ETSI TS 103 597-3 V0.1.4 (2020-11)
28
Release #1

[bookmark: pages12][bookmark: docnumber][bookmark: docdate]ETSI TS 103 597-3 V0.1.4 (2020-11)
[bookmark: doctitle]Test Specification for MQTT;
Part 3: Performance Tests;
Release #1
<

[bookmark: GSBox]
[bookmark: doctypelong]TECHNICAL SPECIFICATION
[image: ETSI_BG_final_new]

[bookmark: page2]Reference
[bookmark: docworkitem]DTS/MTS-TSTMQTT-3
Keywords
MQTT, Performance, Testing

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-préfecture de Grasse (06) N° 7803/88

	
Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx.
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© ETSI 2020.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	3
Foreword	4
Modal verbs terminology	4
Introduction	4
1	Scope	5
2	References	5
2.1	Normative references	5
2.2	Informative references	5
3	Definition of terms, symbols and abbreviations	5
3.1	Terms	5
3.2	Symbols	6
3.3	Abbreviations	6
4	Performance metrics	7
4.1	Concepts	7
4.1.2	Measurement Preliminary Considerations	7
4.2	Measurement Methodology	7
4.2.1	Metric Post-processing	8
4.2.2	Message Types	8
4.2.3	Test parameters	8
4.2.4	Operation Message Flows	9
4.2.5	Test Campaign Parameters	13
4.3	Powerfulness metrics	14
4.4	Reliability metrics	14
4.5	Efficiency metrics	14
5	Configurations	15
6	Benchmarking	16
6.1	Generic adjustments	16
6.2	Benchmarking Methodology	16
6.3	Metric examples	17
6.4	Benchmark Examples	17
6.4.1	KPI Determination	17
6.4.2	KPI Validation	19
7	Examples of Tests	21
7.1	Test Objectives	21
7.2	Test Purpose	21
7.3	Test Report	22
Annex A :MQTT Test Purposes (TPs)	23
History	29

[bookmark: _Toc418757512][bookmark: _Toc486258482][bookmark: _Toc486258520][bookmark: _Toc486323633][bookmark: _Toc487532204][bookmark: _Toc526860789][bookmark: _Toc526860962][bookmark: _Toc526861062][bookmark: _Toc526863335][bookmark: _Toc526863447][bookmark: _Toc526864366][bookmark: _Toc527031287][bookmark: _Toc527119272][bookmark: _Toc527119321][bookmark: _Toc527119402][bookmark: _Toc527123094][bookmark: _Toc527123154][bookmark: _Toc527123198][bookmark: _Toc527123257][bookmark: _Toc527369728][bookmark: _Toc527447021][bookmark: _Toc173696][bookmark: _Toc55312382]Intellectual Property Rights
Essential patents
IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc418757513][bookmark: _Toc486258483][bookmark: _Toc486258521][bookmark: _Toc486323634][bookmark: _Toc487532205][bookmark: _Toc526860790][bookmark: _Toc526860963][bookmark: _Toc526861063][bookmark: _Toc526863336][bookmark: _Toc526863448][bookmark: _Toc526864367][bookmark: _Toc527031288][bookmark: _Toc527119273][bookmark: _Toc527119322][bookmark: _Toc527119403][bookmark: _Toc527123095][bookmark: _Toc527123155][bookmark: _Toc527123199][bookmark: _Toc527123258][bookmark: _Toc527369729][bookmark: _Toc527447022][bookmark: _Toc173697][bookmark: For_tbname][bookmark: _Toc55312383]Foreword
This Technical Specification (TS) has been produced by ETSI Working Group Methods for Testing & Specification Testing (MTS TST).
The present document is part 1 of a multi-part deliverable covering the MQTT protocol concerning the following topics:
ETSI TS 103 597-1:		"Test Specification for MQTT; Part 1: Conformance Tests"
ETSI TS 103 597-2:		"Test Specification for MQTT; Part 2: Security Tests"
ETSI TS 103 597-3:		"Test Specification for MQTT; Part 3: Performance Tests"
[bookmark: _Toc418757515][bookmark: _Toc486258485][bookmark: _Toc486258523][bookmark: _Toc486323636][bookmark: _Toc487532207][bookmark: _Toc526860792][bookmark: _Toc526860965][bookmark: _Toc526861065][bookmark: _Toc526863337][bookmark: _Toc526863449][bookmark: _Toc526864368][bookmark: _Toc527031289][bookmark: _Toc527119274][bookmark: _Toc527119323][bookmark: _Toc527119404][bookmark: _Toc527123096][bookmark: _Toc527123156][bookmark: _Toc527123200][bookmark: _Toc527123259][bookmark: _Toc527369730][bookmark: _Toc527447023][bookmark: _Toc173698][bookmark: _Toc55312384]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc418757517][bookmark: _Toc486258487][bookmark: _Toc486258525][bookmark: _Toc486323638][bookmark: _Toc487532209][bookmark: _Toc526860794][bookmark: _Toc526860967][bookmark: _Toc526861067][bookmark: _Toc526863339][bookmark: _Toc526863451][bookmark: _Toc526864370][bookmark: _Toc527031291][bookmark: _Toc527119276][bookmark: _Toc527119325][bookmark: _Toc527119406][bookmark: _Toc527123099][bookmark: _Toc527123159][bookmark: _Toc527123203][bookmark: _Toc527123261][bookmark: _Toc527369732][bookmark: _Toc527447025][bookmark: _Toc173700][bookmark: _Toc55312385]Introduction
[bookmark: _Toc418757518][bookmark: _Toc486258488][bookmark: _Toc486258526][bookmark: _Toc486323639][bookmark: _Toc487532210][bookmark: _Toc526860795][bookmark: _Toc526860968][bookmark: _Toc526861068][bookmark: _Toc526863340][bookmark: _Toc526863452][bookmark: _Toc526864371][bookmark: _Toc527031292][bookmark: _Toc527119277][bookmark: _Toc527119326][bookmark: _Toc527119407][bookmark: _Toc527123100][bookmark: _Toc527123160][bookmark: _Toc527123204][bookmark: _Toc527123262][bookmark: _Toc527369733][bookmark: _Toc527447026][bookmark: _Toc173701]Technology advancements are bringing ever-increasing computing power and network speed in the communication domain. The number of communicating devices is expected to increase by 2 orders of magnitude in the following decade and with that several challenges emerge. A main challenge pertains to efficiency regarding resource consumption and overall performance.
As existing communication protocols evolve and new ones are created to fit the current technological capabilities and societal needs so must the standards that serve the basis for interoperability and compliance. This is most relevant in the foreseen context of the Internet of Things (IoT) which envisions a very high density of connected devices in the near future. The Message Queuing Telemetry Transport (MQTT) protocol is one such example of evolution.
While many IoT components communicate over standardized protocols, communication protocols for IoT like MQTT or CoAP evolved over time without a holistic approach for quality assurance. Although there are many published evaluations of various MQTT implementations, a lack of common language, methods and presentation of results is slowing down the adoption rate and overall evolution of the protocol.
In this document the performance testing is presented. It provides a basis for benchmark testing and performance evaluation for the MQTT protocol.

[bookmark: _Toc55312386]1	Scope
This document provides a test specification, i.e. an overall test suite structure and catalogue of test purposes for the Message Queuing Telemetry Transport (MQTT) protocol. It will be a reference base for both client side test campaigns and server side test campaigns addressing the performance issues.
[bookmark: _Toc418757519][bookmark: _Toc486258489][bookmark: _Toc486258527][bookmark: _Toc486323640][bookmark: _Toc487532211][bookmark: _Toc526860796][bookmark: _Toc526860969][bookmark: _Toc526861069][bookmark: _Toc526863341][bookmark: _Toc526863453][bookmark: _Toc526864372][bookmark: _Toc527031293][bookmark: _Toc527119278][bookmark: _Toc527119327][bookmark: _Toc527119408][bookmark: _Toc527123101][bookmark: _Toc527123161][bookmark: _Toc527123205][bookmark: _Toc527123263][bookmark: _Toc527369734][bookmark: _Toc527447027][bookmark: _Toc173702][bookmark: _Toc55312387]2	References
[bookmark: _Toc418757520][bookmark: _Toc486258490][bookmark: _Toc486258528][bookmark: _Toc486323641][bookmark: _Toc487532212][bookmark: _Toc526860797][bookmark: _Toc526860970][bookmark: _Toc526861070][bookmark: _Toc526863342][bookmark: _Toc526863454][bookmark: _Toc526864373][bookmark: _Toc527031294][bookmark: _Toc527119279][bookmark: _Toc527119328][bookmark: _Toc527119409][bookmark: _Toc527123102][bookmark: _Toc527123162][bookmark: _Toc527123206][bookmark: _Toc527123264][bookmark: _Toc527369735][bookmark: _Toc527447028][bookmark: _Toc173703][bookmark: _Toc55312388]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: _Hlk527464989][bookmark: _Hlk527447827][1]	OASIS Standard: "MQTT Version 3.1.1".
[2]	ETSI TS 103 597-1: Test Specification for MQTT; Part 1.
[3]	ETSI TR 101 577: Methods for Testing and Specifications (MTS); Performance Testing of Distributed Systems; Concepts and Terminology
[4]	ETSI ES 203 119-4: "TDL: Structured Test Objective Specification (Extension)"

[bookmark: _Toc418757521][bookmark: _Toc486258491][bookmark: _Toc486258529][bookmark: _Toc486323642][bookmark: _Toc487532213][bookmark: _Toc526860798][bookmark: _Toc526860971][bookmark: _Toc526861071][bookmark: _Toc526863343][bookmark: _Toc526863455][bookmark: _Toc526864374][bookmark: _Toc527031295][bookmark: _Toc527119280][bookmark: _Toc527119329][bookmark: _Toc527119410][bookmark: _Toc527123103][bookmark: _Toc527123163][bookmark: _Toc527123207][bookmark: _Toc527123265][bookmark: _Toc527369736][bookmark: _Toc527447029][bookmark: _Toc173704][bookmark: _Toc55312389]2.2	Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]	RFC2544: Benchmarking Methodology for Network Interconnect Devices

[bookmark: _Toc418757522][bookmark: _Toc486258492][bookmark: _Toc486258530][bookmark: _Toc486323643][bookmark: _Toc487532214][bookmark: _Toc526860799][bookmark: _Toc526860972][bookmark: _Toc526861072][bookmark: _Toc526863344][bookmark: _Toc526863456][bookmark: _Toc526864375][bookmark: _Toc527031296][bookmark: _Toc527119281][bookmark: _Toc527119330][bookmark: _Toc527119411][bookmark: _Toc527123104][bookmark: _Toc527123164][bookmark: _Toc527123208][bookmark: _Toc527123266][bookmark: _Toc527369737][bookmark: _Toc527447030][bookmark: _Toc173705][bookmark: _Toc55312390]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc418757523][bookmark: _Toc486258493][bookmark: _Toc486258531][bookmark: _Toc486323644][bookmark: _Toc487532215][bookmark: _Toc526860800][bookmark: _Toc526860973][bookmark: _Toc526861073][bookmark: _Toc526863345][bookmark: _Toc526863457][bookmark: _Toc526864376][bookmark: _Toc527031297][bookmark: _Toc527119282][bookmark: _Toc527119331][bookmark: _Toc527119412][bookmark: _Toc527123105][bookmark: _Toc527123165][bookmark: _Toc527123209][bookmark: _Toc527123267][bookmark: _Toc527369738][bookmark: _Toc527447031][bookmark: _Toc173706][bookmark: _Toc55312391]3.1	Terms
[bookmark: _Toc418757524][bookmark: _Toc486258494][bookmark: _Toc486258532][bookmark: _Toc486323645][bookmark: _Toc487532216][bookmark: _Toc526860801][bookmark: _Toc526860974][bookmark: _Toc526861074][bookmark: _Toc526863346][bookmark: _Toc526863458][bookmark: _Toc526864377][bookmark: _Toc527031298][bookmark: _Toc527119283][bookmark: _Toc527119332][bookmark: _Toc527119413][bookmark: _Toc527123106][bookmark: _Toc527123166][bookmark: _Toc527123210][bookmark: _Toc527123268][bookmark: _Toc527369739][bookmark: _Toc527447032][bookmark: _Toc173707]application messages The data carried by the MQTT protocol across the network for the application. When an Application Message is transported by MQTT it contains payload data, a Quality of Service (QoS), a collection of Properties, and a Topic Name.
active subscriber: connected client with at least 1 topic subscription
active server: connected server with at least 1 registered topic
benchmark test report: document generated at the conclusion of a test procedure containing the metrics measured during
benchmark test: procedure by which a test system interacts with a System Under Test to measure its behaviour and produce a benchmark report
client: A program or device that uses MQTT. A Client always establishes the Network Connection to the Server [1]. It can:
· Publish Application Messages that other Clients might be interested in.
· Subscribe to request Application Messages that it is interested in receiving.
· Unsubscribe to remove a request for Application Messages.
· Disconnect from the Server.
Design Objective Capacity (DOC): largest load an SUT can sustain while not exceeding design objectives defined for a use-case
Disallowed Unicode code point: The set of Unicode Control Codes and Unicode Noncharacters which should not be included in a UTF-8 Encoded String.
malformed packet: A control packet that cannot be parsed according to the protocol specification.
MQTT Protocol Packet: A packet of information that is sent across the Network Connection. The MQTT specification defines fourteen different types of Control Packet, one of which (the PUBLISH packet) is used to convey Application Messages.
parameter: attribute of a SUT, test system, system load, or traffic set whose value is set externally and prior to a benchmark test, and whose value affects the behaviour of the benchmark test
Protocol Error: 	An error that is detected after the packet has been parsed and found to contain data that is not allowed by the protocol or is inconsistent with the state of the Client or Server. Refer to section 4.13 for information about error handling.
Session: A stateful interaction between a Client and a Server. Some Sessions last only as long as the Network Connection, others can span multiple consecutive Network Connections between a Client and a Server. [1]
Server: A program or device that acts as an intermediary between Clients which publish Application Messages [1]
· and Clients which have made Subscriptions. A Server can:
· Accepts Network Connections from Clients.
· Accepts Application Messages published by Clients.
· Process Subscribe and Unsubscribe requests from Clients
· Forwards Application Messages that match Client Subscriptions
Subscription: A Subscription comprises a Topic Filter and a maximum QoS. A Subscription is associated with a single Session. A Session can contain more than one Subscription. Each Subscription within a session has a different Topic Filter.[1]
test scenario: specific path through a use-case, whose implementation by a test system creates a system load
Topic name: The label attached to an Application Message which is matched against the Subscriptions known to the Server. The Server sends a copy of the Application Message to each Client that has a matching Subscription. [1]
Topic filter: An expression contained in a Subscription, to indicate an interest in one or more topics. A Topic Filter can include wildcard characters. [1]
traffic-time profile: evolution of the average scenario over a time interval
use case: the description of a goal that a user has in interacting with a system, the various actors and the SUT.
[bookmark: _Toc55312392]3.2	Symbols
[bookmark: _Toc418757525][bookmark: _Toc486258495][bookmark: _Toc486258533][bookmark: _Toc486323646][bookmark: _Toc487532217][bookmark: _Toc526860802][bookmark: _Toc526860975][bookmark: _Toc526861075][bookmark: _Toc526863347][bookmark: _Toc526863459][bookmark: _Toc526864378][bookmark: _Toc527031299][bookmark: _Toc527119284][bookmark: _Toc527119333][bookmark: _Toc527119414][bookmark: _Toc527123107][bookmark: _Toc527123167][bookmark: _Toc527123211][bookmark: _Toc527123269][bookmark: _Toc527369740][bookmark: _Toc527447033][bookmark: _Toc173708][bookmark: _Toc55312393]3.3	Abbreviations
For the purposes of the present document, the following abbreviations apply:
[bookmark: _Hlk527377044][bookmark: _Hlk527465924][bookmark: _Hlk527449069]CPU	Central Processing Unit
DOC	Design Objective Capacity
IUT	Implementation Under Test
KPI	Key Performance Indicator
NoS	Number of Subscribers
NoD	Number of Devices
OS	Operating System
RAM	Random Access Memory
SoC	System on a Chip
SSD	Solid State Drive
SUT	System under Test
TDL	Test Description Language
TDL-TO	Test Description Language – Test Objectives
TS	Test System
TSS	Test Suite Structure
WLF	Workload Factor
[bookmark: _Toc418757526][bookmark: _Toc486258496][bookmark: _Toc486258534][bookmark: _Toc486323647][bookmark: _Toc487532218][bookmark: _Toc526860803][bookmark: _Toc526860976][bookmark: _Toc526861076][bookmark: _Toc526863348][bookmark: _Toc526863460][bookmark: _Toc526864379][bookmark: _Toc527031300][bookmark: _Toc527119285][bookmark: _Toc527119334][bookmark: _Toc527119415][bookmark: _Toc527123108][bookmark: _Toc527123168][bookmark: _Toc527123212][bookmark: _Toc527123270][bookmark: _Toc527369741][bookmark: _Toc527447034][bookmark: _Toc173709][bookmark: _Toc55312394]4	Performance metrics
The performance metrics specified herein pertain to the specifics of a MQTT IUT. As such, the objective is to use these metrics in order to determine how well the MQTT component (be it client or server) is performing its’ functions. As MQTT is a transport protocol, the metrics will be focused on how fast, reliable and efficient the transport is handled. The metrics are designed to fit this purpose while covering multiple use-case scenarios. Following below are the specific messages of the MQTT protocol for which the performance metrics are defined.
[bookmark: _Toc55312395]4.1	Concepts
For measuring performance of a given test system (TS), a comprehensive description of the test environment is required. This includes but it is not limited to:
· TS hardware infrastructure: resource specification, type, capacity and distribution
· test environment type and resources (virtualisation technology, allocated resources)
· Measurement equipment hardware/software infrastructure, measurement probe distribution/placement, clock synchronization precision, allocated resources
· Communication infrastructure: transport network specification, number of switches/hops between TS components, bandwidth capacity,
Additional to the specific characteristics of the SUT, the MQTT protocol specifies sessions as stateful interactions between clients and servers. Because of this, additional performance session-based metrics are considered.
[bookmark: _Toc55312396]4.1.2	Measurement Preliminary Considerations
In order for the collected measurement data to be useful, special consideration needs to be given to the TS setup. Given that the performance evaluation is targeting one or several IUTs same TS setup characteristics are required in order for the evaluation results to allow valid comparisons between them. Some of the characteristics may refer to infrastructure, hardware, physical or virtual resources as well as network connectivity resources.
[bookmark: _Toc55312397]4.2	Measurement Methodology
This section presents the test methodology for MQTT performance evaluation. From the performance perspective, all measurable metrics related to the protocol should be considered. Although not exhaustive, these metrics can be categorised as follows:
Powerfulness metrics, as defined in [3] include 3 sub categories: Responsiveness, Capacity and Scalability. From the Responsiveness category the response time, roundtrip time and latency time metrics are used. From the Capacity category the arrival capacity, peak capacity, in progress capacity, streaming capacity and Throughput capacity metrics are used. From the Scalability category the scaling capacity metric is used.
Reliability metrics, as defined in [3] include 6 sub categories: Quality-of-Service, Stability, Availability, Robustness, Recovery, and Correctness. The Quality of Service sub category refers to well defined requirements which may include acceptable values or ranges for metrics from other categories. Stability refers to the capacity of the System to deliver acceptable performance over time. From the Availability sub category, the logical availability metric is used. From the Robustness sub category, the service capacity reduction and service responsiveness deterioration metrics are used. From the Recovery sub category, the service restart characteristics metric is used. Correctness metrics cover the ability of delivering correctly processed requests under high or odd load conditions.
Efficiency metrics, as defined in [3], cover resource utilisation. The metrics cover the characteristics of resource usage, linearity, scalability and bottleneck. The efficiency metrics used in this document are referring to the service level and not covering the platform level.
[bookmark: _Toc55312398]4.2.1	Metric Post-processing
The collection of metric values from a SUT is performed by multiple agents and/or directly by the IUT. Often a better insight into the IUT performance is gained by post-processing these values in order to get more meaningful results. To this scope, the data samples can be aggregates over time intervals in the experiment. From such common practices, the following are used for the metrics listed in this section:
· Mean Average: , where n is the number of samples and x is a sample value.
· Standard deviation: , where n is the number of samples, x is a sample value and is the mean average.
· Minimum: min(xi), the smallest sample value, relative to the rest of the samples.
· Maximum: max(xi), the greatest sample value, relative to the rest of the samples

[bookmark: _Toc55312399]4.2.2	Message Types
Table 0‑1 Message Types
The table below contains the set control packet messages specified by the MQTT[1] standard.
	Control Packet Name
	Description
	Client-> Server
	Server-> Client
	Payload

	CONNECT
	client requests a connection to the server
	
	
	Required

	CONNACK
	acknowledge connection request
	
	
	None

	PUBLISH
	Publish message
	
	
	Optional

	PUBACK
	Publish acknowledgement
	
	
	None

	PUBREC
	Publish received (QoS 2 publish received)
	
	
	None

	PUBREL
	Publish release
	
	
	None

	PUBCOMP
	Publish complete
	
	
	None

	SUBSCRIBE
	Subscribe to topics
	
	
	Required

	SUBACK
	Subscribe acknowledgement
	
	
	Required

	UNSUBSCRIBE
	Unsubscribe from Topics
	
	
	Required

	UNSUBACK
	Unsubscribe acknowledgement
	
	
	Required

	PINGREQ
	Ping request
	
	
	None

	PINGRESP
	Ping response
	
	
	None

	DISCONNECT
	Disconnect notification
	
	
	None

	AUTH
	Authentication Exchange
	
	
	None

[bookmark: _Toc55312400]4.2.3	Test parameters
The benchmark test parameters are used to control the behaviour of the test script. The data elements required to configure the test system are listed in table 1.
Table 1 is a non-exhaustive list of test parameters defined for the benchmark standard. The list is expected to grow over time, as additional subsystems and system configurations are developed.

Table 1: Test parameters
	Parameter
	Description

	Duration
	Amount of time that a system load is presented to a SUT

	Type of call
	Type of messages contained within a workload

	NoC
	number of clients generating or subscribing to data/control traffic

	NoS
	Number of servers handling data/control traffic

	Transport interface
	Underlying transport interface

	WLF for GTW
	Work load factor for gateway expressed in number messages received per second, by type of message

	Payload
	Size of the data in Bytes carried within a message.

	Monitoring Window(s)
	The time interval window for which the monitored metrics are recorded. This reflects the measuring accuracy (e.g. per second, minute, hour etc.)

	Validation threshold(s)
	The specific metric thresholds used for validating whether a system performs at specifications.

Table 2: Test output
	Metric
	Description

	Minimum call duration
	The minimum duration of a successful message request/response interaction within a Monitoring Window

	Maximum call duration
	The maximum duration of a successful message request/response interaction within a Monitoring Window

	Average call duration
	The average duration of a successful message request/response interaction within a Monitoring Window

	Total number of calls
	The total number of workload specified request/response type operations executed during the test

	Success rate
	Percentage number of successful workload operations relative to the total workload operations

	Error rate
	Percentage number of failed workload operations relative to the total workload operations

	Requests processed per time unit
	This metric reflects the average number of successfully processed requests per preferred time unit (second/minute/etc.)

[bookmark: _Toc55312401]4.2.4	Operation Message Flows
The IUT will be evaluated based on the metric values obtain as a result of the service operations using the messages described in section 4.1.1. The set of messages exchanged triggered by the initial client message are further referred as operations. For the tests, the metrics use operations rather than specific messages because it is easier to handle the measurements. E.g. for a ping message, the roundtrip time is calculated as the duration between the time the PINGREQ is sent and the time when PINGRESP is received. If specific test system network measurements are available, by subtracting the measured network delayed from the duration, the operation processing time can be deducted.
1. CONNECT: This section describes the MQTT operation types and message sequences required for test execution using a Client Connection example.
Preconditions:
· Unregistered Client, Server/Broker
· TCP connection between Client and Server/Broker established
Operation sequence:
· Client sends CONNECT message
· Client receives CONNACK message
Measurement: Time period expressed in milliseconds between the moment client forwards the CONNECT Message and the moment Client receives CONNACK message from server.

[image:]
Figure 1 MQTT Server-Client CONNECT message flow

2. PINGREQ: This section describes the MQTT operation types and message sequences required for test execution using a Client ping example.
Preconditions:
· Connected Client, Server/Broker
· TCP connection between Client and Server/Broker established
Operation sequence:
· Client sends PINGREQ message
· Client receives PINGRESP message
Measurement: Time period expressed in milliseconds between the moment client forwards the PINGREQ Message and the moment Client receives PINGRESP message from server.
[image:]
Figure 2 MQTT Server-Client PING message flow

3. SUBSCRIBE: This section describes the MQTT operation types and message sequences required for test execution using a Client SUBSCRIBE example.
Preconditions:
· Connected Client, Server/Broker
· TCP connection between Client and Server/Broker established
Operation sequence:
· Client sends SUBSCRIBE message
· Client receives SUBACK message
Measurement: Time period expressed in milliseconds between the moment client forwards the SUBSCRIBE Message and the moment Client receives SUBACK message from server.
[image:]
Figure 3 MQTT Server-Client SUBSCRIBE message flow
4. PUBLISH: This section describes the MQTT operation types and message sequences required for test execution using a Client PUBLISH example.
Preconditions:
· Connected Client, Server/Broker
· TCP connection between Client and Server/Broker established
Operation sequence QOS1:
· Client sends PUBLISH message
· Client receives PUBACK message
Measurement: Time period expressed in milliseconds between the moment client forwards the PUBLISH Message and the moment Client receives PUBACK message from server.
[image:]
Figure 4 MQTT Server-Client QoS 1 PUBLISH message flow

Alternative operation sequence QOS2:
· Client sends PUBLISH message
· Client receives PUBREC message
· Client sends PUBREL message
· Client receives PUBCOMP message
[image:]
Figure 5 MQTT Server-Client QOS 2 PUBLISH message flow
Measurement: Time period expressed in milliseconds between the moment client forwards the PUBLISH Message and the moment Client receives PUBCOMP message from server.

[bookmark: _Toc55312402]4.2.5	Test Campaign Parameters
For test-campaign evaluations, a sequence of control packet exchanges are specified. This allows for defining multiple types of test benchmarks based on client-server interactions. This may address but not be limited to the following:
· duration
· control packet sending order
· number of control packets sent per session
· number of application message packets sent
The parameters also cover the type, sequence, characteristics and flow of messages sent towards the IUT.
· Type: message types from the ones listed in the previous tables.
· Sequence: a logical message flow sequence targeting the IUT behaviour (e.g. CONNECT, PINGREQ, PUBLISH, DISCONNECT)
· Characteristics: the specific message header flags and payload size (e.g. PUBLISH (AT_LEAST_ONCE_DELIVERY, 4Kb payload)
· Flow: the explicit message flow to be sent towards the IUT (e.g. 1xCONNECT, 1000x PUBLISH, 1xDISCONNECT)
The metrics listed in sections 4.3-4.5 are derived from the ETSI TR 101577 document. The measuring intervals (also referred in 4.2.3 as “monitoring windows”) and metric validation thresholds for all metrics can vary depending on test requirements and are part of the test input parameters.

[bookmark: _Toc55312403]4.3	Powerfulness metrics
The powerfulness category of performance characteristics contains indicators of speed and quantity of service production. The following metrics are derived from [3]:
Capacity: ability to accept incoming service requests per time unit. For this metric set, the type of messages considered for evaluation are CONNECT, PUBLISH, and PINGREQ. For each of the messages the input parameters specify number and type of requests per second and duration. The metrics consist of minimum, maximum and average response time, total number of successful calls, failed calls and pending calls.
Responsiveness: time to handle a service request, e.g. subscription, connect request, etc.; transmission time, roundtrip time; publication (publish) time. Messages used are CONNECT, PUBLISH, PINGREQ. The metrics consist of minimum, maximum and average response time, total number of successful calls, failed calls and pending calls. The measuring interval and metric validation thresholds can vary depending on user requirements.
Number of registered subscribers: maximum number active subscribers supported by the system). This metric is measured by connecting subscribers to a gateway in order to determine its maximum capacity. This is achieved by gradually connecting subscribers until no additional connections are accepted. The metric is measured by recording the maximum number of connected subscribers during a test.
Number of connected servers: maximum number of servers supported by a client. This is achieved by connecting a gateway to an increasing number of gateways until no additional connections are accepted. The metric is measured by recording the maximum number of connected servers during a test.
[bookmark: _Toc55312404]4.4	Reliability metrics
The reliability category of performance characteristics contains indicators of how predictable a system's service production is. The performance category has subcategories for Quality-of-Service, Stability, Availability, Robustness, Recovery, and Correctness.
Stability- Stability characteristics are indicators of a system's ability to maintain measured performance figures for powerfulness and efficiency during service delivery regardless of time. This is a performance metric that is usually validated through endurance testing i.e. testing over longer periods of time.
Availability- Availability characteristics are indicators of a system's ability to delivery services over time. Different availability characteristics are applied on hardware (physical availability) and on software (logical availability). This is a performance metric that is usually validated through endurance testing i.e. testing over longer periods of time.
Robustness - Robustness characteristics are indicators of a system's services levels, i.e. services capacity and/or service responsiveness under extreme conditions. Extreme conditions can be caused internally by hardware failure or software malfunctioning, or externally by extreme peak load conditions, or by denial-of-service attacks or other malice attempts. Messages used are CONNECT, PUBLISH, PINGREQ. The metrics consist of minimum, maximum and average response time, total number of successful calls, failed calls and pending calls.
Recovery - Recovery characteristics are indicators of production disturbances from hardware or software malfunctioning. Recovery covers a large number of different operations. In this context we look at system recovery and service recovery. i.e. the time duration of a system to become operational after a reset.
Correctness - Correctness characteristics are indicators of a system's ability to deliver correctly processed service requests under high or odd load conditions. Messages used are CONNECT, PUBLISH, PINGREQ. The metrics consist of minimum, maximum and average response time, total number of successful calls, failed calls and pending calls.

[bookmark: _Toc55312405]4.5	Efficiency metrics
The following metrics are derived from the ETSI TR 101577 [3] document.
The performance category efficiency contains different types of indicators of resource usage and resource utilization. These metrics can be recorded additional to the Powerfulness metrics during the specified tests. The scope of these are to determine system deployment resource requirements as well as scaling capabilities.
Resource usage – amount of CPU, Memory, Disk used by a server/client component during a test. Metric measurements are to be correlated with the other metrics, i.e. CPU usage during a 1000 PUBLISH messages per second monitoring window, with a min, max and average load as output.
Scalability – amount of resource usage increase through scaling horizontally (multiple client/server instances) or vertically (increase resource usage for CPUs/bandwidth capacity) relative to the load capacity increase. E.g. the CPU usage at 1000 requests processed per time unit is 1% and at 10000 requests per processed time unit is 10% would express a linear relation between the CPU usage and workload for the given parameters. This varies greatly with the test system characteristics and testing parameters, nevertheless it is very relevant for production services as an operational feature.
[bookmark: _Toc526863352][bookmark: _Toc526863464][bookmark: _Toc526864384][bookmark: _Toc527031303][bookmark: _Toc527119289][bookmark: _Toc527119337][bookmark: _Toc527119418][bookmark: _Toc527123113][bookmark: _Toc527123172][bookmark: _Toc527123216][bookmark: _Toc527123272][bookmark: _Toc527369743][bookmark: _Toc527447036][bookmark: _Toc173711][bookmark: _Hlk527450569][bookmark: _Toc55312406]5	Configurations
The performance test configurations are derived from the SUT access points and functional test configurations

Figure 6 MQTT Server-Client test configurations

Furthermore, there are consideration following possible performance specific load and measurement tools.

Figure 7 MQTT Server-Client test configuration

[bookmark: _Toc55312407]6	Benchmarking
[bookmark: _Toc418757527][bookmark: _Toc486258497][bookmark: _Toc486258535][bookmark: _Toc486323648][bookmark: _Toc487532219][bookmark: _Toc526860806][bookmark: _Toc526860979][bookmark: _Toc526861079][bookmark: _Toc526863350][bookmark: _Toc526863462][bookmark: _Toc526864381][bookmark: _Toc527031302][bookmark: _Toc527119287][bookmark: _Toc527119336][bookmark: _Toc527119417][bookmark: _Toc527123111][bookmark: _Toc527123171][bookmark: _Toc527123215][bookmark: _Toc527123271][bookmark: _Toc527369742][bookmark: _Toc527447035][bookmark: _Toc173710][bookmark: _Toc55312408]6.1	Generic adjustments
This section specifies the MQTT protocol performance metrics. As a protocol evaluation rationale, the metrics presented herein are directly addressed to IUTs: systems and associated components implementing the protocol, namely clients and servers. No requirements will be expressed regarding specifics of such IUTs in terms of implementation, technology, or proprietary elements. The metrics expressed herein are derived from the protocol specification and assume that both client and server components are conformant with the MQTT protocol specification. For conformance testing specifications, please refer to ETSI_TS_DTSMTS-TSTMQTT-1.

[bookmark: _Toc55312409]6.2	Benchmarking Methodology
This sections aims to describe a viable methodology for benchmarking the performance of an IUT. In the case of MQTT, an IUT may consist of one or several Brokers or one or several Clients. The approach is inspired from the examples in [i.1] from the point of view of measurement preconditions, approach and statistically consistent measurement sampling.
As a general precondition for performance benchmarking, a functionally correct implementation is a prerequisite. For this the general assumption is that the IUT has passed the conformance testing described in [2].
First, the System under Test is described, including hardware, resource manager (bare-metal/virtualisation technology) and network connectivity (type-wired/ait, latency, throughput capacity). This includes both the resources dedicated to the IUT as well the ones for the test system.
Second, the type of performance benchmarking is established: whether the tests aim to determine the system KPI values or the tests aim to check whether the system meets established performance requirements. Depending on the objective, the approach will differ. In this step the KPIs and metrics w/o thresholds are selected. Two examples are presented in section 7.4 reflecting the specific approach.
Third, the appropriate tests are selected and the test input parameters are specified. These include the test types, duration, metric threshold requirements, sample size and validation checks. Then, the monitoring system is configured, and the appropriate metrics (4.3-4.5) are selected for observation.
Fourth, the tests are executed and the metrics are collected. For this stage it is highly relevant that the TS and IUT are not affected by external factors in terms of compute and network resources. As an example, the monitoring system load on both the network and compute resources is commonly not taken into consideration and this leads to skewed results.
Finally, the test results are checked and validated leading to a verdict whether the performance tests are passed or failed.
[bookmark: _Toc55312410]6.3	Metric examples
This section presents a series of benchmark metric examples:
· connection-release delay: the time delay between DISCONNECT message and TCP connection closing. Value expressed in milliseconds (ms).
· setup-delay: the time interval starts when a CONNECT message is sent and ends when the corresponding CONNACK message has been received back. Value expressed in milliseconds (ms).
· Publish delay: the time interval starts when a PUBLISH message is sent and ends when the corresponding PUBACK/PUBCOMP message has been received. Value expressed in milliseconds (ms).
· subscription delay: the time between SUBSCRIBE and SUBACK message. Value expressed in milliseconds (ms).
· unsubscription delay: the time between UNSUBSCRIBE and UNSUBACK message. Value expressed in milliseconds (ms).
· ping delay: the time between PINGREQ and PINGRESP message. Value expressed in milliseconds (ms).
For each of the measurements enumerated above, the minimum, maximum and average values are also calculated according to section 4.2.1 and reported to the specified monitoring windows.

[bookmark: _Toc55312411]6.4	Benchmark Examples
For evaluating the metrics described in section 4, the benchmark tests can be grouped in 3 main categories.
1. Load Tests: These tests are used for determining or validating the IUT workload range. The workload consists of one or multiple message exchanges between the IUT and the Test System. The aim is to observe the Powerfulness and Efficiency metrics as well as the Correctness (Reliability category) metric in order to determine or validate the maximum operating workload handled by the IUT.
2. Endurance Tests: These tests are used for determining or validating the IUT Reliability and Efficiency. These tests generally consist of exposing the IUT to a variable or high operational workload for long periods of time. The metrics observed are the Reliability and Efficiency ones. This type of testing covers operational aspects such as degradation over time, memory leaks and resource consumption estimates.
3. Stress Tests: These tests are used for determining or validating the IUT Robustness and Recovery (Reliability category) metrics. This is achieved by injecting workload spikes throughout the test and observing the degradation and recovery patterns of the system as well as the maximum workload operational limits,
The following two benchmarking examples reflect the two types of performance benchmarking evaluations specified in 7.2 	
[bookmark: _Toc55312412]6.4.1	KPI Determination
The KPI determination benchmark is an exploratory performance evaluation that aims to determine the operational performance of an IUT. The KPIs are specified as an input. The scope of this evaluation is to establish a reliable indication of how the SUT is expected to perform in production. The KPIs are determined according to the intended use-case scenario for the IUT.
As a first example, a device manufacturer has finished a hardware MQTT broker prototype for the industrial IoT market. The target objective is to provide communication in small industrial buildings serving a potential capacity of 50 to 5000 MQTT clients. The expected use-case requires QoS1 for data transmission and foresees a 1000-10000 published messages per second load. Additionally, the manufacturer wants to determine the system reliability, specifically Stability, Availability and Correctness.
According to, 7.2, the first step is to specify the SUT hardware and network resources. In our example we consider the underlying hardware to be a bare-metal SoC box running Ubuntu 18.04 OS. It has a dual core 2,4 GHz CPU, 2Gb or RAM, 120GB SSD and a 1Gb Ethernet connection. For simplification, the network is considered wired, with a 1Gbps throughput running TCP/IP over a 1000BASE-T Ethernet LAN connection with an estimated 1ms end-to-end delay for all connections. The test system (TS) consists of a quad-core power pc with 2.4GHz CPU, 8Gb of RAM, 500GB SSD and 1Gb Ethernet connection. The TS is deployed in virtual containers running over a Unix environment with direct access to the network (non-virtualised network connection). The monitoring system resource consumption is considered negligible.
The second step is to select the KPIs and metrics of interest. The KPIs selected by the manufacturer are Capacity(max number of publish requests handled per second), Responsiveness (average delay of processing client requests), Number of registered subscribers, resource usage and stability. The Broker operates with QoS 1. The selected associated metrics are as follows:
· Publish delay: the time interval starts when a PUBLISH message is sent and ends when the corresponding PUBACK (QoS1) message has been received. Value expressed in milliseconds (ms).
· Subscriber Count: the maximum number of registered subscribers within a measurement window.
· Capacity: number of successfully handled Publish messages per second. Threshold is initially set to 1000
· Correctness: percentage of successfully handled Publish messages per second.
· Resource usage – amount of CPU, Memory used by the IUT during the Capacity evaluation. with a min, max and average values.
The third step consists of determining the tests and configuring the monitoring system. According to the KPI requirements, the type of tests required are load testing for determining the IUT Capacity and Resource usage and Endurance testing for determining the system Responsiveness, Correctness and Availability. The monitoring system is configured to record number of subscribers, PUBLISH delay, rate of success for PUBLISH messages, CPU, Mem and Network in/out usage. The monitoring window is set to 1 second and post-processing averages are configured to cover 1 minute for load tests and 1 hour for endurance tests.
Load Testing
Ex: 1000 Clients connect to the IUT and subscribe to topics.
Each client starts sending Publish messages at a rate of 1 message per second. The rate increases by 1 up to a maximum of 10 every minute. The test duration is set to 10 minutes and executed 10 times. The test is repeated for an incremented number of connected clients up to 5000 in incremental steps of 1000 clients. The input parameters are no longer incremented if the test fails. Test duration: 10 minutes per test.
1) Metric: number of connected clients
2) Metric: number of PUBLISH messages processed per second
3) Metric: average PUBLISH messages processing delay
4) Metric: rate of successfully processed PUBLISH messages
5) Metric: CPU load user time %
6) Metric: Memory load (Mb)
7) Metric: Network Packet In (Kb)
8) Metric: Network Packet Out (Kb)

1. Fail criteria: rate of successfully processed PUBLISH messages falls under 90%
2. Fail criteria: CPU load goes over 80%
3. Fail criteria: Memory load goes over 90%
Pass criteria: Test ended without fail criteria triggered.
Endurance Test
Starting from the highest load successfully passed, the endurance test parameters are noted with max(X) where X is the metric value from the Load test.
Ex: max Clients connect to the IUT and subscribe to topics.
Each client starts sending Publish messages at a rate of max message per second. The rate remains constant. The test duration is set to 600 minutes and executed 10 times. The test is repeated for an decremented number of connected clients down to 1000 in decremented steps of 1000 clients in case of failure. The input parameters are no longer decremented if the test succeeds. Test duration: 600 minutes per test.
1) Metric: number of connected clients
2) Metric: number of PUBLISH messages processed per second
3) Metric: average PUBLISH messages processing delay
4) Metric: rate of successfully processed PUBLISH messages
5) Metric: CPU load user time %
6) Metric: Memory load (Mb)
7) Metric: Network Packet In (Kb)
8) Metric: Network Packet Out (Kb)

1. Fail criteria: rate of successfully processed PUBLISH messages falls under 90%
2. Fail criteria: CPU load goes over 80%
3. Fail criteria: Memory load goes over 90%
Pass criteria: Test ended without fail criteria triggered.
The fourth step consists of executing the tests. As a general precondition: the SUT is operational – IUT MQTT broker is active. TS is operational and connected to the SUT. Finally the results are collected the Powerfullness, Reliability and Efficiency selected KPI values are determined.

[bookmark: _Toc55312413]6.4.2	KPI Validation
The KPI validation benchmark is performance evaluation that aims to validate whether the IUT performs according to requirement specifications. The KPIs and their thresholds are specified as an input. The scope of this evaluation is to establish a reliable indication of how the SUT is expected to perform in production. The KPIs are determined according to the intended use-case scenario for the IUT.
In this second example, a factory owner contacts the previous device manufacturer and specifies its requirements. These consist of providing communication in small industrial buildings serving a total of 1000 MQTT clients. The expected use-case requires QoS1 for data transmission and a variable load of 1000-5000 published messages per second load. Additionally, the factory owner requires that the publish delay is no longer than 1 second and that 99% of the messages are successfully transmitted.
According to, 7.2, the first step is to specify the SUT hardware and network resources. In our example we consider the underlying hardware to be a bare-metal SoC box running Ubuntu 18.04 OS. It has a dual core 2,4 GHz CPU, 2Gb or RAM, 120GB SSD and a 1Gb Ethernet connection. For simplification, the network is considered wired, with a 1Gbps throughput running TCP/IP over a 1000BASE-T Ethernet LAN connection with an estimated 1ms end-to-end delay for all connections. The test system (TS) consists of a quad-core power pc with 2.4GHz CPU, 8Gb of RAM, 500GB SSD and 1Gb Ethernet connection. The TS is deployed in virtual containers running over a Unix environment with direct access to the network (non-virtualised network connection). The monitoring system resource consumption is considered negligible.
The second step is to select the KPIs and metrics of interest. The KPIs selected by the manufacturer are Capacity(max number of publish requests handled per second), Responsiveness (average delay of processing client requests), Number of registered subscribers, resource usage and stability. The Broker operates with QoS 1. The selected associated metrics are as follows:
· Publish delay: the time interval starts when a PUBLISH message is sent and ends when the corresponding PUBACK (QoS1) message has been received. Value expressed in milliseconds (ms).Threshold set to 1000ms
· Subscriber Count: the maximum number of registered subscribers within a measurement window. Threshold set to 1000
· Capacity: number of successfully handled Publish messages per second. Threshold is set to 5000
· Correctness: percentage of successfully handled Publish messages per second. Threshold is set to 99%
· Resource usage – amount of CPU, Memory used by the IUT during the Capacity evaluation. with a min, max and average values. Threshold is set to 80% CPU load, 90% Mem load.
The third step consists of determining the tests and configuring the monitoring system. According to the KPI requirements, the type of tests required are load testing for validating the IUT Capacity and Resource usage and Endurance testing for determining the system Responsiveness, Correctness and Availability. The monitoring system is configured to record number of subscribers, PUBLISH delay, rate of success for PUBLISH messages, CPU, Mem and Network in/out usage. The monitoring window is set to 1 second and post-processing averages are configured to cover 1 minute for load tests and 1 hour for endurance tests.
Load Testing
Ex: 1000 Clients connect to the IUT and subscribe to topics.
Each client starts sending Publish messages at a rate of 1 message per second. The rate increases by 1 up to a maximum of 5 every 2 minutes. The test duration is set to 10 minutes and executed 10 times. Test duration: 10 minutes per test.
1) Metric: number of connected clients
2) Metric: number of PUBLISH messages processed per second
3) Metric: average PUBLISH messages processing delay
4) Metric: rate of successfully processed PUBLISH messages
5) Metric: CPU load user time %
6) Metric: Memory load (Mb)
7) Metric: Network Packet In (Kb)
8) Metric: Network Packet Out (Kb)

1. Fail criteria: rate of successfully processed PUBLISH messages falls under 99%
2. Fail criteria: CPU load goes over 80%
3. Fail criteria: PUBLISH delay max value is greater than 1000ms
4. Fail criteria: Memory load goes over 90%
Pass criteria: Test ended without fail criteria triggered.
Endurance Test
1000 Clients connect to the IUT and subscribe to topics.
Each client starts sending Publish messages at a rate of 5 message per second. The rate remains constant. The test duration is set to 600 minutes and executed 10 times. Test duration: 600 minutes per test.
1) Metric: number of connected clients
2) Metric: number of PUBLISH messages processed per second
3) Metric: average PUBLISH messages processing delay
4) Metric: rate of successfully processed PUBLISH messages
5) Metric: CPU load user time %
6) Metric: Memory load (Mb)
7) Metric: Network Packet In (Kb)
8) Metric: Network Packet Out (Kb)

1. Fail criteria: rate of successfully processed PUBLISH messages falls under 99%
2. Fail criteria: CPU load goes over 80%
3. Fail criteria: Memory load goes over 90%
4. Fail criteria: PUBLISH delay max value is greater than 1000ms
Pass criteria: Test ended without fail criteria triggered.
The fourth step consists of executing the tests. As a general precondition: the SUT is operational – IUT MQTT broker is active. TS is operational and connected to the SUT. Finally the results are collected the Powerfulness, Reliability and Efficiency selected KPI values are determined.

[bookmark: _Toc55312414]7	Examples of Tests
A test should be presentable as a document, with accompanying data files, that provides a full description of an execution of a performance test on a test system. Description of the test case and objective of the test case, e.g., the definition of the targeted metrics should be contained therein. The following sections should be addressed in general:
· Test procedure: Description of the execution of the test
· Test sequence to run the test case: sequence of actions for running the experiment and collect the measurements needed to compute the metrics
· Test duration (per iteration).
· Number of iterations of the experiment. Number of repetitions of the experiments to obtain relevant statistical results.
· Measurements collected to compute the metrics.
· Procedure for metrics calculation Description of the procedure applied (statistical aggregation, algorithm, etc, …) to compute the metrics based on the raw measurements collected.
· Expected output of the test case
· Test report
A set of Test Purposes (TPs) are provided as reference examples in Annex A
[bookmark: _Toc55312415]7.1	Test Objectives
In this section 2 formalized test objective examples are presented. A set of test purposes are presented in Annex A.
Example1: Broker Publish Load Test
· Determine if the IUT(broker) can handle the given publish message load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.
Example2: Broker PUB/SUB Load Test
· Determine if the IUT(broker) can handle the given publish message load and forward them to a given number of subscribers for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.
[bookmark: _Toc55312416]7.2	Test Purpose
In this section a formalized test purpose example is provided. A set of test purposes are presented in Annex A.
Precondition
· The IUT is running and configured to accept client connections
· Client(s) send CONNECT messages
· Client(s) start sending PUBLISH messages at a specified rate (messages per second) totaling a specified duration (time) or number of messages (e.g. 10,000 messages).
· After finishing the execution, the client(s) send DISCONNECT messages.
Expected behaviour
· The IUT will reach the given time interval of handling the given load without exceeding the delay/message loss threshold
· The IUT will not reach the given time interval of handling the given load before exceeding the delay/message loss threshold
Expected output:
Minimal, maximal and average measurements of selected metrics.
[bookmark: _Toc55312417]7.3	Test Report
The test report will include the test execution time, test parameters (e.g. number of messages, rate) and measurement/aggregated measurement results (e.g. the average PUBLISH/PUBACK message sequence latency was 3 ms end-to-end)

Table 2 Performance load test report for PUB/ACK example
	Test Number
	T-01
	Test Category
	Performance
	Test Type
	Load Testing

	Test Objective
	"Determine if the IUT(broker) can handle the given incremental load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate."

	Test Description
	Test Scenario 1
Test Case 1
Configuration 1: Against Mosca Server
	Test Scenario 1
Test Case 1
Configuration 2: Against Mosquitto Server
	Reference
2ms

	Preconditions
	the CLIENT having a MQTT_CONNECTION to the IUT

	Expected Behaviour
	ensure that {
	 when {
	 	(.) at time point t1: the tester entity send multiple PUBLISH messages and assure the RATE and
	 	(!) during the INTERVAL after t1: the IUT entity receive multiple PUBLISH message containing
 		topic_name corresponding to TOPIC,
 		payload corresponding to RETAINED_MESSAGE;
	 }
	 then {
	 (!) INTERVAL after t1 :
	 	the IUT entity assure and send the PUBACK messages and
	 	the IUT entity assure the packet_loss_limit and
	 	the IUT entity assure the DELAY;
	 }

	Output
	Average PUBLISH/PUBACK delay in ms (KPIx),

	Measurements
	Publish Success Rate
	Sequence Delay
	Reference

	Values C1
	100%
	0.998ms
	2 ms

	Values C2
	100%
	0.93ms
	2 ms

[bookmark: _Toc418757530][bookmark: _Toc486258500][bookmark: _Toc486258538][bookmark: _Toc486323651][bookmark: _Toc487532222][bookmark: _Toc526860809][bookmark: _Toc526860982][bookmark: _Toc526861082][bookmark: _Toc526863354][bookmark: _Toc526863466][bookmark: _Toc526864386][bookmark: _Toc527031305][bookmark: _Toc527119291][bookmark: _Toc527119339][bookmark: _Toc527119419][bookmark: _Toc527123114][bookmark: _Toc527123173][bookmark: _Toc527123217][bookmark: _Toc527123273][bookmark: _Toc527369744][bookmark: _Toc527447037][bookmark: _Toc173712][bookmark: _Toc55312418]Annex A :MQTT Test Purposes (TPs)
These TPs has been produced using the TDL extension TDL-TO according to [2].

	TP Id
	TP_MQTT_Performance_Broker_Load_001

	Test Objective
	MQTT CONNECT load test for broker: Determine if the IUT(broker) can handle the given load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a TCP_CONNECTION to the IUT
}

	Expected Behavior

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple CONNECT messages and assure the INCREMENTAL_RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple CONNECT message containing payload containing
 client_identifier corresponding to PX_CLIENT_ID,
 user_name corresponding to PX_MQTT_USER_NAME,
 password corresponding to PX_MQTT_PASSWORD;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the CONNACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Load_002

	Test Objective
	MQTT PING load test for broker: Determine if the IUT(broker) can handle the given load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behavior

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple PINGREQ messages and assure the INCREMENTAL_RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple PINGREQ message containing
 header_flags indicating value '0000'B;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the PINGRESP messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Load_003

	Test Objective
	MQTT PUBLISH load test for broker: Determine if the IUT(broker) can handle the given load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behavior

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple PUBLISH messages and assure the INCREMENTAL_RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple PUBLISH message containing
 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the PUBACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Load_004

	Test Objective
	MQTT SUBSCRIBE load test for broker: Determine if the IUT(broker) can handle the given load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behavior

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple SUBSCRIBE messages and assure the INCREMENTAL_RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to AT_LEAST_ONCE;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the SUBACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Endurance_001

	Test Objective
	MQTT CONNECT endurance test for broker: Determine if the IUT(broker) can handle the given incremental load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the TEST_SYSTEM having a TCP_CONNECTION to the IUT
}

	Expected Behavior

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple CONNECT messages and assure the RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple CONNECT message containing
 payload containing
 client_identifier corresponding to PX_CLIENT_ID,
 user_name corresponding to PX_MQTT_USER_NAME,
 password corresponding to PX_MQTT_PASSWORD;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the CONNACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Endurance_002

	Test Objective
	MQTT PING endurance test for broker: Determine if the IUT(broker) can handle the given incremental load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple PINGREQ messages and assure the RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple PINGREQ message containing
 header_flags indicating value '0000'B;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the PINGRESP messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Endurance_003

	Test Objective
	MQTT PUBLISH endurance test for broker: Determine if the IUT(broker) can handle the given incremental load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple PUBLISH messages and assure the RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple PUBLISH message containing
 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the PUBACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Endurance_004

	Test Objective
	MQTT SUBSCRIBE endurance test for broker: Determine if the IUT(broker) can handle the given incremental load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple SUBSCRIBE messages and assure the RATE and
 (!) during the INTERVAL after t1: the IUT receive multiple SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to AT_LEAST_ONCE;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the SUBACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Stress_001

	Test Objective
	MQTT PUBLISH stress test for broker: Determine if the IUT(broker) can handle the given spiking load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the IUT reach an initial_state
}

	Expected Behaviour

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple PUBLISH messages and assure the RATE and
 (!) during INTERVAL after t1:
 the IUT receive several PUBLISH messages containing
 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE; and
 (.) at time point t2: the tester send multiple PUBLISH messages and assure the SPIKE_RATE and
 (!) during INTERVAL of t2:
 the IUT receive several PUBLISH messages containing
 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE;
 }
 then {
 (!) INTERVAL after t2 :
 the IUT assure and send the PUBACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Stress_002

	Test Objective
	MQTT PING stress test for broker: Determine if the IUT(broker) can handle the given spiking load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple PINGREQ messages and assure the RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple PINGREQ message containing
 header_flags indicating value '0000'B; and
 (.) at time point t2:
 the tester send multiple PINGREQ messages and assure the SPIKE_RATE and
 (!) during the INTERVAL after t2:
 the IUT receive multiple PINGREQ message containing
 header_flags indicating value '0000'B;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the PINGRESP messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Stress_003

	Test Objective
	MQTT PUBLISH stress test for broker: Determine if the IUT(broker) can handle the given spiking load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple PUBLISH messages and assure the RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple PUBLISH message containing
 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE; and
 (.) at time point t2:
 the tester send multiple PUBLISH messages and assure the SPIKE_RATE and
 (!) during the INTERVAL after t1: the IUT receive multiple PUBLISH message containing
 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE;
 }
 then {
 (!) INTERVAL after t2 :
 the IUT assure and send the PUBACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

	TP Id
	TP_MQTT_Performance_Broker_Stress_004

	Test Objective
	MQTT SUBSCRIBE stress test for broker: Determine if the IUT(broker) can handle the given spiking load for a determined period of time without exceeding the delay threshold within a given acceptable message loss rate.

	Reference
	[MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

	PICS Selection
	PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

	Initial Conditions

	with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

	Expected Behaviour

	ensure that {
 when {
 (.) at time point t1:
 the tester send multiple SUBSCRIBE messages and assure the RATE and
 (!) during the INTERVAL after t1: the IUT receive multiple SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to AT_LEAST_ONCE; and
 (.) at time point t2: the tester send multiple SUBSCRIBE messages and assure the SPIKE_RATE and
 (!) during the INTERVAL after t1: the IUT receive multiple SUBSCRIBE message containing
 header_flags indicating value '0010'B,
 packet_identifier corresponding to PACKET_ID,
 payload containing
 topic_filter corresponding to PX_SUBSCRIBE_TOPIC_FILTER,
 requested_qos corresponding to AT_LEAST_ONCE;
 }
 then {
 (!) INTERVAL after t2 :
 the IUT assure and send the SUBACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

	Final Conditions

	

[bookmark: _GoBack]This Test purpose catalogue has been produced using the Test Description Language (TDL-TO) according to ETSI ES 203 119-4 [4]. The TDL-TO library modules corresponding to the Test purpose catalogue are contained in archive which accompanies the present document.
[bookmark: _Toc418757543][bookmark: _Toc486258513][bookmark: _Toc486258551][bookmark: _Toc486323664][bookmark: _Toc487532235][bookmark: _Toc526860822][bookmark: _Toc526860995][bookmark: _Toc526861095][bookmark: _Toc526863367][bookmark: _Toc526863479][bookmark: _Toc526864399][bookmark: _Toc527031318][bookmark: _Toc527119304][bookmark: _Toc527119352][bookmark: _Toc527119432][bookmark: _Toc527123120][bookmark: _Toc527123179][bookmark: _Toc527123223][bookmark: _Toc527123279][bookmark: _Toc527369750][bookmark: _Toc527447043][bookmark: _Toc173718][bookmark: _Toc55312419][bookmark: _Hlk527037116]History
	Document history

	V0.0.1
	August 2019
	Creation of Pre-Draft version

	V0.0.5
	August 2019
	Added metrics, performance indicators and test examples

	V0.0/6
	September 2019
	Added references and descriptions

	V0.0.7
	November 2019
	Added tables and examples

	V0.0.8
	January 2020
	Reorganized ToC and added chapter 4.x

	V0.0.9
	Ferbruary 2020
	Expanded chapter 4.x contents

	V0.1.0
	Mach 2020
	Restructured Document. Added Section 6 contents

	V0.1.1
	April 2020
	Added TPs for Tests

	V0.1.2
	April 2020
	Editorial changes

	V0.1.3
	September 2020
	Section 4 update. Editorial changes.

	V0.1.4
	November 2020
	Editorial changes

ETSI
image2.png
MQTT
SERVER

CONNECT

CONNACK

image3.png
MQTT
SERVER

CONNECT

CONNACK

PINGREQ

duration

PINGRESP

image4.png
MQTT
SERVER

CONNECT

CONNACK

SUBSCRIBE

duration SUBACK

image5.png
MQTT
SERVER

CONNECT

CONNACK

PUBLISH

duration PUBACK

image6.png
MQTT
SERVER

CONNECT

CONNACK
PUBLSH

- PUBREC
PUBREL
- PUBCOMP

image7.png
cfg o1

cfg o2

BCO / ASPs

image8.png
TS

MTC: Main Test Component

PTC: Parallel Test Component

MITMF: Man-in-the-Middle Fuzzer | Fuzzing Proxy
SUT: System Under Test

image1.jpeg

