROKER_RTND

	Initial Conditions

	with {
 the CLIENT_1 published a Message containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_LEAST_ONCE,
 retain_flag indicating value '1'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1,
 payload corresponding to PAYLOAD;
 to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 packet_identifier corresponding to PACKET_ID_2,
 payload containing
 topic_filter corresponding to PX_PUBLISH_TOPIC,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 from the CLIENT_2
 }
 then {
 the IUT sends a SUBACK message containing
 packet_identifier corresponding to PACKET_ID_2,
 payload containing
 return_code indicating value 0x00;
 ;
 to the CLIENT_2
 and
 the IUT sends a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '1'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_3,
 payload corresponding to PAYLOAD;
 ;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_RTND_003

	Test Objective
	Verify that the IUT sets the retain_flag to 0 when Retained Messages are delivered directly to existing subscriptions.

	Reference
	[MQTT-3.3.1-9]

	PICS Selection
	PICS_BROKER_RTND

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to AT_MOST_ONCE;
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_LEAST_ONCE,
 retain_flag indicating value '1'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1,
 payload corresponding to PAYLOAD;
 ;
 from the CLIENT_1
 }
 then {
 the IUT sends a PUBACK message containing
 packet_identifier corresponding to PACKET_ID_1;
 to the CLIENT_1
 and
 the IUT sends a PUBLISH message containing
 publish_header containing
 dup_flag indicating value '0'B,
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '0'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2,
 payload corresponding to PAYLOAD;
 ;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_RTND_004

	Test Objective
	Verify that the IUT forwards Retained Messages with a zero-bytes payload.

	Reference
	[MQTT-3.3.1-10]

	PICS Selection
	PICS_BROKER_RTND

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 qos_level corresponding to AT_MOST_ONCE;
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '1'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 payload corresponding to PAYLOAD_ZERO_BYTE;
 ;
 from the CLIENT_1
 }
 then {
 the IUT sends a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '0'B,
 payload corresponding to PAYLOAD_ZERO_BYTE;
 ;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_RTND_005

	Test Objective
	Verify that the IUT deletes a stored Retained Messages if it receives a new Retained Message with a zero-bytes payload.

	Reference
	[MQTT-3.3.1-10], [MQTT-3.3.1-11]

	PICS Selection
	PICS_BROKER_RTND

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '1'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 payload corresponding to PAYLOAD;
 ;
 from the CLIENT_1
 and
 the IUT receives a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '1'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 payload corresponding to PAYLOAD_ZERO_BYTE;
 ;
 from the CLIENT_1
 and
 the IUT receives a SUBSCRIBE message containing
 payload containing
 topic_filter corresponding to PX_PUBLISH_TOPIC,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 }
 then {
 the IUT sends no PUBLISH message to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_RTND_006

	Test Objective
	Verify that the IUT does neither store a Retained Message nor removes or replaces any existing Retained Messages if the retained_flag is set to 0.

	Reference
	[MQTT-3.3.1-12]

	PICS Selection
	PICS_BROKER_RTND

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '1'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 payload corresponding to PAYLOAD;
 ;
 from the CLIENT_1
 and
 the IUT receives a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '0'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 payload corresponding to PAYLOAD_2;
 ;
 from the CLIENT_1
 and
 the IUT receives a SUBSCRIBE message containing
 payload containing
 topic_filter corresponding to PX_PUBLISH_TOPIC,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 from the CLIENT_2
 }
 then {
 the IUT sends a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '1'B,
 payload corresponding to PAYLOAD;
 ;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_RTND_007

	Test Objective
	Verify that the IUT stores Retained Messages with a QoS level of 0 for future deliveries. However, the IUT may choose to discard Retained Messages with a QoS level of 0 at any time.

	Reference
	[MQTT-3.3.1-7]

	PICS Selection
	PICS_BROKER_RTND

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_LEAST_ONCE,
 retain_flag indicating value '1'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 payload corresponding to PAYLOAD;
 ;
 from the CLIENT_1
 and
 the IUT receives a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '1'B,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 payload corresponding to PAYLOAD_2;
 ;
 from the CLIENT_1
 and
 the IUT receives a SUBSCRIBE message containing
 payload containing
 topic_filter corresponding to PX_PUBLISH_TOPIC,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 from the CLIENT_2
 }
 then {
 the IUT sends a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_MOST_ONCE,
 retain_flag indicating value '1'B,
 payload corresponding to PAYLOAD_2;
 ;
 to the CLIENT_2
 or
 the IUT sends no PUBLISH message to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_LWT_001

	Test Objective
	Verify that the IUT sends a Will Messages to subscribes if a client with LWT disconnects unexpectedly.

	Reference
	[MQTT-3.1.2-8]

	PICS Selection
	PICS_BROKER_LWT

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 established the MQTT_CONNECTION containing
 flags containing
 will_flag indicating value '1'B,
 payload containing
 will_topic corresponding to PX_PUBLISH_TOPIC,
 will_message corresponding to PX_WILL_MESSAGE;
 ;;
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC
}

	Expected Behaviour

	ensure that {
 when {
 the CLIENT_1 closes the TCP_CONNECTION to the IUT
 }
 then {
 the IUT sends a PUBLISH message containing
 topic_name corresponding to PX_PUBLISH_TOPIC,
 payload corresponding to PX_WILL_MESSAGE;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_LWT_002

	Test Objective
	Verify that the IUT deletes a Will Messages if the client with LWT disconnects correctly with a DISCONNECT Control Packet.

	Reference
	[MQTT-3.1.2-8], [MQTT-3.1.2-10], [MQTT-3.14.4-3]

	PICS Selection
	PICS_BROKER_LWT

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 established the MQTT_CONNECTION containing
 flags containing
 will_flag indicating value '1'B,
 payload containing
 will_topic corresponding to PX_PUBLISH_TOPIC,
 will_message corresponding to PX_WILL_MESSAGE;
 ;;
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a DISCONNECT message from the CLIENT_1
 }
 then {
 the IUT sends no PUBLISH message to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_LWT_003

	Test Objective
	Verify that the IUT sends no Will Message if a client without LWT disconnects unexpectedly.

	Reference
	[MQTT-3.1.2-12]

	PICS Selection
	PICS_BROKER_LWT

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 established the MQTT_CONNECTION containing
 flags containing
 will_flag indicating value '0'B;
 ;
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC
}

	Expected Behaviour

	ensure that {
 when {
 the CLIENT_1 closes the TCP_CONNECTION to the IUT
 }
 then {
 the IUT sends no PUBLISH message to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_LWT_004

	Test Objective
	Verify that the IUT handles Will Messages with will_retain set to 1 as Retained Will Messages.

	Reference
	[MQTT-3.1.2-17]

	PICS Selection
	PICS_BROKER_LWT

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 established the MQTT_CONNECTION containing
 flags containing
 will_retain indicating value '1'B,
 will_flag indicating value '1'B,
 payload containing
 will_topic corresponding to PX_PUBLISH_TOPIC,
 will_message corresponding to PX_WILL_MESSAGE;
 ;;
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 closed the TCP_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 payload containing
 topic_filter corresponding to PX_PUBLISH_TOPIC;
 ;
 from the CLIENT_2
 }
 then {
 the IUT sends a PUBLISH message containing
 topic_name corresponding to PX_PUBLISH_TOPIC,
 payload corresponding to PX_WILL_MESSAGE;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_LWT_005

	Test Objective
	Verify that the IUT handles Will Messages with will_retain set to 1 as non-retained Will Messages.

	Reference
	[MQTT-3.1.2-16]

	PICS Selection
	PICS_BROKER_LWT

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 established the MQTT_CONNECTION containing
 flags containing
 will_retain indicating value '0'B,
 will_flag indicating value '1'B,
 payload containing
 will_topic corresponding to PX_PUBLISH_TOPIC,
 will_message corresponding to PX_WILL_MESSAGE;
 ;;
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 closed the TCP_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 payload containing
 topic_filter corresponding to PX_PUBLISH_TOPIC;
 ;
 from the CLIENT_2
 }
 then {
 the IUT sends no PUBLISH message to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_PUBSUB_001

	Test Objective
	Verify that the IUT validates the UTF-8 encoded sequence 0xEF 0xBB 0xBF as Unicode U+FEFF ('ZERO WIDTH NO-BREAK SPACE') within the topic name of a PUBLISH Control Packet.

	Reference
	[MQTT-1.5.3-3], [MQTT-4.7.3-4]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to TOPIC_FILTER_WITH_ZWNBS;;
 from the CLIENT_1
 }
 then {
 the IUT sends no PUBLISH to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_PUBSUB_002

	Test Objective
	Verify that the IUT validates the UTF-8 encoded sequence 0xEF 0xBB 0xBF as Unicode U+FEFF ('ZERO WIDTH NO-BREAK SPACE') within the topic filter of a SUBSCRIBE Control Packet.

	Reference
	[MQTT-1.5.3-3], [MQTT-4.7.3-4]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the TOPIC_FILTER_WITH_ZWNBS
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a SUBSCRIBE message containing
 payload containing
 topic_filter corresponding to PX_PUBLISH_TOPIC,
 requested_qos corresponding to AT_MOST_ONCE;
 ;
 from the CLIENT_1
 }
 then {
 the IUT sends no PUBLISH to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_PUBSUB_003

	Test Objective
	Verify that the IUT does not match topic filters starting with a multi-level wildcard character (#) with topic names beginning with a $ character

	Reference
	[MQTT-4.7.2-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the TOPIC_FILTER_MULTI_LEVEL_ALL
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 topic_name corresponding to TOPIC_NAME_SYS;
 from the CLIENT_1
 }
 then {
 the IUT sends no PUBLISH message to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_PUBSUB_004

	Test Objective
	Verify that the IUT does not match topic filters starting with a single-level wildcard character (+) with topic names beginning with a $ character

	Reference
	[MQTT-4.7.2-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the TOPIC_FILTER_SINGLE_LEVEL
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 topic_name corresponding to TOPIC_NAME_SYS;
 from the CLIENT_1
 }
 then {
 the IUT sends no PUBLISH message to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_PUBSUB_005

	Test Objective
	Verify that the IUT does match topic names and filters beginning with a $ character.

	Reference
	[MQTT-4.7.2-1]

	PICS Selection
	PICS_BROKER_BASIC

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the TOPIC_FILTER_MULTI_LEVEL_SYS_ALL
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 topic_name corresponding to TOPIC_NAME_SYS;
 from the CLIENT_1
 }
 then {
 the IUT sends a PUBLISH message containing
 topic_name corresponding to TOPIC_NAME_SYS;
 to the CLIENT_2
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_PUBSUB_006

	Test Objective
	Verify that the IUT resends PUBLISH Control Packets in the order in which the original PUBLISH Control Packets were sent.

	Reference
	[MQTT-4.6.0-1], [MQTT-4.6.0-6], [MQTT-4.4.0-1]

	PICS Selection
	PICS_BROKER_QOS_1

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 requested_qos corresponding to AT_LEAST_ONCE;
 to the IUT
 and
 the CLIENT_1 sent a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1;
 ;
 to the IUT
 and
 the CLIENT_1 sent a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2;
 ;
 to the IUT
 and
 the IUT sent a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1;
 ;
 to the CLIENT_2
 and
 the IUT sent a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2;
 ;
 to the CLIENT_2
}

	Expected Behaviour

	ensure that {
 when {
 the IUT received no PUBACK message containing
 packet_identifier corresponding to PACKET_ID_1;
 and
 the IUT received no PUBACK message containing
 packet_identifier corresponding to PACKET_ID_2;
 }
 then {
 the IUT sends a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1;
 ;
 and
 the IUT sends a PUBLISH message containing
 publish_header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_PUBSUB_007

	Test Objective
	Verify that the IUT resends PUBLISH Control Packets in the order in which the original PUBLISH Control Packets were sent.

	Reference
	[MQTT-4.6.0-1], [MQTT-4.6.0-6], [MQTT-4.4.0-1]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 subscribed the PX_PUBLISH_TOPIC containing
 requested_qos corresponding to EXACTLY_ONCE;
 to the IUT
 and
 the CLIENT_1 sent a PUBLISH message containing
 publish_header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1;
 ;
 to the IUT
 and
 the CLIENT_1 sent a PUBLISH message containing
 publish_header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2;
 ;
 to the IUT
 and
 the IUT sent a PUBLISH message containing
 publish_header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1;
 ;
 to the CLIENT_2
 and
 the IUT sent a PUBLISH message containing
 publish_header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2;
 ;
 to the CLIENT_2
}

	Expected Behaviour

	ensure that {
 when {
 the IUT not received a PUBREC message containing
 packet_identifier corresponding to PACKET_ID_1;
 and
 the IUT not received a PUBREC message containing
 packet_identifier corresponding to PACKET_ID_2;
 }
 then {
 the IUT sends a PUBLISH message containing
 publish_header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_1;
 ;
 and
 the IUT sends a PUBLISH message containing
 publish_header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID_2;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_QOS_001

	Test Objective
	Verify that the IUT delivers PUBLISH Control Packets (in case of overlapping topic filter) respecting the maximum QoS level of all matching subscriptions.

	Reference
	[MQTT-3.3.5-1]

	PICS Selection
	PICS_BROKER_QOS_1

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 subscribed the TOPIC_FILTER_VALID containing
 qos_level corresponding to AT_MOST_ONCE;
 and
 the CLIENT_1 subscribed the TOPIC_FILTER_VALID_OVERLAP containing
 qos_level corresponding to AT_LEAST_ONCE;
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to TOPIC_NAME_VALID_OVERLAP;
 ;
 from the CLIENT_2
 }
 then {
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE;
 ;
 to the CLIENT_1
 or
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to AT_MOST_ONCE;
 ;
 to the CLIENT_1
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_QOS_002

	Test Objective
	Verify that the IUT delivers PUBLISH Control Packets (in case of overlapping topic filter) respecting the maximum QoS level of all matching subscriptions.

	Reference
	[MQTT-3.3.5-1]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 subscribed the TOPIC_FILTER_VALID containing
 qos_level corresponding to AT_MOST_ONCE;
 and
 the CLIENT_1 subscribed the TOPIC_FILTER_VALID_OVERLAP containing
 qos_level corresponding to EXACTLY_ONCE;
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to TOPIC_NAME_VALID_OVERLAP;
 ;
 from the CLIENT_2
 }
 then {
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE;
 ;
 to the CLIENT_1
 or
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to AT_MOST_ONCE;
 ;
 to the CLIENT_1
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_QOS_003

	Test Objective
	Verify that the IUT delivers PUBLISH Control Packets (in case of overlapping topic filter) respecting the maximum QoS level of all matching subscriptions.

	Reference
	[MQTT-3.3.5-1]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 subscribed the TOPIC_FILTER_VALID containing
 qos_level corresponding to AT_LEAST_ONCE;
 and
 the CLIENT_1 subscribed the TOPIC_FILTER_VALID_OVERLAP containing
 qos_level corresponding to EXACTLY_ONCE;
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to TOPIC_NAME_VALID_OVERLAP;
 ;
 from the CLIENT_2
 }
 then {
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE;
 ;
 to the CLIENT_1
 or
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE;
 ;
 to the CLIENT_1
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_QOS_004

	Test Objective
	Verify that the IUT delivers PUBLISH Control Packets (in case of overlapping topic filter) respecting the maximum QoS level of all matching subscriptions.

	Reference
	[MQTT-3.3.5-1]

	PICS Selection
	PICS_BROKER_QOS_1

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 subscribed the TOPIC_FILTER_VALID containing
 qos_level corresponding to AT_LEAST_ONCE;
 and
 the CLIENT_1 subscribed the TOPIC_FILTER_VALID_OVERLAP containing
 qos_level corresponding to AT_MOST_ONCE;
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to TOPIC_NAME_VALID_OVERLAP;
 ;
 from the CLIENT_2
 }
 then {
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to AT_MOST_ONCE;
 ;
 to the CLIENT_1
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_BROKER_FEAT_QOS_005

	Test Objective
	Verify that the IUT delivers PUBLISH Control Packets (in case of overlapping topic filter) respecting the maximum QoS level of all matching subscriptions.

	Reference
	[MQTT-3.3.5-1]

	PICS Selection
	PICS_BROKER_QOS_2

	Initial Conditions

	with {
 the CLIENT_1 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_2 having a MQTT_CONNECTION to the IUT
 and
 the CLIENT_1 subscribed the TOPIC_FILTER_VALID containing
 qos_level corresponding to EXACTLY_ONCE;
 and
 the CLIENT_1 subscribed the TOPIC_FILTER_VALID_OVERLAP containing
 qos_level corresponding to AT_LEAST_ONCE;
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to TOPIC_NAME_VALID_OVERLAP;
 ;
 from the CLIENT_2
 }
 then {
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE;
 ;
 to the CLIENT_1
 }
}

	Final Conditions

	

[bookmark: _Toc50379990]
6	Test Purposes for MQTT Client
[bookmark: _Toc418757530][bookmark: _Toc486258500][bookmark: _Toc486258538][bookmark: _Toc486323651]
	TP Id
	TP_MQTT_CLIENT_CONNECT_01

	Test Objective
	Verify that the IUT is able to send CONNECT Control Packets with valid Header Flags.

	Reference
	[MQTT-2.2.2-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message
 }
 then {
 the IUT sends a CONNECT message containing
 header_flags indicating value '0000'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_02

	Test Objective
	The protocol name representing the protocol is a UTF-8 encoded 'MQTT' string. Verify that the IUT is able to send CONNECT Control Packets with valid protocol name represented by a UTF-8 encoded 'MQTT' string.

	Reference
	[MQTT-3.1.2-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message
 }
 then {
 the IUT sends a CONNECT message containing
 protocol_name corresponding to PROTOCOL_NAME;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_03

	Test Objective
	Verify that the IUT is able to send CONNECT Control Packets with Protocol Level 0x04 for MQTT 3.1.1

	Reference
	[MQTT-3.1.2-2]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message
 }
 then {
 the IUT sends a CONNECT message containing
 protocol_level indicating value 0x04;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_04

	Test Objective
	Verify that the IUT is able to send CONNECT Control Packets with valid reserved flag.

	Reference
	[MQTT-3.1.2-3]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message
 }
 then {
 the IUT sends a CONNECT message containing
 connect_flags containing
 reserved_field indicating value '0'B;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_05

	Test Objective
	Verify that the IUT is able to send CONNECT Control Packets with valid Last Will Testament settings.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.2-14]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message containing
 connect_flags containing
 will_flag indicating value '1'B;
 ;
 }
 then {
 the IUT sends a CONNECT message containing
 connect_flags containing
 will_flag indicating value '1'B,
 will_qos corresponding to VALID_QOS;
 ,
 payload containing
 will_topic indicating value not omit,
 will_message indicating value not omit;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_06

	Test Objective
	Verify that the IUT is able to send CONNECT Control Packets without Last Will Testament.

	Reference
	[MQTT-3.1.2-11], [MQTT-3.1.2-13], [MQTT-3.1.2-15]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message containing
 connect_flags containing
 will_flag indicating value '0'B;
 ;
 }
 then {
 the IUT sends a CONNECT message containing
 connect_flags containing
 will_flag indicating value '0'B,
 will_qos corresponding to AT_MOST_ONCE,
 will_retain indicating value '0'B;
 ,
 payload containing
 will_topic indicating value omit,
 will_message indicating value omit;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_07

	Test Objective
	Verify that the IUT is able to send CONNECT Control Packets with valid settings for a connection without authentication.

	Reference
	[MQTT-3.1.2-18], [MQTT-3.1.2-20], [MQTT-3.1.2-22]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '0'B;
 ;
 }
 then {
 the IUT sends a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '0'B,
 password_flag indicating value '0'B;
 ,
 payload containing
 user_name indicating value omit,
 password indicating value omit;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_08

	Test Objective
	Verify that the IUT is able to send CONNECT Control Packets with only a User Name.

	Reference
	[MQTT-3.1.2-19]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '1'B,
 password_flag indicating value '0'B;
 ;
 }
 then {
 the IUT sends a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '1'B,
 password_flag indicating value '0'B;
 ,
 payload containing
 user_name indicating value not omit,
 password indicating value omit;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_09

	Test Objective
	Verify that the IUT is able to send CONNECT Control Packets with a User Name and Password.

	Reference
	[MQTT-3.1.2-21], [MQTT-3.1.2-21]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B;
 ;
 }
 then {
 the IUT sends a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B;
 ,
 payload containing
 user_name indicating value not omit,
 password indicating value not omit;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_10

	Test Objective
	Verify that the IUT sends CONNECT Control Packets with Payload fields appearing in a correct order.

	Reference
	[MQTT-3.1.3-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B,
 will_flag indicating value '1'B,
 will_qos corresponding to AT_MOST_ONCE;
 ,
 payload containing
 client_identifier corresponding to VALID_CLIENT_ID,
 will_topic corresponding to PX_WILL_TOPIC,
 will_message corresponding to PX_WILL_MESSAGE,
 user_name corresponding to PX_MQTT_USER_NAME,
 password corresponding to PX_MQTT_PASSWORD;
 ;
 }
 then {
 // Assumption: by comparing each field with the sent values, the order is checked implicitly.
 // Wrong order would silently swap the fields during decoding
 the IUT sends a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '1'B,
 password_flag indicating value '1'B,
 will_flag indicating value '1'B;
 ,
 payload containing
 client_identifier corresponding to VALID_CLIENT_ID,
 will_topic corresponding to PX_WILL_TOPIC,
 will_message corresponding to PX_WILL_MESSAGE,
 user_name corresponding to PX_MQTT_USER_NAME,
 password corresponding to PX_MQTT_PASSWORD;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_11

	Test Objective
	Verify that the IUT is able to send CONNECT Control Packets with a well-formed UTF-8 encoded client identifier.

	Reference
	[MQTT-3.1.3-4], [MQTT-1.5.3-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message containing
 payload containing
 client_identifier corresponding to VALID_CLIENT_ID; // TODO: required to trigger a concrete Client ID?
 ;
 }
 then {
 // TODO: sufficient for [MQTT-3.1.3-4] ?
 the IUT sends a CONNECT message containing
 payload containing
 client_identifier corresponding to VALID_CLIENT_ID;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_12

	Test Objective
	Verify that the IUT sets the clean_session flag to 1 if it connects with a zero-byte client identifier.

	Reference
	[MQTT-3.1.3-7]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message containing
 payload containing
 client_identifier corresponding to CLIENT_ID_ZERO_BYTES;
 ;
 }
 then {
 the IUT sends a CONNECT message containing
 connect_flags containing
 clean_session indicating value '1'B;
 ,
 payload containing
 client_identifier corresponding to CLIENT_ID_ZERO_BYTES;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_13

	Test Objective
	Verify that IUT encodes the Will Topic to well-formed UTF-8 encoded string.

	Reference
	[MQTT-3.1.3-10]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message containing
 connect_flags containing
 will_flag indicating value '1'B;
 ,
 payload containing
 will_topic corresponding to PX_WILL_TOPIC; // TODO: required to trigger a concrete topic?
 ;
 }
 then {
 // TODO: sufficient for [MQTT-3.1.3-10] ?
 the IUT sends a CONNECT message containing
 connect_flags containing
 will_flag indicating value '1'B;
 ,
 payload containing
 will_topic corresponding to TOPIC_NAME_VALID;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNECT_14

	Test Objective
	Verify that IUT encodes the User Name to well-formed UTF-8 encoded string.

	Reference
	[MQTT-3.1.3-11]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '1'B;
 ,
 payload containing
 user_name corresponding to PX_MQTT_USER_NAME; // TODO: required to trigger a concrete username?
 ;
 }
 then {
 // TODO: sufficient for [MQTT-3.1.3-11] ?
 the IUT sends a CONNECT message containing
 connect_flags containing
 user_name_flag indicating value '1'B;
 ,
 payload containing
 user_name corresponding to USER_NAME_VALID_UTF8;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_CONNACK_01

	Test Objective
	Verify that the IUT closes the network connection on receiption of a CONNACK Control Packet with invalid fixed header.

	Reference
	[MQTT-2.2.2-1], [MQTT-2.2.2-2], [MQTT-4.8.0-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT is triggered to send a CONNECT message
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a CONNACK message containing
 header_flags indicating value '1111'B;
 }
 then {
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_01

	Test Objective
	Verify that the IUT sets the DUP flag to 0 for all QoS 0 PUBLISH Control Packets.

	Reference
	[MQTT-3.3.1-2]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a PUBLISH message containing
 header containing
 qos_level corresponding to AT_MOST_ONCE;
 ;
 }
 then {
 the IUT sends a PUBLISH message containing
 header containing
 qos_level corresponding to AT_MOST_ONCE,
 dup_flag indicating value '0'B;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_02

	Test Objective
	Verify that the IUT sets the DUP flag to 0 for all QoS 1 PUBLISH Control Packets.

	Reference
	[MQTT-3.3.1-1]

	PICS Selection
	PICS_CLIENT_QOS_1

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE;
 ;
 }
 then {
 the IUT is triggered to send a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 dup_flag indicating value '0'B;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_03

	Test Objective
	Verify that the IUT sets the DUP flag to 0 for all QoS 2 PUBLISH Control Packets.

	Reference
	[MQTT-3.3.1-1]

	PICS Selection
	PICS_CLIENT_QOS_2

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a PUBLISH message containing
 qos_level corresponding to EXACTLY_ONCE;
 }
 then {
 the IUT sends a PUBLISH message containing header containing
 qos_level corresponding to EXACTLY_ONCE,
 dup_flag indicating value '0'B;
 ;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_04

	Test Objective
	Verify that IUT encodes the topic name to a well-formed UTF-8 encoded string.

	Reference
	[MQTT-3.3.2-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a PUBLISH message
 }
 then {
 the IUT sends a PUBLISH message containing
 topic_name not corresponding to TOPIC_NAME_INVALID_UTF8;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_05

	Test Objective
	Verify that the IUT does not send PUBLISH Control Packets which contain only valid topic names without wildcard characters.

	Reference
	[MQTT-3.3.2-2]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a PUBLISH message
 }
 then {
 the IUT sends a PUBLISH message containing
 topic_name corresponding to TOPIC_NAME_VALID;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_06

	Test Objective
	Verify that the IUT does not send any response on reception of a QoS level 0 PUBLISH Control Packet.

	Reference
	[MQTT-3.3.4-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
 and
 the IUT subscribed the PX_PUBLISH_TOPIC to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_MOST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC;;
 }
 then {
 the IUT sends no response message
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_07

	Test Objective
	Verify that the IUT responds to a QoS level 1 PUBLISH Control Packet with a PUBACK Control Packet.

	Reference
	[MQTT-3.3.4-1]

	PICS Selection
	PICS_CLIENT_QOS_1

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
 and
 the IUT subscribed the PX_PUBLISH_TOPIC to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 packet_identifier corresponding to PACKET_ID,
 topic_name corresponding to PX_PUBLISH_TOPIC;;
 }
 then {
 the IUT sends a PUBACK message containing
 packet_identifier corresponding to PACKET_ID;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_08

	Test Objective
	Verify that the IUT responds to a QoS level 2 PUBLISH Control Packet with a PUBREC Control Packet.

	Reference
	[MQTT-3.3.4-1]

	PICS Selection
	PICS_CLIENT_QOS_2

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
 and
 the IUT subscribed the PX_PUBLISH_TOPIC to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 packet_identifier corresponding to PACKET_ID,
 topic_name corresponding to PX_PUBLISH_TOPIC;;
 }
 then {
 the IUT sends a PUBREC message containing
 packet_identifier corresponding to PACKET_ID;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_09

	Test Objective
	Verify that the IUT assigns a non-zero packet identifier on each new PUBLISH Control Packet with QoS level > 0

	Reference
	[MQTT-2.3.1-1]

	PICS Selection
	PICS_CLIENT_QOS_1

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE;;
 }
 then {
 the IUT sends a PUBLISH message containing
 packet_identifier corresponding to PACKET_ID_NON_ZERO;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_10

	Test Objective
	Verify that the IUT assigns a currently unused packet identifier on each new PUBLISH Control Packet with QoS level > 0

	Reference
	[MQTT-2.3.1-2]

	PICS Selection
	PICS_CLIENT_QOS_1

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE;;
 and
 the IUT is triggered to send a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE;;
 }
 then {
 the IUT sends a PUBLISH message containing
 packet_identifier corresponding to PACKET_ID_1;
 and
 the IUT sends a PUBLISH message containing
 packet_identifier corresponding to PACKET_ID_2;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBLISH_11

	Test Objective
	Verify that the IUT does not assign a packet identifier on PUBLISH Control Packet with QoS level equals 0

	Reference
	[MQTT-2.3.1-5]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a PUBLISH message containing
 header containing
 qos_level corresponding to AT_MOST_ONCE;;
 }
 then {
 the IUT sends a PUBLISH message containing
 packet_identifier indicating value omit;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBACK_01

	Test Objective
	Verify that the IUT is able to send PUBACK Control Packets with valid Header Flags.

	Reference
	[MQTT-2.2.2-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
 and
 the IUT subscribed the PX_PUBLISH_TOPIC to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC;;
 }
 then {
 the IUT sends a PUBACK message containing
 header_flags indicating value '0000'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBACK_02

	Test Objective
	Verify that the IUT acknowledges a PUBLISH Control Packet with the correct packet identifier.

	Reference
	[MQTT-2.3.1-6]

	PICS Selection
	PICS_CLIENT_QOS_1

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
 and
 the IUT subscribed the PX_PUBLISH_TOPIC to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to AT_LEAST_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID;;
 }
 then {
 the IUT sends a PUBACK message containing
 packet_identifier corresponding to PACKET_ID;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBREC_01

	Test Objective
	Verify that the IUT is able to send PUBREC Control Packets with valid Header Flags.

	Reference
	[MQTT-2.2.2-1]

	PICS Selection
	PICS_CLIENT_QOS_2

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
 and
 the IUT subscribed the PX_PUBLISH_TOPIC to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC;;
 }
 then {
 the IUT sends a PUBREC message containing
 header_flags indicating value '0000'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBREC_02

	Test Objective
	Verify that the IUT acknowledges a PUBLISH Control Packet with the correct packet identifier.

	Reference
	[MQTT-2.3.1-6]

	PICS Selection
	PICS_CLIENT_QOS_2

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
 and
 the IUT subscribed the PX_PUBLISH_TOPIC to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBLISH message containing
 header containing
 qos_level corresponding to EXACTLY_ONCE,
 topic_name corresponding to PX_PUBLISH_TOPIC,
 packet_identifier corresponding to PACKET_ID;;
 }
 then {
 the IUT sends a PUBREC message containing
 acket_identifier corresponding to PACKET_ID;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBREL_01

	Test Objective
	Verify that the IUT is able to send PUBREL Control Packets with valid Header Flags.

	Reference
	[MQTT-2.2.2-1]

	PICS Selection
	PICS_CLIENT_QOS_2

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBREC message
 }
 then {
 the IUT sends a PUBREL message containing
 header_flags indicating value '0000'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBREL_02

	Test Objective
	Verify that the IUT acknowledges a PUBREC Control Packet with the correct packet identifier with a PUBREL Control Packet.

	Reference
	[MQTT-2.3.1-6]

	PICS Selection
	PICS_CLIENT_QOS_2

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBREC message containing
 packet_identifier corresponding to PACKET_ID;
 }
 then {
 the IUT sends a PUBREL message containing
 packet_identifier corresponding to PACKET_ID;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_PUBCOMP_01

	Test Objective
	Verify that the IUT is able to send PUBCOMP Control Packets with valid Header Flags.

	Reference
	[MQTT-2.2.2-1]

	PICS Selection
	PICS_CLIENT_QOS_2

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
 and
 the IUT subscribed the PX_PUBLISH_TOPIC to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT receives a PUBREL message
 }
 then {
 the IUT sends a PUBCOMP message containing
 header_flags indicating value '0000'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_SUBSCRIBE_01

	Test Objective
	Verify that the IUT is able to send SUBSCRIBE Control Packets with valid Header Flags.

	Reference
	[MQTT-2.2.2-1], [MQTT-3.8.1-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a SUBSCRIBE message
 }
 then {
 the IUT sends a SUBSCRIBE message containing
 header_flags indicating value '0010'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_SUBSCRIBE_02

	Test Objective
	Verify that the IUT assigns a non-zero packet identifier on each new SUBSCRIBE Control Packet

	Reference
	[MQTT-2.3.1-2]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a SUBSCRIBE message
 }
 then {
 the IUT sends a SUBSCRIBE message containing
 packet_identifier corresponding to PACKET_ID_1;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_SUBSCRIBE_03

	Test Objective
	Verify that the IUT assigns a currently unsued packet identifier on each new SUBSCRIBE Control Packet

	Reference
	[MQTT-2.3.1-2]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a SUBSCRIBE message
 and
 the IUT is triggered to send a SUBSCRIBE message
 }
 then {
 the IUT sends a SUBSCRIBE message containing
 packet_identifier corresponding to PACKET_ID_1;
 and
 the IUT sends a SUBSCRIBE message containing
 packet_identifier corresponding to PACKET_ID_2;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_UNSUBSCRIBE_01

	Test Objective
	Verify that the IUT is able to send UNSUBSCRIBE Control Packets with valid Header Flags.

	Reference
	[MQTT-2.2.2-1], [MQTT-3.10.1-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a UNSUBSCRIBE message
 }
 then {
 the IUT sends a UNSUBSCRIBE message containing
 header_flags indicating value '0010'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_UNSUBSCRIBE_02

	Test Objective
	Verify that IUT encodes the topic filter to a well-formed UTF-8 encoded string.

	Reference
	[MQTT-3.10.3-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a UNSUBSCRIBE message
 }
 then {
 the IUT sends a UNSUBSCRIBE message containing
 payload containing
 topic_filter not corresponding to TOPIC_FILTER_INVALID_UTF8;;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_DISCONNECT_01

	Test Objective
	Verify that the IUT is able to send DISCONNECT Control Packets with valid Header Flags.

	Reference
	[MQTT-2.2.2-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a DISCONNECT message
 }
 then {
 the IUT sends a DISCONNECT message containing
 header_flags indicating value '0000'B;
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_DISCONNECT_02

	Test Objective
	Verify that the IUT closes the network connection after sending a DISCONNECT Control Packet.

	Reference
	[MQTT-3.14.4-1]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION to the TEST_SYSTEM
}

	Expected Behaviour

	ensure that {
 when {
 the IUT is triggered to send a DISCONNECT message
 }
 then {
 the IUT sends a DISCONNECT message
 and
 the IUT closes the TCP_CONNECTION
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_CLIENT_FEAT_KEEPALIVE_01

	Test Objective
	Verify that the IUT ensures that the interval between Control Packets being sent does not exceed the Keep Alive value.

	Reference
	[MQTT-3.1.2-23]

	PICS Selection
	PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT having a MQTT_CONNECTION containing
 keep_alive corresponding to PX_KEEP_ALIVE;
}

	Expected Behaviour

	ensure that {
 when {
 the MQTT_CONNECTION times_out
 }
 then {
 the IUT sends a PINGREQ message
 }
}

	Final Conditions

	

[bookmark: _Toc50379991]Annex A (normative):
MQTT Test Purposes (TPs)
[bookmark: _Toc418757541][bookmark: _Toc486258511][bookmark: _Toc486258549][bookmark: _Toc486323662]This Test purpose catalogue has been produced using the Test Description Language (TDL-TO) according to ETSI ES 203 119-4 [2]. The TDL-TO library modules corresponding to the Test purpose catalogue are contained in archive ts_103597v010101p0.zip which accompanies the present document.

[bookmark: _Toc418757543][bookmark: _Toc486258513][bookmark: _Toc486258551][bookmark: _Toc486323664][bookmark: _Toc50379992]History
	Document history

	V0.0.1
	May 2018
	Pre-Draft done

	V0.0.2
	September 2018
	Section 2.1: reference to OASIS MQTT standard and TDL Part 4 added
Section 4.4: new section added
Section 5.1: moved this section to section 4.3
Section 5.3: TPs added and updated and moved to section 5.1
Renamed section 4.1 and 5 (Server -> Broker)

	V0.0.3
	January 2019
	Aligned RTND test purposes with the ETSI documents draft
Added section 6, Test Purposes for MQTT Clients

	V0.0.4
	May 2019
	Add TPs for MQTT Server as SUT
Add TPs for MQTT Client as SUT

	V0.0.5
	September 2019
	Add TPs for MQTT Server as SUT
Reworked TPs for MQTT Client as SUT

	V0.0.6
	January 2020
	Editorial work
Section Foreword: content added
Section 3: sub-section Symbols removed; 3.1 + 3.2 content added
Section 4.5: new section added
 TPs for MQTT Broker slightly reworked
 TPs for MQTT Client added

	V0.1.0
	May 2020
	Editorial work
Section 4: introductory text added
Section 4.2: TSS for the client as SUT added

	V0.1.1
	September 2020
	Minor editorial update

	V0.1.2
	September 2020
	[bookmark: _GoBack]Empty clause deleted

	
	
	

ETSI
image1.jpeg

ETSI

TS

1

03

59

7

-

1

V

0.

1

.

2

(

20

20

-

0

9

)

Test Specification for

MQT

T

;

Part 1: Conformance Tests

;

Release #

1

<

TECHNICAL SPECIFICATION

ETSI TS 1 03 59 7 - 1 V 0. 1 . 2 (20 20 - 0 9)

Test Specification for MQT T ; Part 1: Conformance Tests ; Release # 1



TECHNICAL SPECIFICATION

