Draft ETSI ES 203 119-4 V1.5.1 (2021-12)
22

Draft ETSI ES 203 119-4 V1.54.1 (20210-0812)
Methods for Testing and Specification (MTS);
The Test Description Language (TDL);
Part 4: Structured Test Objective Specification (Extension)

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
RES/MTS-TDL4v1541
Keywords
language, MBT, methodology, testing, TSS&TP, TTCN-3, UML

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 20210.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	5
Foreword	5
Modal verbs terminology	5
Introduction	5
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definition of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	7
3.3	Abbreviations	7
4	Basic principles	7
4.1	Structured Test Objective Specification	7
4.2	Document Structure	8
4.3	Notational Conventions	8
4.4	Element Operations	8
4.5	Conformance	9
5	Meta-Model Extensions	9
5.1	Overview	9
5.2	Foundation Abstract Syntax and Classifier Description	9
5.2.1	Entity	9
5.2.2	Event	10
5.2.3	PICS	10
5.3	Test Objective Abstract Syntax and Classifier Description	11
5.3.1	StructuredTestObjective	11
5.3.2	PICSReference	12
5.3.3	InitialConditions	12
5.3.4	ExpectedBehaviour	13
5.3.5	FinalConditions	13
5.4	Events Abstract Syntax and Classifier Description	14
5.4.1	EventSequence	14
5.4.2	RepeatedEventSequence	15
5.4.3	EventOccurrence	15
5.4.4	EventOccurrenceSpecification	16
5.4.5	EntityReference	17
5.4.6	EventReference	17
5.5	Data Abstract Syntax and Classifier Description	18
5.5.1	Value	18
5.5.2	LiteralValue	18
5.5.3	Content	19
5.5.4	LiteralValueReference	19
5.5.5	ContentReference	20
5.5.6	DataReference	20
5.6	Event Templates Abstract Syntax and Classifier Description	21
5.6.1	EventSpecificationTemplate	21
5.6.2	EventTemplateOccurrence	22
5.6.3	EntityBinding	22
6	Graphical Syntax Extensions	23
6.1	Foundation	23
6.1.1	Entity	23
6.1.2	Event	23
6.1.3	PICS	24
6.1.4	Comment	24
6.2	Test Objective	26
6.2.1	StructuredTestObjective	26
6.3	Events	28
6.3.1	EventSequence	28
6.3.2	RepeatedEventSequence	29
6.3.3	EventOccurrence	29
6.3.4	EventOccurrenceSpecification	30
6.3.5	EntityReference	30
6.3.6	EventReference	31
6.4	Data	32
6.4.1	Value	32
6.4.2	LiteralValue	32
6.4.3	Content	33
6.4.4	LiteralValueReference	34
6.4.5	ContentReference	34
6.4.6	DataReference	35
6.4.7	StaticDataUse	35
6.4.8	AnyValue	36
6.4.9	AnyValueOrOmit	36
6.4.10	OmitValue	37
6.4.11	DataInstanceUse	37
6.4.12	ArgumentSpecification	37
6.5	Time	38
6.5.1	TimeLabel	38
6.5.2	TimeConstraint	38
6.6	Event Templates	39
6.6.1	EventSpecificationTemplate	39
6.6.2	EventTemplateOccurrence	40
6.6.3	EntityBinding	41
7	Exchange Format Extensions	41
Annex A (informative):	Textual Syntax	42
A.0	Overview	42
A.1	A 3GPP Test Objective in Textual Syntax	42
A.2	An IMS Test Objective in Textual Syntax	43
Annex B (informative):	Textual Syntax BNF Production Rules	44
B.0	Overview	44
B.1	Conventions	44
B.2	Production Rules	44
History	49

[bookmark: _Toc49263205]
Intellectual Property Rights
Essential patents
[bookmark: IPR_3GPP]IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc49263206]Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
The present document is part 4 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].
[bookmark: _Toc49263207]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc49263208]Introduction
Test purposes play an essential role in test specification processes at ETSI. Currently, TDL treats test purposes, and test objectives in general as informal text without any additional structural constraints. This extension package for TDL refines and formalizes test objective specification within TDL by introducing relevant meta-model concepts and a corresponding syntactical notation, both of which are related to TPLan ETSI ES 202 553 [i.1] and TPLan-like notations already established at ETSI. This enables test purpose specification to enter the modelling world and paves the way for improved tool support and better structured test objectives, as well as additional formal verification and validation facilities down the road by integrating and unifying the means for the specification of test purposes and test descriptions, while relying on the same underlying meta-model and benefiting from other related technologies built around this meta-model.
The present document describes the relevant abstract syntax (meta-model) extensions as well as the corresponding concrete syntactical notation.
NOTE:	The use of underline (additional text) and strikethrough (deleted text) highlights the differences between base document and extended documents.
[bookmark: _Toc49263209]
1	Scope
The present document specifies an extension of the Test Description Language (TDL) enabling the specification of structured test objectives. The extension covers the necessary additional constructs in the abstract syntax, their semantics, as well as the concrete graphical syntactic notation for the added constructs. In addition textual syntax examples of the TDL Structured Test Objectives extensions as well as BNF rules for a textual syntax for TDL with the Structured Test Objectives extensions are provided. The intended use of the present document is to serve both as a foundation for TDL tools implementing support for the specification of structured test objectives, as well as a reference for end users applying the standardized syntax for the specification of structured test objectives with TDL.
NOTE:	OMG®, UML®, OCL™ and UTP™ are the trademarks of OMG (Object Management Group). This information is given for the convenience of users of the present document and does not constitute an endorsement by ETSI of the products named.
[bookmark: _Toc49263210]2	References
[bookmark: _Toc49263211]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ES203119_1][1]	ETSI ES 203 119-1 (V1.65.1): "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Part 1: Abstract Syntax and Associated Semantics".
[bookmark: REF_ES203119_2][2]	ETSI ES 203 119-2 (V1.54.1): "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Part 2: Graphical Syntax".
[bookmark: REF_ES203119_3][3]	ETSI ES 203 119-3 (V1.54.1): "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Part 3: Exchange Format".
[bookmark: _Toc49263212]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_ES202553][i.1]	ETSI ES 202 553 (V1.2.1): "Methods for Testing and Specification (MTS); TPLan: A notation for expressing Test Purposes".
[bookmark: REF_TS136523_1][i.2]	ETSI TS 136 523-1 (V10.2.0): "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification (3GPP TS 36.523-1 version 10.2.0 Release 10)".
[bookmark: REF_TS186011_2][i.3]	ETSI TS 186 011-2: "Core Network and Interoperability Testing (INT); IMS NNI Interoperability Test Specifications (3GPP Release 10); Part 2: Test descriptions for IMS NNI Interoperability".
[bookmark: _Toc49263213]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc49263214]3.1	Terms
For the purposes of the present document, the terms given in ETSI ES 203 119-1 [1] and the following apply:
context: set of circumstances related to the occurrence of an event
entity: object that may be involved in the occurrence of an event as part of a specific context
entity type: alias for additional meta-information that may be used to describe one or more entities
event: observable phenomenon or state that may occur in a specific context
NOTE:	Related to a term of the same name defined in ETSI ES 202 553 [i.1].
event occurrence: description of the occurrence of an event in a specific context
event type: alias for additional meta-information that may be used to describe one or more events
[bookmark: _Toc49263215]3.2	Symbols
Void.
[bookmark: _Toc49263216]3.3	Abbreviations
For the purposes of the present document, the following abbreviations apply:
BNF	Backus-Naur Form
EBNF	Extended Backus-Naur Form
IMS	IP Multimedia Subsystem
IUT	Implementation Under Test
OCL	Object Constraint Language
PICS	Protocol Implementation Conformance Statement
SUT	System Under Test
TDL	Test Description Language
TPLan	Test Purpose Notation
[bookmark: _Toc49263217]4	Basic principles
[bookmark: _Toc49263218]4.1	Structured Test Objective Specification
The present document defines an extension for TDL enabling the specification of structured test objectives. Rather than rely on external documents or informal text provided by the default test objective specification facilities of TDL, this extension enables users to describe test objectives in a more structured and formalized manner which may enable subsequent generation of test description skeletons and consistency checking against test descriptions realizing a given test objective. In addition, the structured approach to test objective specification also enables syntactical and semantical consistency checking of the test objectives themselves.
The abstract concepts and the concrete syntax are based on TPLan ETSI ES 202 553 [i.1] to a large extent, as they also reflect concepts and practices already established at ETSI. The fundamental concept in the specification of a structured test objectives is the event occurrence which describes the occurrence of an abstract event in a specific context, comprising one or more involved entities, an event argument, as well as a time label and/or a time constraint.
Events and entities referenced in an event occurrence shall be defined in advance as part of a domain description which may then be reused across all structured test objective specifications in that domain. An entity is an abstract representation of an object involved in an event occurrence that may be realized as a component instance or a gate instance within a test description realizing the structured test objective.
An event argument may either refer to a data instance for data already defined with the facilities provided by TDL, or, following a more light weight approach, describe data inline without the need to define all data types and instances in advance. Pre-defined data and inline data may be integrated to a certain degree. Inline data may refer to pre-defined data, but pre-defined data shall not refer to inline data.
Event occurrence specifications are organized in the different compartments of a structured test objective, including initial conditions, expected behaviour, and final conditions. Multiple event occurrences are combined by means of an 'and' or 'or' operand indicating how subsequent event occurrences are related to each other (as a sequence or as alternatives, respectively).
Structured test objectives may also include references to PICS which may be used as selection criteria for the concrete realization of the test objectives. The PICS shall be defined in advance as part of the domain description. Multiple PICS references within the same structured test objective are combined by means of an 'and' or 'or' operand indicating how subsequent referenced PICS are related to each other.
Test objective variants may be included in a structured test objective to describe additional test objectives derived from the structured test objective by specialising or overriding data elements and meta information.

[bookmark: _Toc49263219]4.2	Document Structure
The present document defines the structured test objective specification extension for TDL comprising:
Meta-model extension describing additional concepts required for the specification of structured test objectives (clause 5).
Concrete syntax extension describing corresponding shapes for the representation of the additional concepts (clause 6).
An informative annex with examples in a textual concrete syntax (annex A).
An informative annex with production rules for the example textual syntax (annex B).
[bookmark: _Toc49263220]4.3	Notational Conventions
The present document inherits the notational conventions defined in ETSI ES 203 119-1 [1] and ETSI ES 203 119‑2 [2].
The abstract syntax specification and the classifier descriptions follow the notational conventions defined in clause 4.5 of Abstract Syntax and Associated Semantics [1]. The concrete syntax notation specification follows the notational conventions described in clause 4.5 of the Graphical Syntax [2].
[bookmark: _Toc49263221]4.4	Element Operations
The following operations shall be provided in an implementation of the TDL-TO extension to the TDL meta-model in order to ensure the semantic integrity of TDL-TO models, in addition to the operations defined for the TDL meta-model in ETSI ES 203 119-1 [1]. The operations are also used as reusable shortcuts for the specification of the formalized constraints and are required for their interpretation, in addition to the operations provided by the standard library of OCL:
OclAny getTestObjective (): StructuredTestObjective - applicable on any TDL 'Element', returns the 'StructuredTestObjective' that contains the construct directly or indirectly.
OclAny contains (object : OclAny): Boolean - applicable on any TDL 'Element', accepts a TDL 'Element' as parameter 'object', returns 'true' if the 'Element' contains the 'object' and 'false' otherwise.
StructuredTestObjective indexOf (object : OclAny): Integer - applicable on a 'StructuredTestObjective', accepts a TDL 'Element' as parameter 'object', returns the position of the 'object' within the flattened list of all 'Element's directly and indirectly contained within the 'StructuredTestObjective'. The list is flattened according to a depth-first approach.
[bookmark: _Toc49263222]4.5	Conformance
For an implementation claiming to conform to this extension of the TDL meta-model, all concepts specified in the present document and in ETSI ES 203 119-1 [1], as well as the concrete syntax representation specified in the present document shall be implemented consistently with the requirements given in the present document and in ETSI ES 203 119-1 [1]. The electronic attachment from annex A in ETSI ES 203 119-1 [1] may serve as a starting point for a TDL meta-model implementation conforming to the present document and the overall abstract syntax of TDL [1].
[bookmark: _Toc49263223]5	Meta-Model Extensions
[bookmark: _Toc49263224]5.1	Overview
The structured test objective specification is defined within a single package in the TDL meta-model. It relies on several concepts from the 'Foundation', 'Data', and 'Time' packages of the TDL meta-model.
[bookmark: _Toc49263225]5.2	Foundation Abstract Syntax and Classifier Description
[bookmark: _Toc49263226]5.2.1	Entity
[image: Extensions_StructuredTestObjectiveSpecification_Foundation]
Figure 5.1: Structured Test Objective Specification Foundation Concepts
Semantics
An 'Entity' is a 'PackageableElement' that describes a participant in an 'EventOccurrence'. User defined entities, such as IUT, SUT, Tester, etc., may be referenced by means of an 'EntityReference' within an 'EventOccurrence' as the source and/or target of an 'Event' referenced in a corresponding 'EventReference'. Whether an 'Entity' corresponds to a 'ComponentInstance' or a 'GateInstance' is not specified in advance. 'Annotation's may be used to provide an indication for the type and role of the 'Entity'.
Generalizations
PackageableElement
Properties
There are no properties specified.
Constraints
There are no constraints specified.
[bookmark: _Toc49263227]5.2.2	Event
Semantics
An 'Event' is a 'PackageableElement' that describes a user defined event or activity that may be referenced in an 'EventOccurrence'. The direction of an 'Event' with respect to the 'Entity' or 'Entity's referenced in the 'EventOccurrence' depends on the interpretation of the 'Event', where 'Annotation's may be used to provide additional information as an indication of the intended interpretation.
Generalizations
PackageableElement
Properties
There are no properties specified.
Constraints
There are no constraints specified.
[bookmark: _Toc49263228]5.2.3	PICS
Semantics
A 'PICS' is a 'PackageableElement' that may be referenced in 'StructuredTestObjective's to indicate selection criteria for the 'StructuredTestObjective' based on features required for and/or tested with the realization of the 'StructuredTestObjective'.
Generalizations
PackageableElement
Properties
There are no properties specified.
Constraints
There are no constraints specified.
[bookmark: _Toc49263229]5.3	Test Objective Abstract Syntax and Classifier Description
[bookmark: _Toc49263230]5.3.1	StructuredTestObjective
[image: Extensions_StructuredTestObjectiveSpecification_TestObjective]
Figure 5.2: Structured Test Objective Concepts	Comment by Finn Kristoffersen: Figure needs to be updated to include Variant class associated to StructuredTestObjective
Semantics
A 'StructuredTestObjective' is a refinement of 'TestObjective' that enables the use of additional constructs in order to formalize the description of 'TestObjective's. In addition to the 'description' and 'objectiveURI' properties inherited from 'TestObjective', a 'StructuredTestObjective' includes 'PICSReferences', 'InitialConditions', 'ExpectedBehaviour', and 'FinalConditions'. A 'StructuredTestObjective' may optionally reference a 'TestConfiguration' on which the 'StructuredTestObjective' shall be realized. The referenced 'TestConfiguration' provides descriptive information regarding the intended setup for the 'StructuredTestObjective'.
A 'StructuredTestObjective' may include ‘Variants’ which define new ‘StructuredTestObjective’s based on this ‘StructuredTestObjective’.
Generalizations
TestObjective
Properties
picsReference : PICSReference [*] {ordered}
An ordered set of 'PICSReferences' to 'PICS'.
configuration : TestConfiguration [0..1]
A reference to a 'TestConfiguration'.
initialConditions : InitialConditions [0..1]
Initial conditions description for the 'StructuredTestObjective'.
expectedBehaviour : ExpectedBehaviour [0..1]
Expected behaviour description for the 'StructuredTestObjective'.
finalConditions : FinalConditions [0..1]
Final conditions description for the 'StructuredTestObjective'.
variants: Variants [0..1]
Container for ‘StructuredTestObjectiveVariant’s,
Constraints
There are no constraints specified.	Comment by Finn Kristoffersen: Check if introduction Variants implies new constraints on ‘StrructuredTestObjective’
[bookmark: _Toc49263231]5.3.2	PICSReference
Semantics
A 'PICSReference' is an 'Element' that enables the referencing of 'PICS' within a 'StructuredTestObjective'. A 'Comment' with body containing an 'and' or 'or' shall be used as a Boolean operand if there are two or more 'PICSReference's specified within a 'StructuredTestObjective', starting with the second 'PICSReference' to indicate how the referenced 'PICS' shall be interpreted with regard to the other referenced 'PICS' within the same 'StructuredTestObjective'. A 'Comment' with body containing 'not' may be used to indicate that the referenced 'PICS' is to be negated.
Generalizations
Element
Properties
pics : PICS [1]
The referenced 'PICS'.
Constraints
Combining Multiple 'PICSReference's
A 'Comment' with body containing an 'and' or 'or' shall be attached to the 'PICSReference' as a Boolean operand if there are two or more 'PICSReference's and it is not the first 'PICSReference'.
inv: MultiplePICS:
self.container().picsReference->size() < 2
or self.container().picsReference->forAll(p |
 self.container().picsReference->at(0) = p
 or (not p.comment->isEmpty()
 and (p.comment->first().body = 'and'
 or p.comment->first().body = 'or')))
[bookmark: _Toc49263232]5.3.3	InitialConditions
Semantics
'InitialConditions' is an 'Element' containing an 'EventSequence' describing the initial conditions of a 'StructuredTestObjective'.
Generalizations
Element
Properties
conditions : EventSequence [1]
An 'EventSequence' containing the 'EventOccurrence's describing the initial conditions for the 'StructuredTestObjective'.
Constraints
There are no constraints specified.
[bookmark: _Toc49263233]5.3.4	ExpectedBehaviour
Semantics
'ExpectedBehaviour' is an 'Element' containing an 'EventSequence' describing the expected behaviour specified in a 'StructuredTestObjective'.
Generalizations
Element
Properties
whenClause : EventSequence [0..1]
An 'EventSequence' containing the 'EventOccurrence's describing the stimuli for the 'ExpectedBehaviour' of the 'StructuredTestObjective'.
thenClause : EventSequence [1]
An 'EventSequence' containing the 'EventOccurrence's describing the expected reaction for the 'ExpectedBehaviour' of the 'StructuredTestObjective' or the resulting expected state.
Constraints
There are no constraints specified.
[bookmark: _Toc49263234]5.3.5	FinalConditions
Semantics
'FinalConditions' is an 'Element' containing an 'EventSequence' describing the final conditions of a 'StructuredTestObjective'.
Generalizations
Element
Properties
conditions : EventSequence [1]
An 'EventSequence' containing the 'EventOccurrence's describing the final conditions for the 'StructuredTestObjective'.
Constraints
There are no constraints specified.
[bookmark: _Toc49263235]5.4	Events Abstract Syntax and Classifier Description
[bookmark: _Toc49263236]5.4.1	EventSequence
[image:]
Figure 5.3: Events Concepts
Semantics
'EventSequence' is an 'Element' containing 'EventOccurrence's.
Generalizations
Element
Properties
events : EventOccurrence [1..*] {ordered}
A sequence of 'EventOccurrence's.
Constraints
There are no constraints specified.
[bookmark: _Toc49263237]5.4.2	RepeatedEventSequence
Semantics
'RepeatedEventSequence' is an 'EventSequence' optionally specifying a number of repetitions or a repetition interval. In case neither the number of repetitions nor the repetition interval is specified, the 'EventOccurrences' defined in the 'RepeatedEventSequence' may occur indefinite number of times with arbitrary frequency. If the 'repetitions' property is defined, the associated 'EventOccurrence's are executed the specified number of times. If the 'interval' property is defined, the associated 'EventOccurrence' are executed repeatedly with the specified time interval.
Generalizations
EventSequence
Properties
repetitions : Value [0..1]
A 'Value' expression that specifies the number of repetitions the 'EventOccurrence's shall be executed.
interval: Value [0..1]
A 'Value' expression that specifies the interval between each repeated execution of the 'EventOccurrence's.
Constraints
Either 'repetitions', or 'interval' or neither shall be specified
At most one of the optional properties 'repetitions' or 'interval' shall be defined.
inv: RepetitionOrInterval:
 self.repetitions.oclIsUndefined() or self.interval.oclIsUndefined()
The 'repetitions' 'Value' shall be countable and positive
The expression assigned to the 'repetitions' property shall evaluate to a positive and countable 'Value'.
inv: RepetitionCount:
 This constraint cannot be expressed in OCL
The 'interval' 'Value' shall be countable and positive
The expression assigned to the 'repetitions' property shall evaluate to a positive and countable 'Value'
inv: RepetitionInterval:
 This constraint cannot be expressed in OCL
[bookmark: _Toc49263238]5.4.3	EventOccurrence
Semantics
An 'EventOccurrence' is an 'Element' describing an occurrence of an 'Event' within an 'EventSequence'. The 'EventOccurrence' also includes an optional 'TimeLabel' and/or a 'TimeConstraint' for the specification of temporal relationships between 'EventOccurrence's. In case there is more than one 'EventOccurrence' within an 'EventSequence', a 'Comment' with body containing an 'and' or 'or' shall be used as an operand, starting with the second 'EventOccurrence' to indicate how the 'EventOccurrence' shall be related to the previous 'EventOccurrence' within the same 'EventSequence', i.e. whether both 'EventOccurrence's are required or whether only one of the 'EventOccurrence's shall take place. The 'or' operand takes precedence, thus given a 'SimpleEventSequence' EO1 and EO2 or EO3, the intended interpretation is that EO1 takes place followed by EO2 or EO3 taking place. While this is opposite to conventional logical operator precedence (i.e. 'and' takes precedence over 'or'), conventional logical operator precedence is not applicable in the context of 'EventOccurrence's as the intended interpretation shall be implementable by means of an 'AlternativeBehaviour' or a 'ConditionalBehaviour' in TDL.
Additional 'Comment's may be added to describe the 'EventOccurrence'.
Generalizations
Element
Properties
timeLabel : TimeLabel [0..1]
A 'TimeLabel' that may be added to the 'EventOccurrence' in order to be able to specify 'TimeConstraint's for subsequent 'EventOccurrence's with relation to the 'EventOccurrence'.
timeConstraint : TimeConstraint [0..1]
A 'TimeConstraint' that may be added to the 'EventOccurrence' to describe temporal relationships to previous 'EventOccurrence's.
Constraints
Combining Multiple 'EventOccurrence's
A 'Comment' with body containing an 'and' or 'or' shall be attached to the 'EventOccurrence' as an operand if there are two or more 'EventOccurrence's and it is not the first 'EventOccurrence'.
inv: MultipleEventOccurrences:
self.container().oclIsTypeOf(EventSpecificationTemplate)
or self.container().events->size() < 2
or self.container().events->forAll(o |
self.container().events->at(0) = o
or (not o.comment->isEmpty()
and (o.comment->first().body = 'and'
or o.comment->first().body = 'or')))
[bookmark: _Toc49263239]5.4.4	EventOccurrenceSpecification
Semantics
An 'EventOccurrenceSpecification' is an 'Element' describing a concrete occurrence of an 'Event', including qualified references to the 'Event', to the 'Entity' related to the occurrence of the 'Event' and to any other 'Entity's involved in the 'EventOccurrenceSpecification'. It also includes a 'Value' as an argument describing the details of the 'EventOccurrenceSpecification' such as the data being sent or received, or a state an involved 'Entity' is in.
Generalizations
Element
Properties
entityReference : EntityReference [0..1]
An 'EntityReference' to the 'Entity' related to the occurrence of the 'Event'.
oppositeEntityReference : EntityReference [0..*]
'EntityReference's to other 'Entity's involved in the 'EventOccurrence'.
eventReference : EventReference [1]
An 'EventReference' to the occurring 'Event'.
eventArgument : Value [0..1]
A 'Value' describing the details of the 'EventOccurrence'.
Constraints
There are no constraints specified.
[bookmark: _Toc49263240]5.4.5	EntityReference
Semantics
An 'EntityReference' is an 'Element' that enables the referencing of 'Entity's within 'EventOccurrence's. 'Comment's may be used to add qualifiers describing peculiarities of the referenced 'Entity' related to the specific 'EventOccurrence'. Alternatively, an 'EntityReference' may be used to reference a 'ComponentInstance' of a 'TestConfiguration' instead of an 'Entity'.
Generalizations
Element
Properties
entity : Entity [0..1]
The referenced 'Entity'.
component : ComponentInstance [0..1]
The referenced 'ComponentInstance'.
Constraints
An 'Entity' or a 'ComponentInstance' shall be referenced.
There shall be a reference to an 'Entity' or a 'ComponentInstance' but not both.
inv: EntityOrComponentInstance:
(not self.entity.oclIsUndefined() and self.component.oclIsUndefined())
or (self.entity.oclIsUndefined() and not self.component.oclIsUndefined())
[bookmark: _Toc49263241]5.4.6	EventReference
Semantics
An 'EventReference' is an 'Element' that enables the referencing of 'Events' within 'EventOccurrence's. 'Comment's may be used to add qualifiers describing peculiarities of the referenced 'Event' related to the specific 'EventOccurrence'.
Generalizations
Element
Properties
event : Event [1]
The referenced 'Event'.
Constraints
There are no constraints specified.
[bookmark: _Toc49263242]5.5	Data Abstract Syntax and Classifier Description
[bookmark: _Toc49263243]5.5.1	Value
[image: Extensions_StructuredTestObjectiveSpecification_Data]
Figure 5.4: Data Concepts
Semantics
A 'Value' is an abstract 'Element' that is refined into 'DataReference', 'LiteralValue', 'LiteralValueReference' and 'ContentReference'. A 'DataReference' enables the referencing of 'DataInstance's defined in advance, as well as the corresponding 'AnyValue', 'AnyValueOrOmit', and 'OmitValue' specifications for a predefined 'DataType'. The remaining 'Value' refinements enable the inline description of data content and data structures, without the requirement of defining 'DataType's and 'DataInstance's in advance. 'DataInstance's and inline data descriptions may be combined to the extent that inline data descriptions may contain 'DataReference's to 'DataInstance's, but 'DataInstance's relying on declared 'DataType's may not reference inline data descriptions. 'Comment's may be used to add qualifiers describing further details related to the 'Value' with regard to the specific context of its usage. With the exception of 'DataInstance's, all inline descriptions are only visible within the containing 'StructuredTestObjective' and may only be referenced within the same 'StructuredTestObjective', where only 'LiteralValue's and 'Content' used in previous 'EventOccurrence's may be referenced in subsequent 'EventOccurrence's.
Generalizations
Element
Properties
There are no properties specified.
Constraints
There are no constraints specified.
[bookmark: _Toc49263244]5.5.2	LiteralValue
Semantics
A 'LiteralValue' is a 'Value' that represents any literal label used as an argument of an 'EventOccurrence' or as a value of 'Content'. 'Comment's may be used to provide additional information related to the type and semantics of the 'LiteralValue'. A 'LiteralValue' may contain 'Content's enabling the definition of a substructure of the 'LiteralValue' that describes the details of the 'LiteralValue'.
Generalizations
Value
Properties
content : Content [0..*] {ordered}
The 'Content's of the 'LiteralValue'.
Constraints
There are no constraints specified.
[bookmark: _Toc49263245]5.5.3	Content
Semantics
A 'Content' is an 'Element' that enables the specification of composite 'LiteralValue's which contain additional 'Value's assigned to the 'Content'. Alternatively, 'Content' may contain nested 'Content' without specifying a 'Value' enabling the specification of relevant sub-structures without full details of the 'Values' assigned to each structural feature.
Generalizations
Element
Properties
content : Content [0..*] {ordered}
Nested contents of the 'Content'.
value : Value [0..1]
A 'Value' assigned to the 'Content'.
Constraints
No nested 'Content's if 'Value' is provided
Either nested 'Content's or 'Value' may be specified within 'Content', but not both.
inv: ContentOrValue:
 self.content->isEmpty() or self.value.oclIsUndefined()
[bookmark: _Toc49263246]5.5.4	LiteralValueReference
Semantics
A 'LiteralValueReference' is a 'Value' that enables the referencing of 'LiteralValues' from previous 'EventOccurrence's within the containing 'StructuredTestObjective' as an argument of an 'EventOccurrence' or as a value of 'Content'.
Generalizations
Value
Properties
content : LiteralValue [1]
The referenced 'LiteralValue'.
Constraints
Referenced 'LiteralValue' visibility
Only 'LiteralValue's defined within previous 'EventOccurrence's of the containing 'StructuredTestObjective' may be referenced.
inv: VisibleValue:
self.getTestObjective().contains(self.content)
and self.getTestObjective().indexOf(self.content) < self.getTestObjective().indexOf(self)
[bookmark: _Toc49263247]5.5.5	ContentReference
Semantics
A 'ContentReference' is a 'Value' that enables the referencing of the 'Content' of 'LiteralValues' from previous 'EventOccurrence's within the containing 'StructuredTestObjective' as an argument of an 'EventOccurrence' or as a value of 'Content'.
Generalizations
Value
Properties
content : Content [1]
The referenced 'Content'.
Constraints
Referenced 'Content' visibility
Only 'Content' defined within previous 'EventOccurrence's of the containing 'StructuredTestObjective' may be referenced.
inv: VisibleContent:
self.getTestObjective().contains(self.content)
and self.getTestObjective().indexOf(self.content) < self.getTestObjective().indexOf(self)
[bookmark: _Toc49263248]5.5.6	DataReference
Semantics
A 'DataReference' is a 'Value' that enables the referencing of 'DataInstance's by means of a 'DataInstanceUse', as well as the use of 'AnyValue', 'AnyValueOrOmit', and 'OmitValue' specifications for a predefined 'DataType' as an argument of 'EventOccurrence's or as a value of 'Content'.
Generalizations
Value
Properties
content : StaticDataUse [1]
Specification of the referenced 'DataInstance'.
Constraints
'DataUse' restrictions within 'DataReference'
Only 'StaticDataUse' may be used directly or indirectly in 'ParameterBinding's of the 'StaticDataUse' within a 'DataReference'.
inv: DataReferenceContents:
self.content.oclIsTypeOf(StaticDataUse)
and self.content.argument->forAll(a | a.dataUse.oclIsKindOf(StaticDataUse))
and self.content.argument->closure(a |
a.dataUse.argument)->forAll(a|a.dataUse.oclIsKindOf(StaticDataUse))
No 'reduction' within 'DataReference'
The 'reduction' property of 'StaticDataUse' inherited from 'DataUse' shall not be used within a 'DataReference'.
inv: DataReferenceReduction:
self.content.reduction->isEmpty()
[bookmark: _Toc49263249]5.6	Event Templates Abstract Syntax and Classifier Description
[bookmark: _Toc49263250]5.6.1	EventSpecificationTemplate
[image:]
Figure 5.5: Event Templates Concepts
Semantics
'EventSpecificationTemplate' is a 'PackageableElement' containing a single reusable 'EventOccurrenceSpecification'. An 'EventSpecificationTemplate' may be referenced within an 'EventSequence' by means of an 'EventTemplateOccurrence'.
Generalizations
PackageableElement
Properties
eventSpecification : EventOccurrenceSpecification [1]
A reusable 'EventOccurrenceSpecification'.
Constraints
There are no constraints specified.
[bookmark: _Toc49263251]5.6.2	EventTemplateOccurrence
Semantics
An 'EventTemplateOccurrence' is an 'EventOccurrence' referring to a reusable 'EventSpecificationTemplate' that defines a concrete occurrence of the referenced 'EventSpecificationTemplate' within an 'EventSequence'. Optional 'EntityBinding's may be specified to override some or all of the 'EntityReference' specified in 'EventOccurrenceSpecification' of the referenced 'EventTemplateSpecification' with new 'EntityReference's. Optional 'Value' specification may be specified to overriding the 'Value' specified as argument in 'EventOccurrenceSpecification' of the referenced 'EventTemplateSpecification' with a new 'Value'.
Generalizations
EventOccurrence
Properties
eventTemplate : EventSpecificationTemplate [1]
The referenced 'EventSpecificationTemplate'.
entityBinding : EntityBinding [0..*]
Optional 'EntityBinding's for substituting the 'EntityReference' specified in 'EventOccurrenceSpecification' of the referenced 'EventTemplateSpecification' with new 'EntityReference's.
occurrenceArgument : Value [0..1]
Optional 'Value' specification overriding the 'Value' specified as argument in 'EventOccurrenceSpecification' of the referenced 'EventTemplateSpecification'.
Constraints
'EntityReference' of referenced 'EventSpecificationTemplate'
If 'EntityBinding's are provided, the 'Entity's or 'ComponentInstance's referenced in the 'templateEntity' properties shall also be referenced by one of the 'EntityReferences' in the 'EventOccurrenceSpecification' of the 'EventSpecificationTemplate' referenced in the 'EventTemplateOccurrence'.
inv: EntityTemplateOccurrenceConsistency:
 self.entityBinding->forAll(b |
 (not b.templateEntity.entity.oclIsUndefined()
 and (b.templateEntity.entity =
 self.eventTemplate.eventSpecification.entityReference.entity))
 or (not b.templateEntity.component.oclIsUndefined()
 and (b.templateEntity.component =
 self.eventTemplate.eventSpecification.entityReference.component)
 or self.eventTemplate.eventSpecification.oppositeEntityReference->exists(e |
 (not b.templateEntity.entity.oclIsUndefined()
 and (e.entity = b.templateEntity.entity))
 or (not b.templateEntity.component.oclIsUndefined()
 and (e.component = b.templateEntity.component)))))
[bookmark: _Toc49263252]5.6.3	EntityBinding
Semantics
An 'EntityBinding' is an 'Element' used for substituting the 'EntityReference' specified in 'EventOccurrenceSpecification' of a 'EventTemplateSpecification' referenced within an 'EventTemplateOccurrence' with new 'EntityReference's.
Generalizations
Element
Properties
templateEntity : EntityReference [1]
An 'EntityReference' describing the 'Entity' referenced in the 'EventOccurrenceSpecification' of the 'EventSpecificationTemplate'.
occurrenceEntity : EntityReference [1]
An 'EntityReference' describing the 'Entity' that shall replace the 'EntityReference' referenced in the 'EventOccurrenceSpecification' of the 'EventSpecificationTemplate' in the 'EventTemplateOccurrence'.
Constraints
There are no constraints specified.
5.7	Structured Test Objective Variants Abstract Syntax and Classifier Description
5.7.1	StructuredTestObjectiveVariant

[image: Diagram

Description automatically generated]
Figure 5.6: Structured Test Objective Variant Concepts
Semantics
A 'StructuredTestObjectiveVariant' is a refinement of ‘TestObjective’ defined on the basis of a ‘StructuredTestObjective’. In addition to 'description' and 'objectiveURI' properties inherited from 'TestObjective', a 'StructuredTestObjectiveVariant' may include ‘PicsReference’s and ‘VariantBinding’s identifying the substitutions to be applied to derive the Test Objective.
NOTE:	A ‘StructuredTestObjectiveVariant’ may be annotated with the predefined annontation ‘VariantNoteRef’ opotionally with a note reference text associated as the value parameter. A ‘StructuredTestObjectiveVariant’ with this annotation references a note associated to the enclosing ‘Variants’ element.

Generalizations
TestObjective
Properties
picsReference : PICSReference [*] {ordered}
An ordered set of 'PICSReferences' to 'PICS'.
Bindings [*]
A set of ‘VariantBinding’s to be applied

Constraints
TBD

5.7.2	Variants
Semantics
‘Variants’ is an ‘Element’ associated to a ‘StructuredTestObjective’ containing a non-empty set of ‘StructuredTestObjectiveVariant’s.
NOTE:	A ‘Variants’ element may be annotated with the predefined annontation ‘VariantNote’ with the note text associated as the value parameter. A ‘Variants’ element with this annotation defines a note common to ‘TestObjectiveVariants’ referencing the note..

Generalizations
Element

Properties
variants :StructuredTestObjectiveVariant’ [1..*]
A non-empty set of ‘StructuredTestObjectiveVariant’s.

Constraints
TBD

5.7.4	VariantBinding
Semantics
‘VariantBinding’ is an ‘Element’ used to specify the substitutions in the associated ‘StructuredTestObejective’ to model the ‘StructuredTestObjectiveVariant’.
Generalizations
Element

Properties
value : Value [1]
A value defined in the associated ‘StructuredTestObjective’ that is to be substituted.
boundTo : Value [1]
The value to be used in the ‘StructuredTestObjectiveVariant’
Constraints
Referenced 'Value' of ‘VariantBinding'
The ‘Value’ associated to ‘VariantBinding’ via the value relation shall exist in the associated ‘StricturedTestObjective’
Invariant TO BE SPECIFIED

[bookmark: _Toc49263253]6	Graphical Syntax Extensions
[bookmark: _Toc49263254]6.1	Foundation
[bookmark: _Toc49263255]6.1.1	Entity
Concrete Graphical Notation
[image:]
Formal Description
context Entity
ENTITYLABEL ::= self.name
Constraints
There are no constraints specified.
Comments
No comments.
Example
[image:]
[bookmark: _Toc49263256]6.1.2	Event
Concrete Graphical Notation
[image:]
Formal Description
context Event
EVENTLABEL ::= self.name
Constraints
There are no constraints specified.
Comments
No comments.
Example
[image:]
[bookmark: _Toc49263257]6.1.3	PICS
Concrete Graphical Notation
[image:]
Formal Description
context PICS
PICSLABEL ::= self.name
Constraints
There are no constraints specified.
Comments
No comments.
Example
[image:]
[bookmark: _Toc49263258]6.1.4	Comment
Concrete Graphical Notation
Inherited from ETSI ES 203 119-2 [2] for 'Comment's not contained in a 'StructuredTestObjective', overridden for 'Comment's directly or indirectly contained in a 'StructuredTestObjective'.
Formal Description
context Comment
QUALIFIER ::= self.body

NOTQUALIFIER ::= 	if self.body = 'not'
then
self.body
endif

ANDORQUALIFIER ::= 	if self.body = 'and'
or self.body = 'or'
then
self.body
endif

ARTICLEQUALIFIER ::= 	if self.body = 'a'
or self.body = 'an'
or self.body = 'the'
then
self.body
endif

ASSIGNMENTQUALIFIER ::= 	if self.body = 'indicating value'
or self.body = 'set to'
then
self.body
endif

COMMONWORDQUALIFIER ::= 	if self.body = 'after'
or self.body = 'before'
or self.body = 'from'
or self.body = 'of'
or self.body = 'to'
then
 								self.body
endif

DIRECTIONQUALIFIER ::=		if self.body = 'by'
or self.body = 'for'
or self.body = 'from'
or self.body = 'in'
or self.body = 'into'
or self.body = 'to'
then
self.body
endif

QUANTIFIEDQUALIFIER ::=	if self.body = 'all'
or self.body = 'any'
or self.body = 'few'
or self.body = 'multiple'
or self.body = 'no'
or self.body = 'only'
or self.body = 'several'
or self.body = 'some'
then
self.body
endif

REFERENCEQUALIFIER ::=		if self.body = 'associated with'
or self.body = 'carrying'
or self.body = 'contained in'
or self.body = 'corresponding to'
or self.body = 'derived from'
then
self.body
						endif
TIMECONSTRAINTQUALIFIER ::=	if self.body = 'after'
or self.body = 'before'
or self.body = 'during'
or self.body = 'within'
then
self.body
endif

NOTELABEL ::= '(' 'Note' self.name ':' self.body ')'

Constraints
Default comment label
The QUALIFIER label only applies to 'Comment's that do not match the conditions for any of the other qualifier labels.
Comments
No comments.
Example
Not available.
[bookmark: _Toc49263259]6.2	Test Objective
[bookmark: _Toc49263260]6.2.1	StructuredTestObjective
Concrete Graphical Notation
[image:]
Formal Description
context StructuredTestObjective
TESTOBJECTIVENAMELABEL ::=	self.name
DESCRIPTIONLABEL ::= self.description
URIOFOBJECTIVELABEL ::= self.objectiveURI->newline()
CONFIGLABEL ::= self.configuration.name
PICSSELECTIONLABEL ::= foreach p:PICSReference in self.picsReferences p as context in <PICSREFERENCELABEL> end
PICSREFERENCELABEL ::= [p.comment->first() as context in <ANDORQUALIFIER>] [p.comment->last() as context in <NOTQUALIFIER>] p.pics.name
INITIALCONDITIONSLABEL ::= 'with' '{'
self.initialConditions.conditions as context in <EVENTSEQUENCELABEL>
'}'

EXPECTEDBEHAVIOURLABEL ::= 'ensure' 'that' '{'
							if self.expectedBehaviour.whenClause.oclIsUndefined() then
								self.expectedBehaviour.thenClause as context in <EVENTSEQUENCELABEL>
							else
		 						'when' '{'
self.expectedBehaviour.whenClause as context in <EVENTSEQUENCELABEL>
 	'}'
 	'then' '{'
self.expectedBehaviour.thenClause as context in <EVENTSEQUENCELABEL>
 	'}'
endif
		 				 '}'

FINALCONDITIONSLABEL ::= 	'with' '{'
self.finalConditions.conditions as context in <EVENTSEQUENCELABEL>
'}'
Constraints
Spaces in the 'name' of an 'Element' and the 'body' of a 'Comment'
A 'name' of an 'Element' or a 'body' of a 'Comment' shall be enclosed in single or double quotes when the corresponding 'Element' or 'Comment' is contained within a 'PICSReference' or an 'EventSequence'.
Comments
The labels for the DESCRIPTIONLABEL, URIOFOBJECTIVELABEL, and PICSSELECTIONLABEL are optional and displayed only if the respective model elements are defined. The corresponding compartments are always displayed.
The compartments containing the INITIALCONDITIONSLABEL, the EXPECTEDBEHAVIOURLABEL, and the FINALCONDITIONSLABEL are optional and displayed only if the respective model elements are defined. The corresponding headings containing the keywords Initial Conditions, Expected Behaviour, and Final Conditions are mandatory only if the related compartments are displayed, otherwise they may be hidden.
In the alternate notation shown above, all compartments except the TestObjective compartment are optional and only displayed if the respective model elements are defined.
Example
[image:]
[bookmark: _Toc49263261]6.3	Events
[bookmark: _Toc49263262]6.3.1	EventSequence
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context EventSequence
EVENTSEQUENCELABEL ::= 	if self.oclIsTypeOf(RepeatedEventSequence) then self as context in <REPEATEDEVENTSEQUENCELABEL>
						else if self.oclIsTypeOf(EventSequence) then self as context in <SIMPLEEVENTSEQUENCELABEL>
						endif
SIMPLEEVENTSEQUENCELABEL ::= 	foreach e:EventOccurrence in self.events newline() e as context in <EVENTOCCURRENCELABEL> end

Constraints
There are no constraints specified.
Comments
No comments.
Example
 the IUT entity being in the initial state and
 the IUT entity using a "CBF algorithm" and
 the IUT entity having received a "Beacon information" from the ItsNodeB or
 the IUT entity having received any message from the ItsNodeD

repeat 2 times { the UE entity sends a "HARQ feedback on the HARQ process" }
[bookmark: _Toc49263263]6.3.2	RepeatedEventSequence
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context RepeatedEventOccurrence
REPEATEDEVENTSEQUENCELABEL ::= 'repeat'
 								if self.interval.oclIsUndefined() then
									self.repetitions as context in <EVENTARGUMENTLABEL> 'times'
								else
									'every' self.interval as context in <EVENTARGUMENTLABEL>
endif
foreach e:EventOccurrence in self.events newline() e as context in <EVENTOCCURRENCELABEL> end
Constraints
There are no constraints specified.
Comments
No comments.
Example
 repeat 2 times {
 the IUT entity having received a "Beacon information" from the ItsNodeB entity and
 the IUT entity having received any message from the ItsNodeD entity
 }

 repeat every CBF_MAX {
 the IUT entity saves the "GBC packet" into the CBF buffer entity and
 the IUT entity starts a "contention timer" containing
 duration set to CBF_MAX
 ;
 and
 the IUT entity broadcasts the received "GBC packet"
 }

[bookmark: _Toc49263264]6.3.3	EventOccurrence
Concrete Graphical Notation
There is no shape associated with this element as it is abstract.
Formal Description
context EventOccurrence
EVENTOCCURRENCELABEL ::= 	if self.oclIsTypeOf(EventOccurrenceSpecification) then self as context in <EVENTOCCURRENCESPECIFICATIONLABEL>
						else if self.oclIsTypeOf(EventTemplateOccurrence) then self as context in <EVENTTEMPLATEOCCURRENCELABEL>
						endif

Constraints
There are no constraints specified.
Comments
No comments.
Example
Not available.
[bookmark: _Toc49263265]6.3.4	EventOccurrenceSpecification
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context EventOccurrenceSpecification
EVENTOCCURRENCESPECIIFCATIONLABEL ::= 	[self.comment->first() as context in <ANDORQUALIFIER>]
						if self.timeLabel.oclIsUndefined() then
							if not self.timeConstraint.oclIsUndefined() then
								self.timeConstraint as context in <TIMECONSTRAINTLABEL>
							endif
						else
							self.timeLabel as context in <TIMELABELLABEL>
							if self.timeConstraint.oclIsUndefined() then
								':'
else
								',' self.timeConstraint as context in <TIMECONSTRAINTLABEL>
							endif	
						endif
 	[self.entityReference as context in <ENTITYREFERENCELABEL>]
 	self.eventReference as context in <EVENTREFERENCELABEL> 	
	[self.eventArgument as context in <EVENTARGUMENTLABEL>]
 	[foreach e:EntityReference in self.oppositeEntityReference separator(',') e as context in <OppositeENTITYLABEL> end]
 	[foreach c:Comment in self.comment separator(',') e as context in <NOTELABEL> end]

Constraints
There are no constraints specified.
Comments
No comments.
Example
 the IUT entity having received a "Beacon information" from the ItsNodeB entity
 (Note 1: "Beacon information may be incomplete")
 (.) at time point t1 the IUT entity receives a "message"
 (.) at time point t2, (!) 3s after t1 : the IUT entity sends an invitation to the ItsNodeD entity
 (!) 5s after t1 : the IUT entity receives a confirmation from the ItsNodeD entity

[bookmark: _Toc49263266]6.3.5	EntityReference
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context EntityReference
ENTITYREFERENCELABEL ::= 	self.comment->first() as context in <ARTICLEQUALIFIER>
 	[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
 	If self.component.oclIsUndefined() then
 	self.entity.name 'entity'
	else
self.component.name 'component'
	endif

OPPOSITEENTITYLABEL ::= 	self.comment->first() as context in <DIRECTIONQUALIFIER>
 	 		self.comment->at(1) as context in <ARTICLEQUALIFIER>
 			[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
 	If self.component.oclIsUndefined() then
 	self.entity.name 'entity'
	else
self.component.name 'component'
	endif

Constraints
There are no constraints specified.
Comments
No comments.
Example
 the IUT entity
 from the ItsNodeB component
 in the location service buffer entity, for the ItsNodeB component

[bookmark: _Toc49263267]6.3.6	EventReference
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context EventReference
EVENTREFERENCELABEL ::= 	[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
 	self.event.name
Constraints
There are no constraints specified.
Comments
No comments.
Example
 being in
 having automatically received
 sends

[bookmark: _Toc49263268]6.4	Data
[bookmark: _Toc49263269]6.4.1	Value
Concrete Graphical Notation
There is no shape associated with this element as it is abstract.
Formal Description
context Value
EVENTARGUMENTLABEL ::= 	if self.oclIsTypeOf(DataReference) then self as context in <DATAREFERENCEARGUMENTLABEL>
 	else if self.oclIsTypeOf(LiteralValue) then self as context in <LITERALVALUEARGUMENTLABEL>
 	else if self.oclIsTypeOf(LiteralValueReference) then self as context in <LITERALVALUEREFERENCEARGUMENTLABEL>
 	else if self.oclIsTypeOf(ContentReference) then self as context in <CONTENTREFERENCEARGUMENTLABEL>
	endif
Constraints
There are no constraints specified.
Comments
No comments.
Example
Not available.
[bookmark: _Toc49263270]6.4.2	LiteralValue
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context LiteralValue
LITERALVALUEARGUMENTLABEL ::=		self.comment->first() as context in <ARTICLEQUALIFIER>
| self.comment->first() as context in <QUANTIFIEDQUALIFIER>
if not self.dataType.oclIsUndefined() then
	'(typed)'
endif
[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
if self.dataType.oclIsUndefined() then
	self.name
['containing' foreach c:Content in self.content separator(',') c as context in <CONTENTLABEL> end ';']
else
	self.dataType.name
	['containing' foreach c:Content in self.content separator(',') c as context in <TYPEDCONTENTLABEL> end ';']
endif

LITERALVALUELABEL ::=	self.comment->first() as context in <ASSIGNMENTQUALIFIER>
[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
self.name
['containing' foreach c:Content in self.content separator(',') c as context in <CONTENTLABEL> end ';']
Constraints
There are no constraints specified.
Comments
No comments.
Example
 the "GUC packet"
 the (typed) GUC PACKET
 a GUC packet
 several GUC packets
 indicating value itsGnProtocolVersion "MIB parameter" ,
 set to itsGnDefaultHopLimit MIB parameter

[bookmark: _Toc49263271]6.4.3	Content
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context Content
CONTENTLABEL ::=	[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
self.name
if self.value.oclIsUndefined() then
['containing' foreach c:Content in self.content separator(',') c as context in <CONTENTLABEL> end ';']
else
	self.value as context in <VALUE>
endif
TYPEDCONTENTLABEL ::=		[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
self.member.name
if self.value.oclIsUndefined() then
['containing' foreach c:Content in self.content separator(',') c as context in <TYPEDCONTENTLABEL> end ';']
else
	self.value as context in <VALUE>
endif
Constraints
There are no constraints specified.
Comments
No comments.
Example
 a "GUC packet" containing
 BasicHeader containing
 "version field" indicating value "itsGnProtocolVersion MIB parameter" ,
 "RHL field" indicating value "itsGnDefaultHopLimit MIB parameter"
 ;
 ;

[bookmark: _Toc49263272]6.4.4	LiteralValueReference
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context LiteralValueReference
LITERALVALUEREFERENCEARGUMENTLABEL ::=	'the' 'value' 'of'
[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
self.content.name

LITERALVALUEREFERENCELABEL ::=	self.comment->first() as context in <REFERENCEQUALIFIER>
'the' 'value' 'of'
[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
self.content.name
Constraints
There are no constraints specified.
Comments
No comments.
Example
 the value of itsGnDefaultHopLimit MIB parameter
 corresponding to the value of itsGnDefaultHopLimit MIB parameter
 derived from the value of itsGnDefaultHopLimit MIB parameter

[bookmark: _Toc49263273]6.4.5	ContentReference
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context ContentReference
CONTENTREFERENCEARGUMENTLABEL ::=	'the' 'value' 'contained' 'in'
[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
self.content.name

CONTENTREFERENCELABEL ::=		self.comment ->first() as context in <REFERENCEQUALIFIER>
'the' 'value' 'contained' 'in'
[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
self.content.name
Constraints
There are no constraints specified.
Comments
No comments.
Example
 the value contained in "RHL field"
 corresponding to the value contained in "version field"
 derived from the value contained in "BasicHeader"

[bookmark: _Toc49263274]6.4.6	DataReference
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context DataReference
DATAREFERENCEARGUMENTLABEL ::=	self.comment->first() as context in <ARTICLEQUALIFIER>
| self.comment->first() as context in <QUANTIFIEDQUALIFIER>
 			'(predefined)'
[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
self.content as context in <STATICDATAUSELABEL>

DATAREFERENCELABEL ::=	[self.name]
 			self.comment->first() as context in <REFERENCEQUALIFIER>
[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
self.content as context in <STATICDATAUSELABEL>
Constraints
There are no constraints specified.
Comments
No comments.
Example
 the (predefined) FullHeader
 the (predefined) FullHeader containing
 RHLField indicating value itGnDefaultHopLimit
 ;

[bookmark: _Toc49263275]6.4.7	StaticDataUse
Concrete Graphical Notation
Inherited from ETSI ES 203 119-2 [2] for 'StaticDataUse's not contained in a 'StructuredTestObjective', overridden for 'StaticDataUse's directly or indirectly contained in a 'StructuredTestObjective'.
Formal Description
context StaticDataUse
STATICDATAUSELABEL ::= 	if self.oclIsTypeOf(DataInstanceUse) then self as context in <DATAINSTANCEUSELABEL>
 	else if self.oclIsTypeOf(AnyValue) then self as context in <ANYVALUELABEL>
 	else if self.oclIsTypeOf(AnyValueOrOmitValue) then self as context in <ANYVALUEOROMITLABEL>
 	else if self.oclIsTypeOf(OmitValue) then self as context in <OMITVALUELABEL>
	endif
Constraints
There are no constraints specified.
Comments
No comments.
Example
 FullHeader
 any Header
 any or omitted
 omitted

[bookmark: _Toc49263276]6.4.8	AnyValue
Concrete Graphical Notation
Inherited from ETSI ES 203 119-2 [2] for 'AnyValue's not contained in a 'StructuredTestObjective', overridden for 'AnyValue's directly or indirectly contained in a 'StructuredTestObjective'.
Formal Description
context AnyValue
ANYVALUELABEL ::= 'any' Self.dataType.name
Constraints
There are no constraints specified.
Comments
No comments.
Example
 any Header

[bookmark: _Toc49263277]6.4.9	AnyValueOrOmit
Concrete Graphical Notation
Inherited from ETSI ES 203 119-2 [2] for 'AnyValueOrOmit's not contained in a 'StructuredTestObjective', overridden for 'AnyValueOrOmit's directly or indirectly contained in a 'StructuredTestObjective'.
Formal Description
context AnyValueOrOmit
ANYVALUEOROMITLABEL ::= 'any' 'or' 'omitted'
Constraints
There are no constraints specified.
Comments
No comments.
Example
 any or omitted

[bookmark: _Toc49263278]6.4.10	OmitValue
Concrete Graphical Notation
Inherited from ETSI ES 203 119-2 [2] for 'OmitValue's not contained in a 'StructuredTestObjective', overridden for 'OmitValue's directly or indirectly contained in a 'StructuredTestObjective'.
Formal Description
context OmitValue
OMITVALUELABEL ::= 'omitted'
Constraints
There are no constraints specified.
Comments
No comments.
Example
 omitted

[bookmark: _Toc49263279]6.4.11	DataInstanceUse
Concrete Graphical Notation
Inherited from ETSI ES 203 119-2 [2] for 'DataInstanceUse's not contained in a 'StructuredTestObjective', overridden for 'DataInstanceUse's directly or indirectly contained in a 'StructuredTestObjective'.
Formal Description
context DataInstanceUse
DATAINSTANCEUSELABEL ::=	Self.dataInstance.name
['containing'
foreach a:ArgumentSpecification in self.argument separator(', ') c as context in <ARGUMENTSPECIFICATIONLABEL> end
';']
Constraints
There are no constraints specified.
Comments
No comments.
Example
 FullHeader
 FullHeader containing
 RHLField indicating value itGnDefaultHopLimit
 ;

[bookmark: _Toc49263280]6.4.12	ArgumentSpecification
Concrete Graphical Notation
Inherited from ETSI ES 203 119-2 [2] for 'ArgumentSpecification's not contained in a 'StructuredTestObjective', overridden for 'ArgumentSpecification's directly or indirectly contained in a 'StructuredTestObjective'.
Formal Description
context ArgumentSpecification
ARGUMENTSPECIFICATIONLABEL ::=		Self.member.name
self.comment->first() as context in <ASSIGNMENTQUALIFIER>
[foreach c:Comment in self.comment c as context in <QUALIFIER> end]
Self.dataUse as context in <STATICDATAUSELABEL>
Constraints
There are no constraints specified.
Comments
No comments.
Example
 RHLField indicating value itGnDefaultHopLimit
 RHLField indicating value itGnDefaultHopLimit containing
 VersionField indicating value baseVersion
 ;

[bookmark: _Toc49263281]6.5	Time
[bookmark: _Toc49263282]6.5.1	TimeLabel
Concrete Graphical Notation
Inherited from ETSI ES 203 119-2 [2] for 'TimeLabel's not contained in a 'StructuredTestObjective', overridden for 'TimeLabel's directly or indirectly contained in a 'StructuredTestObjective'.
Formal Description
context TimeLabel
TIMELABELLABEL ::=	'(.)' 'at' 'time' 'point' self.name
Constraints
There are no constraints specified.
Comments
No comments.
Example
 (.) at time point t

[bookmark: _Toc49263283]6.5.2	TimeConstraint
Concrete Graphical Notation
Inherited from ETSI ES 203 119-2 [2] for 'TimeConstraint's not contained in a 'StructuredTestObjective', overridden for ' TimeConstraint 's directly or indirectly contained in a 'StructuredTestObjective'.
Formal Description
context TimeConstraint
TIMECONSTRAINTLABEL ::= 	'(!)'
[foreach c:Comment in self.comment as context in <QUALIFIER> end]
						self.comment as context in <TIMECONSTRAINTQUALIFIER>
[foreach c:Comment in self.comment c as context in <QUALIFIER|COMMONWORDQUALIFIER|ARTICLEQUALIFIER> end]
						self.timeConstraintExpression.dataInstance.name
Constraints
There are no constraints specified.
Comments
No comments.
Example
 (!) 30s after t
 (!) within 5s of t
 (!) during the 5s after t

[bookmark: _Toc49263284]6.6	Event Templates
[bookmark: _Toc49263285]6.6.1	EventSpecificationTemplate
Concrete Graphical Notation
[image:]
Formal Description
context EventSpecificationTemplate
EVENTOCCURRENCETEMPLATELABEL ::=	self.name
EVENTOCCURRENCETEMPLATESPECIIFCATIONLABEL ::= 	[self.entityReference as context in <ENTITYREFERENCELABEL>]
 	self.eventReference as context in <EVENTREFERENCELABEL>
	[self.eventArgument as context in <EVENTARGUMENTLABEL>]
 	[foreach e:EntityReference in self.oppositeEntityReference separator(',') e as context in <OppositeENTITYLABEL> end]
 	[foreach c:Comment in self.comment separator(',') e as context in <NOTELABEL> end]
Constraints
There are no constraints specified.
Comments
No comments.
Example
[image:]

[bookmark: _Toc49263286]6.6.2	EventTemplateOccurrence
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context EventTemplateOccurrence
EVENTTEMPLATEOCCURRENCELABEL ::= 	[self.comment->first() as context in <ANDORQUALIFIER>]
						if self.timeLabel.oclIsUndefined() then
							if not self.timeConstraint.oclIsUndefined() then
								self.timeConstraint as context in <TIMECONSTRAINTLABEL>
							endif
						else
							self.timeLabel as context in <TIMELABELLABEL>
							if self.timeConstraint.oclIsUndefined() then
								':'
else
								',' self.timeConstraint as context in <TIMECONSTRAINTLABEL>
							endif	
						endif
 	'event'
self.eventTemplate.name
'occurs'
['with' '{'
[foreach b:EntityBinding in self.entityBinding separator(',') b as context in <ENTITYBINDINGLABEL> end]
['argument' 'replaced' 'by' self.occurrenceArgument as context in <EVENTARGUMENTLABEL> end] 	
'}']
 [foreach c:Comment in self.comment separator(',') e as context in <NOTELABEL> end]
Constraints
There are no constraints specified.
Comments
Optionally, an 'EventTemplateOccurrence' may be visually represented as the content of the referenced 'EventSpecificationTemplate's 'EventOccurrenceSpecification', where bound 'EntityReference's from the 'EventOccurrenceSpecification' in the 'EventSpecificationTemplate' shall be substituted by the 'EntityReference's provided in the 'EventTemplateOccurrence'. Similarly, the argument from the 'EventOccurrenceSpecification' in the 'EventSpecificationTemplate' shall substituted by the argument provided in the 'EventTemplateOccurrence'.
Example
 event ReceiveBeacon occurs
 (.) at time point t1 : event ReceiveBeacon occurs
 (!) 30s after t1 : event ReceiveBeacon occurs
 event ReceiveBeacon occurs with {
 the ItsNodeB entity replaced by an ItsNodeC entity
 }
 event ReceiveBeacon occurs with {
 argument replaced by a "Beacon confirmation"
 }
 event ReceiveBeacon occurs with {
 the ItsNodeB entity replaced by an ItsNodeC entity
 argument replaced by a "Beacon confirmation"
 }

[bookmark: _Toc49263287]6.6.3	EntityBinding
Concrete Graphical Notation
There is no shape associated with this element. Instead, it is represented as a label within the context of a 'StructuredTestObjective'.
Formal Description
context EntityBinding
ENTITYBINDINGLABEL ::=	 self.templateEntity as context in <ENTITYREFERENCELABEL>
'replaced' 'by'
self.occurrenceEntity as context in <ENTITYREFERENCELABEL>
Constraints
There are no constraints specified.
Comments
No comments.
Example
 the ItsNodeB entity replaced by an ItsNodeC entity
 the ITS_B component replaced by an ITS_C component

7	Predefined TDL Model Instance Extensions
This clause lists the extensions to predefined element instances for various meta-model elements that shall be a part of a standardcompliant TDL implementation.

7.1	Predefined Instances of the 'AnnotationType' Element
7.7.1	VariantNote
The predefined ‘AnnotationType’ ‘VariantNote’ is the ‘key’ of an ‘Annotation’ that may be attached to the ‘Variants’ element. The ‘value’ of the ‘Annotation’ defines the note text related to ‘StructuredTestObjectiveVariant’s associated to the ‘Variants’ element.
7.7.2	VariantNoteRef
The predefined ‘AnnotationType’ ‘VariantNoteRef’’ is the ‘key’ of an ‘Annotation’ that may be attached to a ‘StructuredTestObjectiveVariant’. The ‘value’ of such an ‘Annotation’ defines the note reference text. This ‘Annotation’is used to relate a note text associated to a ‘Variants’ element to specific ‘StructuredTestObjectiveVariant’s of this ‘Variants’ element.
[bookmark: _Toc49263288]78	Exchange Format Extensions
The exchange format for the extension is fully governed by the exchange format for TDL as specified in ETSI ES 203 119‑3 [3]. No additional specification is provided.
[bookmark: _Toc49263289]
Annex A (informative):
Textual Syntax
[bookmark: _Toc49263290]A.0	Overview
This annex specifies a textual syntax for the additional concepts and the minimal set of required TDL concepts to facilitate the specification and representation of 'StructuredTestObjective's in pure text. The syntax for the constituents of the 'StructuredTestObjective's, such as 'InitialConditions', 'ExpectedBehaviour', and 'FinalConditions' is identical to the corresponding compartment specifications in clause 6.1. The complete BNF production rules are specified in annex B.
[bookmark: _Toc49263291]A.1	A 3GPP Test Objective in Textual Syntax
This example describes one possible way to translate the test objectives in clause 7.1.3.1 from ETSI TS 136 523-1 [i.2] into the proposed textual syntax for the structured test objective specification with TDL, by mapping the concepts from the representation in the source document to the corresponding concepts for the structured test objective specification with TDL described in the present document. The example has been reformulated and interpolated where applicable to fit into the framework of the present document.
Package "3GPP, clause 7.1.3.1" {
 //a possible specification of the test objectives from clause 7.1.3.1 in [i.2]
 //some interpolation has been applied to fit into the overall framework and concrete syntax
 //of the present document

 Domain{
 entities:
 - UE
 ;
 events :
 - "in"
 - sends
 - receives
 - performs
 - send
 ;
 }

 Test Purpose {
 TP Id TP_7_1_3_1_1
 Test objective ""
 Reference "3GPP TS 36.321 clause 5.3.1"
 Initial conditions
 with {
 the UE entity "in" the "E-UTRA RRC_CONNECTED state"
 }
 Expected behaviour
 ensure that {
 when {
 the UE entity receives a "downlink assignment on the PDCCH for the UE’s C-RNTI" and
 the UE entity receives a "data in the associated subframe" and
 the UE entity performs a HARQ operation
 }
 then {
 the UE entity sends a "HARQ feedback on the HARQ process"
 }
 }
 }

 Test Purpose {
 TP Id TP_7_1_3_1_2
 Test objective ""
 Reference "3GPP TS 36.321 clause 5.3.1"
 Initial conditions
 with {
 the UE entity "in" the "E-UTRA RRC_CONNECTED state"
 }
 Expected behaviour
 ensure that {
 when {
 the UE entity receives a "downlink assignment on the PDCCH unknown by the UE" and
 the UE entity receives a "data in the associated subframe"
 }
 then {
 the UE entity does not send any "HARQ feedback on the HARQ process"
 }
 }
 }

}

[bookmark: _Toc49263292]A.2	An IMS Test Objective in Textual Syntax
This example describes one possible way to translate the test objective clause 4.5.1 from ETSI TS 186 011-2 [i.3] into the proposed textual syntax for the structured test objective specification with TDL, by mapping the concepts from the representation in the source document to the corresponding concepts for the structured test objective specification with TDL described in the present document. The example has been reformulated and interpolated where applicable to fit into the framework of the present document.
Package "IMS, clause 4.5.1" {
 //a possible specification of the test objectives from clause 4.5.1 in [i.3]
 //some interpolation has been applied to fit into the overall framework and concrete syntax
 //of the present document

 Domain{
 entities:
 - UE_A
 - UE_B
 - IMS_B
 ;
 events :
 - sends
 - receives
 ;
 }

 Test Purpose {
 TP Id TP_IMS_4002_1
 Test objective ""
 Reference "ETSI TS 124 229 [1], clause 4.2A, paragraph 1",
 "ts_18601102v030101p.pdf::4.5.1.1 (CC 1)"
 Expected behaviour
 ensure that {
 when {
 the UE_A entity sends a MESSAGE
 containing Message_Body_Size indicating value greater than 1 300 bytes;
 to the UE_B entity
 }
 then {
 the IMS_B entity receives the MESSAGE
 containing Message_Body_Size indicating value greater than 1 300 bytes;
 }
 }
 }
}

[bookmark: _Toc49263293]Annex B (informative):
Textual Syntax BNF Production Rules
[bookmark: _Toc49263294]B.0	Overview
This annex describes the grammar for the representation of structured test objectives in pure text. It covers the additional concepts and the minimal set of required TDL concepts to facilitate the specification and representation of 'StructuredTestObjective's.
[bookmark: _Toc49263295]B.1	Conventions
The notations is based on the Extended Backus-Naur Form (EBNF) notation. The EBNF representation may be used either as a concrete syntax reference for Structured Test Objective Specification with TDL for end users or as input to a parser generator tool. Table B.1 defines the syntactic conventions that are to be applied when reading the EBNF rules.
Table B.1: Syntax definition conventions used
	::=
	is defined to be

	abc
	the non-terminal symbol abc

	abc xyz
	abc followed by xyz

	abc | xyz
	alternative (abc or xyz)

	[abc]
	0 or 1 instance of abc

	{abc}+
	1 or more instances of abc

	{abc}
	0 or more instances of abc

	'a'-'z'
	all characters from a to z

	(...)
	denotes a textual grouping

	'abc'
	the terminal symbol abc

	;
	production terminator

	\
	the escape character

[bookmark: _Toc49263296]B.2	Production Rules
	Package
	::=
	'Package' Identifier '{'

	
	
	 { ElementImport }

	
	
	 ['Domain' '{'

	
	
	 ['pics' ':' { PICS }+ ';']

	
	
	 ['entity' 'types' ':' { EntityType }+ ';']

	
	
	 ['entities' ':' { Entity }+ ';']

	
	
	 ['event' 'types' ':' { EventType }+ ';']

	
	
	 ['events' ':' { Event }+ ';']

	
	
	 ['event' 'templates' ':'
 { EventOccurrenceTemplate }+ ';'] '}']

	
	
	 ['Data' '{'

	
	
	 { DataElement }

	
	
	 '}']

	
	
	 ['Configuration' '{'

	
	
	 { GateType }

	
	
	 { ComponentType }

	
	
	 { TestConfiguration } '}']

	
	
	 { StructuredTestObjective }

	
	
	 { Group } '}' ;

	DataElement
	::=
	DataType | DataInstance

	DataType
	::=
	SimpleDataType | StructuredDataType

	DataInstance
	::=
	SimpleDataInstance | StructuredDataInstance

	
	
	

	ElementImport
	::=
	'import'

	
	
	 ('all' | (Identifier | { ',' Identifier }))

	
	
	 'from' Identifier ';' ;

	Group
	::=
	'Group' Identifier '{'

	
	
	 { ElementImport }
 { StructuredTestObjective }

	
	
	 { Group } '}' ;

	PICS
	::=
	'-' Identifier ['(' Qualifier ')'] ;

	FirstPICSReference
	::=
	[NotQualifier] Identifier ;

	PICSReference
	::=
	[AndOrQualifier] [NotQualifier] Identifier ;

	EntityType
	::=
	'-' Identifier ;

	Entity
	::=
	'-' Identifier

	
	
	 ['(' Annotation { ',' Annotation } ')'] ;

	EventType
	::=
	'-' Identifier ;

	Annotation
	::=
	Identifier ;

	Event
	::=
	'-' Identifier

	
	
	 ['(' Annotation { ',' Annotation } ')'] ;

	EventOccurrenceTemplate
	::=
	'-' Identifier '{' EventSpecification '}' ;

	EventSpecification
	::=
	EntityReference
 EventReference
 Argument
 [OppositeEntityReference
 { ',' OppositeEntityReference }] ;

	StructuredTestObjective
	::=
	'Test Purpose' '{'

	
	
	 'TP Id' Identifier

	
	
	 ['Test objective' Identifier]

	
	
	 ['Reference' Identifier { ',' Identifier }]

	
	
	 ['Config Id' Identifier]

	
	
	 ['PICS Selection' FirstPICSReference { PICSReference }]

	
	
	 [InitialConditions]

	
	
	 [ExpectedBehaviour]

	
	
	 [FinalConditions] '}' ;

	InitialConditions
	::=
	'Initial conditions'

	
	
	 'with' '{' EventSequence '}' ;

	ExpectedBehaviour
	::=
	FullExpectedBehaviour | PartialExpectedBehaviour ;

	FullExpectedBehaviour
	::=
	'Expected behaviour'

	
	
	 'ensure that' '{'

	
	
	 'when' '{' EventSequence '}'

	
	
	 'then' '{' EventSequence '}'

	
	
	 '}' ;

	PartialExpectedBehaviour
	::=
	'Expected behaviour'

	
	
	 'ensure that' '{' EventSequence '}' ;

	FinalConditions
	::=
	'Final conditions'

	
	
	 'with' '{' EventSequence '}' ;

	EventSequence
	::=
	RepeatedEventSequence | SimpleEventSequence ;

	SimpleEventSequence
	::=
	FirstEventOccurrence { EventOccurrence } ;

	RepeatedEventSequence
	::=
	'repeat'

	
	
	 [('every' | IterationValue) | (IterationValue | 'times')]

	
	
	 '{' FirstEventOccurrence { EventOccurrence } '}' ;

	FirstEventOccurrence
	::=
	FirstEventOccurrenceSpecification | FirstEventTemplateOccurrence ;

	EventOccurrence
	::=
	EventOccurrenceSpecification | EventTemplateOccurrence ;

	FirstEventOccurrenceSpecification
	::=
	[(TimeLabel

	
	
	 | ((',' | TimeConstraint) | ':'))

	
	
	 | TimeConstraint]

	
	
	 EntityReference

	
	
	 EventReference

	
	
	 Argument

	
	
	 [OppositeEntityReference
 { ',' OppositeEntityReference }]

	
	
	 { Note } ;

	FirstEventTemplateOccurrence
	::=
	[(TimeLabel

	
	
	 | ((',' | TimeConstraint) | ':'))

	
	
	 | TimeConstraint]

	
	
	 'event' Identifier 'occurs'

	
	
	 ['with' '{'

	
	
	 [EntityBinding { ',' EntityBinding }]

	
	
	 ['argument' 'replaced' 'by' Argument] '}']

	
	
	 { Note } ;

	EntityBinding
	::=
	EntityReference 'replaced' 'by' EntityReference ;

	Note
	::=
	(' 'Note' NumberAsIdentifier ':' Identifier ')' ;

	EventOccurrenceSpecification
	::=
	AndOrQualifier [(TimeLabel

	
	
	 | ((',' | TimeConstraint) | ':'))

	
	
	 | TimeConstraint]

	
	
	 EntityReference

	
	
	 EventReference

	
	
	 Argument

	
	
	 [OppositeEntityReference
 { ',' OppositeEntityReference }]

	
	
	 { Note } ;

	EventTemplateOccurrence
	::=
	AndOrQualifier [(TimeLabel

	
	
	 | ((',' | TimeConstraint) | ':'))

	
	
	 | TimeConstraint]

	
	
	 'event' Identifier 'occurs'

	
	
	 ['with' '{'

	
	
	 [EntityBinding { ',' EntityBinding }]

	
	
	 ['argument' 'replaced' 'by' Argument] '}']

	
	
	 { Note } ;

	TimeLabel
	::=
	'(.)' 'at' 'time' 'point' Identifier ;

	TimeConstraint
	::=
	'(!)' { Qualifier }

	
	
	 TimeConstraintQualifier

	
	
	 { Qualifier | CommonWordQualifier | ArticleQualifier }

	
	
	 TimeConstraintExpression ':' ;

	TimeConstraintExpression
	::=
	ConstraintTimeLabelUse | ConstraintDataInstanceUse ;

	ConstraintDataInstanceUse
	::=
	Identifier | NumberAsIdentifier ;

	ConstraintTimeLabelUse
	::=
	Identifier ;

	TimeConstraintQualifier
	::=
	('before' | 'after' | 'during' | 'within') ;

	EntityReference
	::=
	ArticleQualifier

	
	
	 { Qualifier }

	
	
	 ((Identifier 'entity')

	
	
	 | (Identifier 'component')) ;

	OppositeEntityReference
	::=
	DirectionQualifier

	
	
	 ArticleQualifier

	
	
	 { Qualifier }

	
	
	 ((Identifier 'entity')

	
	
	 | (Identifier 'component')) ;

	EventReference
	::=
	{ Qualifier | CommonWordQualifier | NotQualifier }
 Identifier ;

	Argument
	::=
	LiteralValueAsArgument

	
	
	 | TypedLiteralValueAsArgument

	
	
	 | DataReferenceAsArgument

	
	
	 | ContentReferenceAsArgument

	
	
	 | LiteralValueReferenceArgument ;

	Value
	::=
	LiteralValue

	
	
	 | DataReference

	
	
	 | ContentReference

	
	
	 | LiteralValueReference ;

	TypedValue
	::=
	TypedLiteralValue

	
	
	 | DataReference

	
	
	 | ContentReference

	
	
	 | LiteralValueReference ;

	IterationValue
	::=
	IterationLiteralValue | IterationDataReference ;

	TypedLiteralValueAsArgument
	::=
	(ArticleQualifier | QuantifiedQualifier)
 '(typed)'
 { Qualifier }
 (Identifier | NumberAsIdentifier)
 Identifier
 ['containing'
 TypedDataContent { ',' TypedDataContent } ';'] ;

	TypedLiteralValue
	::=
	[NotQualifier]
AssignmentQualifier

	
	
	 { Qualifier }

	
	
	 (Identifier | NumberAsIdentifier)

	
	
	 ['containing'
 TypedDataContent { ',' TypedDataContent } ';'] ;

	TypedDataContent
	::=
	[NotQualifier]
{ Qualifier }

	
	
	 Identifier

	
	
	 [('containing'
 TypedDataContent { ',' TypedDataContent } ';')

	
	
	 | TypedValue] ;

	LiteralValueAsArgument
	::=
	(ArticleQualifier | QuantifiedQualifier)

	
	
	 { Qualifier }

	
	
	 (Identifier | NumberAsIdentifier)

	
	
	 ['containing' DataContent { ',' DataContent } ';'] ;

	LiteralValue
	::=
	[NotQualifier]
AssignmentQualifier

	
	
	 { Qualifier }

	
	
	 (Identifier | NumberAsIdentifier)

	
	
	 ['containing' DataContent { ',' DataContent } ';'] ;

	IterationLiteralValue
	::=
	(Identifier | NumberAsIdentifier) ;

	IterationDataReference
	::=
	RepetitionDataInstanceUse ;

	DataContent
	::=
	[NotQualifier]
{ Qualifier }

	
	
	 (Identifier | NumberAsIdentifier)

	
	
	 [('containing'
 DataContent { ',' DataContent } ';')

	
	
	 | Value] ;

	Identifier
	::=
	STRING | ID ;

	Qualifier
	::=
	Identifier | NumberAsIdentifier ;

	CommonWordQualifier
	::=
	'before'

	
	
	 | 'after'

	
	
	 | 'from'

	
	
	 | 'to'

	
	
	 | 'of' ;

	ArticleQualifier
	::=
	'a'

	
	
	 | 'an'

	
	
	 | 'the' ;

	QuantifiedQualifier
	::=
	'all'

	
	
	 | 'any'

	
	
	 | 'few'

	
	
	 | 'multiple'

	
	
	 | 'no'

	
	
	 | 'only'

	
	
	 | 'several'

	
	
	 | 'some' ;

	AssignmentQualifier
	::=
	'indicating value' | 'set to' ;

	NotQualifier
	::=
	'not'

	AndOrQualifier
	::=
	'and' | 'or' ;

	DirectionQualifier
	::=
	'by'

	
	
	 | 'in'

	
	
	 | 'into'

	
	
	 | 'for'

	
	
	 | 'from'

	
	
	 | 'to' ;

	ReferenceQualifier
	::=
	'corresponding to'

	
	
	 | 'derived from'

	
	
	 | 'carrying'

	
	
	 | 'contained in'

	
	
	 | 'associated with' ;

	DataInstanceUse
	::=
	(Identifier | NumberAsIdentifier)

	
	
	 ['containing'
 ParameterBinding { ',' ParameterBinding } ';'] ;

	RepetitionDataInstanceUse
	::=
	Identifier | NumberAsIdentifier ;

	StaticDataUse
	::=
	DataInstanceUse

	
	
	 | AnyValue

	
	
	 | AnyValueOrOmit

	
	
	 | OmitValue ;

	AnyValue
	::=
	'any' Identifier ;

	AnyValueOrOmit
	::=
	'any' 'or' 'omitted' ;

	OmitValue
	::=
	'omitted' ;

	ParameterBinding
	::=
	Identifier

	
	
	 [NotQualifier]
 AssignmentQualifier

	
	
	 { Qualifier }

	
	
	 StaticDataUse ;

	ContentReference
	::=
	[NotQualifier]
ReferenceQualifier

	
	
	 'the' 'value' 'contained in'

	
	
	 { Qualifier }

	
	
	 Identifier ;

	LiteralValueReference
	::=
	[NotQualifier]
ReferenceQualifier

	
	
	 'the' 'value' 'of'

	
	
	 { Qualifier }

	
	
	 Identifier ;

	ContentReferenceAsArgument
	::=
	'the' 'value' 'contained in'

	
	
	 { Qualifier }

	
	
	 Identifier ;

	LiteralValueReferenceArgument
	::=
	'the' 'value' 'of'

	
	
	 { Qualifier }

	
	
	 Identifier ;

	DataReference
	::=
	Identifier

	
	
	 [NotQualifier]
 ReferenceQualifier

	
	
	 { Qualifier }

	
	
	 StaticDataUse ;

	DataReferenceAsArgument
	::=
	(ArticleQualifier | QuantifiedQualifier)

	
	
	 '(predefined)'

	
	
	 { Qualifier }

	
	
	 StaticDataUse ;

	NumberAsIdentifier
	::=
	['-'] INT ['.' INT] ;

	SimpleDataType
	::=
	'type' Identifier ';' ;

	StructuredDataType
	::=
	'type' Identifier

	
	
	 'with' Member { ',' Member } ';' ;

	Member
	::=
	[Optional] Identifier 'of' 'type' Identifier ;

	Optional
	::=
	'optional' ;

	SimpleDataInstance
	::=
	Identifier
 (Identifier | NumberAsIdentifier) ';' ;

	StructuredDataInstance
	::=
	Identifier

	
	
	 (Identifier | NumberAsIdentifier)

	
	
	 'containing'
 MemberAssignment { ',' MemberAssignment } ';' ;

	MemberAssignment
	::=
	Identifier [NotQualifier]
AssignmentQualifier StaticDataUse ;

	TestConfiguration
	::=
	'Test Configuration'

	
	
	 Identifier

	
	
	 'containing'

	
	
	 ComponentInstance { ComponentInstance }

	
	
	 Connection { Connection } ';' ;

	ComponentInstance
	::=
	ComponentInstanceRole

	
	
	 'component' Identifier 'of' 'type' Identifier ;

	Connection
	::=
	'connection' 'between' G

	
	
	 ateReference 'and' GateReference ;

	GateReference
	::=
	'Identifier '.' Identifier ;

	GateType
	::=
	'Interface' 'Type' Identifier

	
	
	 'accepts' Identifier { ',' Identifier } ';' ;

	ComponentType
	::=
	'Component' 'Type' Identifier

	
	
	 'with' { Timer } { Variable } { GateInstance } ';' ;

	Timer
	::=
	'timer' Identifier ;

	Variable
	::=
	'variable' Identifier 'of' 'type' Identifier ;

	GateInstance
	::=
	'gate' Identifier 'of' 'type' Identifier ;

	ComponentInstanceRole
	::=
	('SUT' | 'Tester') ;

	ID
	::=
	(['^']
 ('a'-'z' | 'A'-'Z' | '_')
 { 'a'-'z' | 'A'-'Z' | '_' | '0'-'9' | '/' }) ;

	INT
	::=
	{'0'-'9'}+ ;

	DQ
	::=
	'"' ;

	SQ
	::=
	"'" ;

	STRING
	::=
	((DQ
 | { ('\\'
 | ('b' | 't' | 'n' | 'f' | 'r' | 'u' | '"'
 | "'" | '\\'))
 | ('\\' | DQ) }
 | DQ)
| (SQ
 | { ('\\' | ('b' | 't' | 'n' | 'f' | 'r' | 'u'
 | '"' | "'" | '\\'))
 | ('\\' | SQ) }
 | SQ)) ;

	ML_COMMENT
	::=
	('/*' '*/') ;

	SL_COMMENT
	::=
	('//' ('\\n' | '\\r') [['\\r'] '\\n']) ;

	WS
	::=
	{ ' '

	
	
	 | '\\t'

	
	
	 | '\\r'

	
	
	 | '\\n' }+ ;

[bookmark: _Toc49263297]History
	Document history

	V1.1.1
	June 2015
	Publication

	V1.2.1
	September 2016
	Publication

	V1.3.1
	May 2018
	Publication

	V1.4.1
	June 2020
	Membership Approval Procedure	MV 20200823:	2020-06-24 to 2020-08-24

	V1.4.1
	August 2020
	Publication

ETSI
image2.png
Elrics

= entity

(Foundation)
PackageableElement

= event

(Foundation)
TestObjective

objectiveURI

String [']

description: String [0..1]

[structuredTestobjective

image3.PNG
s
% sl

£ nsteteence

etaclarer
TestConfiguration)
TestConfiguratior

Metmclarer
Foundation)
TestObjectve

StructuredTestObjective

TcTveRE String [T
descripton: Suing 0.1

confguration 0.1

initialConditons (0.1 expectediehayi

jour (0.1]

finalConditons (0.1

] misaConiton

[—

] imaiCanditon:

whenClause 0.1] thenClause (1]

condiions [1

condiions [1

D repeadtvensequence

T repetiions Valus [0.1
& imtrval: Value [0.1

image4.PNG
-
EuentSequence Time)
TimeConstraint

imeConstaint0..1]

events [1.7]fordered, unique

etaclaser le—1 -
(TestConfiguration)] eventoccurrence Time)
Componeninsnce TimeLabel

imetabel (0.1]
component [0.1] ‘

£ Bventoccunencespeifcaion

oppositeEntiyReference [

CryReteence 03] evenRefrence] eventirgument [0.1]
G eniymeterence 5 evenrefrence 5 vane
enty (0,31 even]

entty Event

image5.PNG
] contentterence

] osukeerence

content1] content1]
member 0.1] e 0,11
Metmclrer value
P
s Duaton B content value ata-Datalse)
ember StaticDatatse
content 1]
content |
e dataType 0.1] content1]
Oata:Databeniion) D ieratvatue B titeaivalueneerence
aatype

image6.PNG
pree— EventOccurrence
(Foundation)
Packageabletlement

+ eventTemplate (1] + occurrenceArgument (0.1

5 evenspeciicatonTemlate 5 eventrempiateoccurrence

+ eventspeciicaton [1] + entiyinding (]

SvemOccurrenceSpecicaton £ emininding

+ templatsEniy [1] + accurrencentiy (1]

EnityReference

image7.png
«Metaclass»

Element

«Metaclass»
TestObjective

«Metaclass»
StructuredTestObjective

variants [0..1]

«Metaclass»
Variants

variants [1..*]

«Metaclass»
StructuredTestObjectiveVariant

bindings [*]

picsReference [*]

value [1]

«Metaclass»
VariantBinding

boundTo [1]

«Metaclass»
PICSReference

«Metaclass»
Value

image8.png
Entity Entity Entity Entity
ENTITYLABEL IUT Tester buffer

Event Event Event Event
EVENTLABEL sends receives is

PICS PICS PICS PICS
PICSLABEL PICS_F1 PICS_F2 PICS_F3

image9.emf

TP Id TESTOBJECTIVENAMELABEL
Test Objective DESCRIPTIONLABEL
Reference URIOFOBJECTIVELABEL
Config Id <CONFIGLABEL>
PICS Selection <PICSSELECTIONLABEL>

Initial Conditions
INITIALCONDITIONSLABEL

Expected Behaviour
EXPECTEDBEHAVIOURLABEL

Final Conditions
FINALCONDITIONSLABEL

Test Purpose
TESTOBJECTIVENAMELABEL

Test Objective
DESCRIPTIONLABEL
Reference
URIOFOBJECTIVELABEL
Configuration
<CONFIGLABEL>
PICS Selection
<PICSSELECTIONLABEL>
Initial Conditions
INITIALCONDITIONSLABEL
Expected Behaviour
EXPECTEDBEHAVIOURLABEL
Final Conditions
FINALCONDITIONSLABEL

image10.emf

TP Id TP/GEONW/FDV/BAH/BV/01
Test Objective Check defined values of default Gn parameters in the basic header
Reference
Config Id
PICS Selection

Initial Conditions
with {
 the IUT entity being "in" the initial state
}

Expected Behaviour
ensure that {
 when {
 the IUT entity is requested to send a "GUC packet"
 }
 then {
 the IUT entity sends a "GUC packet" containing
 BasicHeader containing
 "version field" indicating value "itsGnProtocolVersion MIB parameter" ,
 "RHL field" indicating value "itsGnDefaultHopLimit MIB parameter"
 ;
 ;
 }
}

image11.png
Event Occurrence Template
EVENTOCCURRENCETEMPLATELABEL

Event
EVENTOCCURRENCETEMPLATESPECIFICATIONLABEL

image12.png
Event Occurrence Template
ReceiveBeacon

Event
the IUT entity having received a "Beacon information" from the ItsNodeB entity

image1.jpeg

