Draft ETSI ES 203 119-2 V1.45.1 (20210-058)
22

Draft ETSI ES 203 119-2 V1.45.1 (20210-058)
Methods for Testing and Specification (MTS);
The Test Description Language (TDL);
Part 2: Graphical Syntax

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
RES/MTS-TDL1192v1541
Keywords
graphical notation, language, MBT, methodology, testing

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 20210.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	5
Foreword	5
Modal verbs terminology	5
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definition of terms, symbols and abbreviations	6
3.1	Terms	6
3.2	Symbols	7
3.3	Abbreviations	7
4	Basic principles	7
4.1	Introduction	7
4.2	Document Structure	7
4.3	Notational Conventions	8
4.3.0	General	8
4.3.1	Symbols and meanings for shapes	8
4.3.2	Symbols for non-terminal textual labels	8
4.3.3	Examples	9
4.4	Conformance	10
5	Diagram	11
6	Shapes	11
6.1	Foundation	11
6.1.1	Element	11
6.1.2	NamedElement	11
6.1.3	ElementImport	12
6.1.4	Package	12
6.1.5	Comment	13
6.1.6	AnnotationType	13
6.1.7	Annotation	14
6.1.8	TestObjective	14
6.1.9	Extension	15
6.2	Data	15
6.2.1	SimpleDataType	15
6.2.2	StructuredDataType	15
6.2.3	CollectionDataType	16
6.2.4	ProcedureSignature	16
6.2.5	Time	17
6.2.6	DataInstance	17
6.2.7	SimpleDataInstance	17
6.2.8	StructuredDataInstance	18
6.2.9	CollectionDataInstance	19
6.2.10	Parameter	19
6.2.11	Action	20
6.2.12	Function	20
6.2.13	DataResourceMapping	21
6.2.14	ParameterMapping	21
6.2.15	DataElementMapping	21
6.2.16	DataUse	22
6.2.17	StaticDataUse	23
6.2.18	DataInstanceUse	23
6.2.19	AnyValue	24
6.2.20	AnyValueOrOmit	24
6.2.21	OmitValue	24
6.2.22	DynamicDataUse	25
6.2.23	FunctionCall	25
6.2.24	FormalParameterUse	25
6.2.25	VariableUse	26
6.2.26	PredefinedFunctionCall	26
6.2.27	LiteralValueUse	27
6.3	Time	27
6.3.1	TimeLabel	27
6.3.2	TimeLabelUse	27
6.3.3	Wait	28
6.3.4	Quiescence	28
6.3.5	TimeConstraint	29
6.3.6	TimerStart	29
6.3.7	TimeOut	29
6.3.8	TimerStop	30
6.4	Test Configuration	30
6.4.1	TestConfiguration	30
6.4.2	GateType	30
6.4.3	GateInstance	31
6.4.4	ComponentType	31
6.4.5	ComponentInstance	32
6.4.6	Connection	32
6.5	Test Behaviour	33
6.5.1	TestDescription	33
6.5.2	Behaviour	34
6.5.3	CombinedBehaviour	35
6.5.4	Block	37
6.5.5	CompoundBehaviour	37
6.5.6	BoundedLoopBehaviour	38
6.5.7	UnboundedLoopBehaviour	38
6.5.8	OptionalBehaviour	39
6.5.9	AlternativeBehaviour	39
6.5.10	ConditionalBehaviour	40
6.5.11	ParallelBehaviour	40
6.5.12	DefaultBehaviour	41
6.5.13	InterruptBehaviour	41
6.5.14	PeriodicBehaviour	42
6.5.15	Break	42
6.5.16	Stop	42
6.5.17	VerdictAssignment	43
6.5.18	Assertion	43
6.5.19	Message	44
6.5.20	ProcedureCall	45
6.5.21	ActionReference	46
6.5.22	InlineAction	47
6.5.23	Assignment	47
6.5.24	TestDescriptionReference	47
Annex A (informative):	Examples	49
A.0	Overview	49
A.1	Illustration of Data use in TDL Graphical Syntax	50
A.2	Interface Testing	52
A.3	Interoperability Testing	54
History	57

[bookmark: _Toc49244477]Intellectual Property Rights
Essential patents
[bookmark: IPR_3GPP]IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc49244478]Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
The present document is part 2 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].
[bookmark: _Toc49244479]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

[bookmark: _Toc49244480]1	Scope
The present document specifies the concrete graphical syntax of the Test Description Language (TDL). The intended use of the present document is to serve as the basis for the development of graphical TDL tools and TDL specifications. The meta-model of TDL and the meanings of the meta-classes are described in ETSI ES 203 119-1 [1].
NOTE:	OMG®, UML®, OCL™ and UTP™ are the trademarks of OMG (Object Management Group). This information is given for the convenience of users of the present document and does not constitute an endorsement by ETSI of the products named.
[bookmark: _Toc49244481]2	References
[bookmark: _Toc49244482]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ES203119_1][1]	ETSI ES 203 119-1 (V1.65.1): "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Part 1: Abstract Syntax and Associated Semantics".
[bookmark: _Toc49244483]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_TS136523_1][i.1]	ETSI TS 136 523-1 (V10.2.0) (10-2012): "LTE; Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification (3GPP TS 36.523-1 version 10.2.0 Release 10)".
[bookmark: REF_TS186011_2][i.2]	ETSI TS 186 011-2 (V3.1.1) (06-2011): "IMS Network Testing (INT); IMS NNI Interoperability Test Specifications; Part 2: Test Description for IMS NNI Interoperability".
[bookmark: _Toc49244484]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc49244485]3.1	Terms
For the purposes of the present document, the following terms apply:
diagram: placeholder of TDL shapes
lifeline: vertical line originates from a gate instance or a component instance, to which behavioural elements may be attached
NOTE:	A lifeline from top to down represents how time passes.
shape: layout of the graphical representation of a TDL meta-class
[bookmark: _Toc49244486]3.2	Symbols
Void.
[bookmark: _Toc49244487]3.3	Abbreviations
For the purposes of the present document, the following abbreviations apply:
EBNF	Extended Backus-Naur Form
IMS	IP Multimedia Subsystem
OCL	Object Constraint LanguageTM
TDL	Test Description Language
URI	Unified Resource Identifier
[bookmark: _Toc49244488]4	Basic principles
[bookmark: _Toc49244489]4.1	Introduction
The meta-model of the Test Description Language is specified in ETSI ES 203 119-1 [1]. The presentation format of the meta-model can be different according to the needs of the users or the requests of the domain, where the TDL is applied. These presentation formats can either be text-oriented or graphic-oriented and may cover all the functionalities of the TDL meta-model or just a part of it, which is relevant to satisfy the needs of a specific application domain.
The present document specifies a concrete graphical syntax that provides a graphical representation for the whole functionality of the TDL meta-model.
The document specifies the TDL diagram, where the graphical representations of the instances of the TDL meta-classes may be placed. A graphical representation may contain a shape with textual labels placed into it. The rules, how these labels shall be interpreted are described in OCL-like expressions.
[bookmark: _Toc49244490]4.2	Document Structure
The present document specifies the concrete graphical syntax of the Test Description Language (TDL).
Clause 5 specifies the TDL Diagram.
Clause 6 specifies the concrete shapes defined for the TDL meta-classes. (The meta-model of TDL and the meanings of the meta-classes are described in ETSI ES 203 119-1 [1].)
Foundation (clause 6.1)
Data (clause 6.2)
Time (clause 6.3)
Test Configuration (clause 6.4)
Test Behaviour (clause 6.5)
At the end of the document several examples illustrating the features of the TDL Graphical Syntax can be found.
[bookmark: _Toc49244491]4.3	Notational Conventions
[bookmark: _Toc49244492]4.3.0	General
Elements from the TDL meta-model [1] are typed in italic, e.g. StructuredDataType.
The definition of the TDL concrete graphical syntax consists of both shapes and textual labels placed into these shapes. Textual labels are differentiated into non-terminal textual labels and terminal textual labels. The production rule of a non-terminal textual label is specified by a combination of EBNF symbols and OCL-like expressions to navigate over the abstract syntax meta-model of TDL.
[bookmark: _Toc49244493]4.3.1	Symbols and meanings for shapes
Shapes consist of outermost borders, compartments, and textual labels (i.e. non-terminal textual labels and terminaltextual labels). The following conventions apply:
Non-terminal textual labels are typed in small capitals (e.g. PRODUCTIONRULELABEL). The name of the label refers to a production rule with the same name that specifies how the result of the production rule is determined.
If a non-terminal symbol name is typed in special, e.g. UNDERLINED or BOLD small capitals, underlined or bold font shall be used in the shape for the result of the production rule of that non-terminal symbol, e.g. SIMPLEDATAINSTANCENAMELABEL (non-terminal) and MyValue:MyType (a result of the production rule of that non-terminal) or COMPONENTROLELABEL (non-terminal) and TESTER (a result of the production rule of that non-terminal), etc.
Terminal textual labels are typed in non-small-capital characters. They shall be typeset in the same font, as they appear on the figure, e.g. if a terminal textual label is typed in bold, bold font shall be used in the shape for that terminal textual symbol, e.g. timer, etc.
The outermost border of a shape shall not be hidden, unless it is stated explicitly.
Compartments and non-terminal textual labels may be hidden to simplify the internal structure of the shape.
In the figures, optional compartments are shaded in a light grey colour, while optional non-terminal textual labels are typed in grey colour. However, the colour and the shading indicate only the optionality of a compartment or a non-terminal label. That is, if they are actually present in a test description, they shall not be shaded and shall be typed in black.
If a non-terminal textual label is defined to be optional, that non-terminal textual label shall only be shown if the surrounding compartment is shown and the corresponding non-terminal textual production rule results in a non-empty string or a non-empty collection of strings.
If an optional compartment contains a mandatory terminal or non-terminal textual label, the text shall only be shown if the surrounding compartment is shown.
References to non-terminal textual production rules external to the given shape are represented by the name of the referenced production rule enclosed in angle brackets (e.g. <REFERENCEDPRODUCTIONRULE>).
A non-terminal textual label in between hashmarks (e.g. #ELEMENT#) denotes a placeholder for a shape identified by that non-terminal textual label.
[bookmark: _Toc49244494]4.3.2	Symbols for non-terminal textual labels
Non-terminal textual labels are specified by production rules (so called non-terminal textual label production rule). The formal specification of a non-terminal textual label production rule is expressed by OCL. The context meta-model element for the OCL expression is specified prior to the non-terminal textual label specification. In some cases, the definition of OCL expression would be too complex for understanding. In that case, pseudo-code like helper notations are used.
The OCL expressions are combined with a variant of the Backus-Naur Form (Extended Backus-Naur Form - EBNF). The conventions within the present document for the production rules are:
OCL keywords and helper functions are typed in bold.
The keyword context followed by the name of TDL metaclass determines the context element for the following production rule (e.g. context Package).
Non-terminal textual labels production rule identifiers are always represented in small capitals
(e.g. LABELPRODUCTIONRULE).
Non-terminal textual label production rule definitions are signified with the '::= ' operator.
OCL expressions are written in lower case characters (e.g. self.name).
Non-terminal textual labels may contain terminal symbols. A terminal symbol is enclosed in single quotes
(e.g. 'keyword' or '[').
Alternative choices between symbols in a production rule are separated by the '|' symbol (e.g. symbol1 | symbol2).
Symbols that are optional are enclosed in square brackets ' [] ' (e.g. [symbol]).
In case the context of an OCL expression needs to be changed for non-terminal textual label production rule, the predefined function variable as context in <LABELPRODUCTIONRULE> shall be used to invoke a production rule of a different metaclass, where variable refers to an instance of a metaclass that complies with the context of the invoked <LABELPRODUCTIONRULE>.
If the OCL expression of a production rule results in a collection of strings, a collection helper function separator(String) is used to specify the delimiter between any two strings in the collection, e.g. self.collectionProperty->separator(','). The collection helper function newline() inserts a line break between any two strings in the collection.
Iterations over collections of attributes of a metaclass use a verbatim (non-OCL) helper function foreach with the following syntax: foreach VariableName ':' VariableType [separator(String)|newline()] in OCLexpression end. VariableName is an alphanumeric word signifying the variable used for subsequent statement. VariableType is a string that shall be the same as a TDL metaclass name. OCLexpression is an OCL statement that resolves in a collection of metaclass elements compliant to the metaclass given in VariableType. For example, the statement LABEL ::= foreach e:Element in self.attribute end, iterates of the elements in the collection self.attribute and stores resulting element of each iteration in variable e. The variable e can be used in the body of the loop for further calculations. In every iteration, the non-terminal textual production rule LABEL is invoked, and the respective instance of metaclass Element that is stored in e will be used in the invoked production rule. The collection helper functions separator(String) and newline() may also be applied directly to the foreach construct.
For the PredefinedFunction instances whose name starts and ends by a character '_' (actually they are infix operators) the (non-OCL) helper function getOperatorSymbol() is used to retrieve the operator symbol from the name. getOperatorSymbol() returns by the name of the PredefinedFunction instance without the character '_' at the beginning and at the end.
[bookmark: _Toc49244495]4.3.3	Examples
[image:] [image:]
[bookmark: _Ref397529749]Figure 4.1: Notational convention example 1
In figure 4.1, the following notational concepts of the TDL Concrete Graphical Syntax are shown:
The uppermost compartment contains a terminal textual label (a keyword) 'Test Objective' typed in bold.
The context meta-model element of this shape is TestObjective.
The non-terminal textual label production rule TESTOBJECTIVENAMELABEL results in the name of the context element (i.e. self.name).
There are two optional compartments (i.e. shaded grey) shown ordered from top to down.
Both compartments contain a mandatory terminal textual label (i.e. the label shall be shown if the surrounding compartment is shown). The terminal textual labels shall be typed in bold (Description and Objective URI, respectively).
Both compartments contain an optional non-terminal textual label (i.e. the label shall be shown if the surrounding compartment is shown and the production rules results in a non-empty string or a non-empty collection of strings).
The separator between the elements of the self.objectiveURI in production rule URIOFOBJECTIVELABEL is a new line.
[image:]
[image:]
Figure 4.2: Notational convention example showing the foreach helper function
In figure 4.2, the use of a non-OCL foreach helper function is illustrated. The context element when entering the foreach loop is TestDescriptionReference. The first foreach loop assigns iteratively each element in the collection self.actualParameter to the variable d of type DataUse. The variable d then used as it is described in the referenced production rule DATAUSELABEL. The separator between the results of the iterations is ',' (a comma character). The second foreach loop assigns iteratively each element in the collection self.componentInstanceBinding to the variable c of type ComponentInstanceBinding. The variable c is then used in a subsequent non-terminal textual label production rule to build the label for the production rule. The separator between the results of the iterations is ',' (a comma character).
[bookmark: _Toc49244496]4.4	Conformance
For an implementation claiming to conform to this version of the TDL Concrete Graphical Syntax, all features specified in the present document and in ETSI ES 203 119-1 [1] shall be implemented consistently with the requirements given in the present document and ETSI ES 203 119-1 [1].
[bookmark: _Toc49244497]5	Diagram
There are two kinds of diagrams provided by the TDL Graphical Syntax. The first is a generic TDL diagram in which all diagram elements can be represented. The second is an optional TDL behaviour diagram where the behaviour of a single test description can be represented. There may be multiple instances of both kinds of TDL diagrams at the same time.
The shapes that may be placed onto a generic TDL diagram are specified in clause 6. A subset of the shapes related to the behaviour of a single test description may also be placed onto a TDL behaviour diagram.
[bookmark: _Toc49244498]6	Shapes
[bookmark: _Toc49244499]6.1	Foundation
[bookmark: _Toc49244500]6.1.1	Element
Concrete Graphical Notation
This is an abstract metaclass, therefore no graphical representation is defined.
Formal Description
context Element
ELEMENTNAMELABEL ::= self.name
Comments
To a shape of any subclass of Element, the name of that Element may be attached by a thin dashed line unless it is stated otherwise in the shape definition of a given subclass of Element.
[image:]
[bookmark: _Toc49244501]6.1.2	NamedElement
Concrete Graphical Notation
This is an abstract metaclass, therefore no graphical representation is defined.
Formal Description
context NamedElement
QUALIFIEDELEMENTLABEL ::= self.qualifiedName
Comments
To a shape of any subclass of NamedElement, the qualified name of that NamedElement may be attached by a thin dashed line, except for those subclasses where it is specified otherwise.
[image:]
[bookmark: _Toc49244502]6.1.3	ElementImport
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context ElementImport
IMPORTLABEL ::= 'from' self.importedPackage.qualifiedName
	 if self.importedElement->isEmpty() then
	 	 'all'
	 else
	 	 self.importedElement.name->separator(',')
	 endif
Comments
No comments.
[bookmark: _Toc49244503]6.1.4	Package
Concrete Graphical Notation
[image:]
Formal Description
context Package
PNLABEL ::= self.name
IMPORTEDELEMENTSLABEL ::= foreach i:ElementImport in self.import
i as context in <IMPORTLABEL> separator(',')
end
Comments
The figures above indicate the two possible representations of the Package shape: the PNLABEL may be written either in the top, small compartment or in the middle one.
The elements the package contains (packagedElements) may be shown within the large rectangle in the middle. In this case the PNLABEL shall be in the upper small compartment.
The lower import compartment is optional, it shall only be represented if the package imports other package(s) or elements from other package(s). If this compartment is present, its content shall also be present.
[bookmark: _Toc49244504]6.1.5	Comment
Concrete Graphical Notation
[image:]
Formal Description
context Comment
COMMENTLABEL ::= self.body
Comments
A Comment shape shall be attached to the commented element by a thin dashed line.
[bookmark: _Toc49244505]6.1.6	AnnotationType
Concrete Graphical Notation
[image:]
Formal Description
 context AnnotationType
ANNOTATIONTYPENAMELABEL ::= self.name
Comments
No comments.
[bookmark: _Toc49244506]6.1.7	Annotation
Concrete Graphical Notation
[image:]
Formal Description
context Annotation
KEYLABEL ::= self.key.name
VALUELABEL ::= self.value
Comments
The lower compartment is optional, it shall be shown if the value of the Annotation is given.
An Annotation shape shall be attached to the annotated element by a thin dashed line.
[bookmark: _Toc49244507]6.1.8	TestObjective
Concrete Graphical Notation
[image:]
Formal Description
context TestObjective
TESTOBJECTIVENAMELABEL ::= self.name
DESCRIPTIONLABEL ::= self.description
URIOFOBJECTIVELABEL ::= self.objectiveURI->newline()
Comments
The compartments containing Description and ObjectiveURI are optional (that is any of them or both may be omitted). If an optional compartment is present, the contained terminal symbol (Description or ObjectiveURI, respectively) is mandatory, but the result of the production rule of the non-terminals (DESCRIPTIONLABEL or URIOFOBJECTIVELABEL), respectively) is optional.
[bookmark: _Toc49244508]6.1.9	Extension
Concrete Graphical Notation
#PACKAGEABLEELEMENT#
#ELEMENT#

Formal Description
This metaclass has only graphical representation.
Comments
No comments.
6.1.10	ConstraintType
Concrete Graphical Notation
[image: Text

Description automatically generated with medium confidence]
Formal Description
context ConstraintType
CONSTRAINTTYPENAMELABEL ::= self.name
Comments
No comments.
6.1.11	Constraint
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context Constraint
SINGLECONSTRAINTLABEL ::= '{' self.type.name self as context in <CONSTRAINTQUALIFIERLABEL> '}'
CONSTRAINTQUALIFIERLABEL ::= if not self.qualifier->isEmpty() then
':' foreach q: LiteralValueUse in self.qualifier separator(',')
										q as context in <LITERALVALUEUSELABEL>
									end
		 				 	else
		 	 ' '
						 	endif
Comments
No comments.

[bookmark: _Toc49244509]6.2	Data
[bookmark: _Toc49244510]6.2.1	SimpleDataType
Concrete Graphical Notation
[image:]
[image: Text

Description automatically generated]
Formal Description
context SimpleDataType
SIMPLEDATATYPENAMELABEL ::= self.name
Comments
No comments.The CONSTRAINTLABEL is optional.

[bookmark: _Toc49244511]6.2.2	StructuredDataType
Concrete Graphical Notation
 [image:]
[image: Text

Description automatically generated]
Formal Description
context StructuredDataType
STRUCTUREDDATATYPENAMELABEL ::= self.name
MEMBERLABEL ::=	foreach m: Member in self.member newline()
						if m.isOptional then '['m as context in <PARAMETERLABEL>']'
						else
							m as context in <PARAMETERLABEL>
						endif
if not m.constraint->isEmpty() then
	newline()
					 	m as context in <CONSTRAINTLABEL>
		 				else
						 ' '
					 endif
					end
Comments
The compartment containing MEMBERLABEL is optional, it shall be shown if the StructuredDataType has at least one member. If a Member has at least one Constraint, the SINGLECONSTRAINTLABEL for each individual Constraint shall be shown on a new line, under the Member.
The CONSTRAINTLABEL for the StructuredDataType is optional.
[bookmark: _Toc49244512]6.2.3	CollectionDataType
Concrete Graphical Notation
[image:]
[image: Text

Description automatically generated]
Formal Description
context CollectionDataType
COLLECTIONDATATYPENAMELABEL ::= self.name
ITEMTYPELABEL ::=	'of' self.itemType.name
Comments
The CONSTRAINTLABEL is optional.No comments.
[bookmark: _Toc49244513]6.2.4	ProcedureSignature
Concrete Graphical Notation
[image:]
[image: Text

Description automatically generated with medium confidence]
Formal Description
context ProcedureSignature
PROCEDURESIGNATURENAMELABEL ::= self.name
PROCEDUREPARAMETERLABEL ::=	foreach p: ProcedureParameter in self.parameter newline()
if self.kind = ParameterKind::IN then 'IN'
else if self.kind = ParameterKind::OUT then 'OUT '
else if self.kind = ParameterKind::EXCEPTION then 'EXCEPTION '
endif
self as context in <PARAMETERLABEL>
end
Comments
The CONSTRAINTLABEL is optional.No comments.
[bookmark: _Toc49244514]6.2.5	Time
Concrete Graphical Notation
[image:]
Formal Description
context Time
TIMELABEL ::= self.name
Comments
No comments.
[bookmark: _Toc49244515]6.2.6	DataInstance
Concrete Graphical Notation
This is an abstract metaclass, therefore no graphical representation is defined.
Formal Description
context DataInstance
DATAINSTANCELABEL ::= self.name ':' self.dataType.name
Comments
No comments.
[bookmark: _Toc49244516]6.2.7	SimpleDataInstance
Concrete Graphical Notation
[image:]
Formal Description
context SimpleDataInstance
SIMPLEDATAINSTANCENAMELABEL ::= self as context in <DATAINSTANCELABEL>
Comments
The result of the production rule of SIMPLEDATAINSTANCENAMELABEL shall be typed by underline font.
A SimpleDataInstance shape may optionally be connected to a SimpleDataType shape by a dashed arrow. If this connection is present, then the ':' and the self.dataType.name may be omitted in the SIMPLEDATAINSTANCENAMELABEL.
[bookmark: _Toc49244517]6.2.8	StructuredDataInstance
Concrete Graphical Notation
[image:]
Formal Description
context StructuredDataInstance
STRUCTUREDDATAINSTANCENAMELABEL ::= self as context in <DATAINSTANCELABEL>
UNASSIGNEDMEMBERLABEL ::= if self.unassignedMember = UnassignedMemberTreatment::AnyValue then 'UnassignedMembers as ?'
		 					else if self.unassignedMember = UnassignedMemberTreatment::AnyValueOrOmit then 'UnassignedMembers as *'
		 					endif	
MEMBERASSIGNMENTLABEL ::= 	foreach m : MemberAssignment in self.memberAssignment newline()
if not self.member.name.oclIsUndefined() then
[self.member.name ':=']
else
' '
endif
self.memberSpec as context in <STATICDATAUSELABEL>
end
Comments
The result of the production rule of STRUCTUREDDATAINSTANCENAMELABEL shall be typed by underline font.
The UNASSIGNEDMEMBERLABEL is optional.
The lower compartment containing MEMBERASSIGNMENTLABEL is optional.
The StructuredDataInstance shape may optionally be connected to a StructuredType shape by a dashed arrow. If this connection is present, then the ':' and the self.dataType.name may be omitted in the STRUCTUREDDATAINSTANCENAMELABEL.
[bookmark: _Toc49244518]6.2.9	CollectionDataInstance
Concrete Graphical Notation
 [image:]
Formal Description
context CollectionDataInstance
COLLECTIONDATAINSTANCENAMELABEL ::= self as context in <DATAINSTANCELABEL>
ITEMLABEL ::=	foreach i : StaticDataUse in self.item newline()
					i as context in <STATICDATAUSELABEL>
Comments
The result of the production rule of COLLECTIONDATAINSTANCENAMELABEL shall be typed by underline font.
The lower compartment containing ITEMLABEL is optional.
The CollectionDataInstance shape may optionally be connected to a CollectionDataType shape by a dashed arrow. If this connection is present, then the ':' and the self.dataType.name may be omitted in the COLLECTIONDATAINSTANCENAMELABEL.
[bookmark: _Toc49244519]6.2.10	Parameter
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context Parameter
PARAMETERLABEL ::=	self.name ':' self.dataType.name
Comments
No comments.
[bookmark: _Toc49244520]6.2.11	Action
Concrete Graphical Notation
[image:]
Formal Description
context Action
ACTIONNAMELABEL ::= self.name
ACTIONPARAMETERLABEL ::= foreach p:Parameter in self.formalParameter separator(',')
	 				p as context in <PARAMETERLABEL>
		 				 end			
ACTIONBODYLABEL ::= self.body
Comments
The compartments containing Parameter and Body are optional (that is any of them or both may be omitted). If an optional compartment is present, its content shall also be present.
[bookmark: _Toc49244521]6.2.12	Function
Concrete Graphical Notation
[image:]
Formal Description
context Function
FUNCTIONNAMELABEL ::= self.name
DATATYPELABEL ::= self.returnType.name
FUNCTIONPARAMETERLABEL ::= foreach p:Parameter in self.formalParameter separator(',')
p as context in <PARAMETERLABEL>
end
FUNCTIONBODYLABEL ::= self.body
Comments
The compartments containing Parameter and Body are optional (that is any of them or both may be omitted). If an optional compartment is present, its content shall also be present.
[bookmark: _Toc49244522]6.2.13	DataResourceMapping
Concrete Graphical Notation
[image:]
Formal Description
context DataResourceMapping
DATARESOURCEMAPPINGLABEL ::= self.name
RESOURCEURILABEL ::= self.resourceURI
Comments
The DATARESOURCEMAPPINGLABEL is optional.
The compartment containing the Resource URI is optional. When the optional RESOURCEURILABEL is present, this compartment shall be shown.
[bookmark: _Toc49244523]6.2.14	ParameterMapping
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the DataElementMapping shape.
Formal Description
context ParameterMapping
PARAMETERURILABEL ::= self.parameter.name [':=' self.memberURI]
Comments
No comments.
[bookmark: _Toc49244524]6.2.15	DataElementMapping
Concrete Graphical Notation
[image:]
Formal Description
context DataElementMapping
DATAELEMENTMAPPINGLABEL ::= self.name [':=' self.elementURI]
PARAMETERMAPPINGLABEL ::= foreach p:ParameterMapping in self.parameterMapping newline()
p as context in <PATAMETERURILABEL>
end
Comments
In the DATAELEMENTMAPPINGLABEL the elementURI is optional.
The lower compartment containing Parameter Mapping is optional.
[bookmark: _Toc49244525]6.2.16	DataUse
Concrete Graphical Notation
This is an abstract metaclass, therefore no graphical representation is defined.
Formal Description
context DataUse
DATAUSELABEL ::= if self.oclIsKindOf(StaticDataUse) then
		self as context in <STATICDATAUSELABEL>
	 else if self.oclIsKindOf(DynamicDataUse) then
		 self as context in <DYNAMICDATAUSELABEL>
 endif
DATAUSEARGUMENTLABEL ::= if not self.argument->isEmpty() then
			self as context in <ARGUMENTLABEL>
		 else
			' '	
		 endif
ARGUMENTLABEL ::= '('foreach p:ParameterBinding in self.argument separator(',')
		 p.parameter.name' := ' p.dataUse as context in <DATAUSELABEL>
	 end')'
REDUCTIONLABEL ::= foreach mRef : MemberReference in self.reduction
		if not mRef.member.oclIsUndefined() then
			'.' mRef.member.name
		else
			' '
		endif
		if not mRef.collectionIndex.oclIsUndefined() then
			'[' mRef.collectionIndex as context in <DATAUSELABEL> ']'
		else
			' '
		endif
Comments
In ARGUMENTLABEL p.parameter.name' := ' is optional.
[bookmark: _Toc49244526]6.2.17	StaticDataUse
Concrete Graphical Notation
This is an abstract metaclass, therefore no graphical representation is defined.
Formal Description
context StaticDataUse
STATICDATAUSELABEL ::= if self.oclIsKindOf(DataInstanceUse) then
		 self as context in <DATAINSTANCEUSELABEL>
		 else if self.oclIsKindOf(AnyValue) then
		 self as context in <ANYVALUELABEL>
		 else if self.oclIsKindOf(AnyValueOrOmit) then
		 self as context in <ANYVALUEOROMITLABEL>
		 else if self.oclIsKindOf(OmitValue) then
		 self as context in <OMITVALUELABEL>
		 else if self.oclIsKindOf(LiteralValueUse) then
		 self as context in <LITERALVALUEUSELABEL>
		 endif
Comments
No comments.
[bookmark: _Toc49244527]6.2.18	DataInstanceUse
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context DataInstanceUse
DATAINSTANCEUSELABEL ::= if not self.dataInstance ->isEmpty() then
		 						self.dataInstance.name
		 				 else
		 	 ' '
		 endif
 		 if not self.dataType ->isEmpty() then
			'new ' self.dataType.name ':'
		 else
		 	 ' '
		 endif
		 if not self.unassignedMember ->isEmpty() then
			'(' self as context in <UNASSIGNEDMEMBERLABEL> ')'
			 else
		 	 ' '
		 endif
		 self as context in <ARGUMENTLABEL>
		 if not self.reduction->isEmpty() then
			self as context in <REDUCTIONLABEL>
		 else
		 	 ' '
		 endif
Comments
No comments.
[bookmark: _Toc49244528]6.2.19	AnyValue
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context AnyValue
ANYVALUELABEL ::= '? '
Comments
No comments.
[bookmark: _Toc49244529]6.2.20	AnyValueOrOmit
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context AnyValueOrOmit
ANYVALUEOROMITLABEL ::= '*'
Comments
No comments.
[bookmark: _Toc49244530]6.2.21	OmitValue
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context OmitValue
OMITVALUELABEL ::= 'omit'
Comments
No comments.
[bookmark: _Toc49244531]6.2.22	DynamicDataUse
Concrete Graphical Notation
This is an abstract metaclass, therefore no graphical representation is defined.
Formal Description
context DynamicDataUse
DYNAMICDATAUSELABEL ::= if self.oclIsTypeOf(VariableUse) then
		 self as context in <VARIABLEUSELABEL>
		 else if self.oclIsTypeOf(FormalParameterUse) then
		 self as context in <FORMALPARAMETERUSELABEL>
		 else if self.oclIsTypeOf(FunctionCall) then
		 self as context in <FUNCTIONCALLLABEL>
		 else if self.oclIsTypeOf(TimeLabelUse) then
		 self as context in <TIMELABELUSE>
		 else if self.oclIsTypeOf(PredefinedFunctionCall) then
		 self as context in <PREDEFINEDFUNCTIONCALLLABEL>
	 endif
Comments
No comments.
[bookmark: _Toc49244532]6.2.23	FunctionCall
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context FunctionCall
FUNCTIONCALLLABEL ::= self.function.name self as context in <DATAUSEARGUMENTLABEL>
		 if not self.reduction->isEmpty() then
		 	self as context in <REDUCTIONLABEL>
		 else
		 ' '
		 endif
Comments
No comments.
[bookmark: _Toc49244533]6.2.24	FormalParameterUse
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context FormalParameterUse
FORMALPARAMETERUSELABEL ::= 	self.name self as context in <DATAUSEARGUMENTLABEL> self as context in <REDUCTIONLABEL>
Comments
No comments.
[bookmark: _Toc49244534]6.2.25	VariableUse
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context VariableUse
VARIABLEUSELABEL ::= 	self.componentInstance.name'.'variable.name self as context in <DATAUSEARGUMENTLABEL>
						if not self.reduction->isEmpty() then
							self as context in <REDUCTIONLABEL>
						 else
							 ' '
						 endif
Comments
No comments.
[bookmark: _Toc49244535]6.2.26	PredefinedFunctionCall
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context PredefinedFunctionCall
PREDEFINEDFUNCTIONCALLLABEL ::= if (self.name.startsWith(‘_’) and self.name.endsWith(‘_’)) then
self.argument -> at(0).dataUse as context in <DATAUSELABEL> self.name -> getOperatorSymbol() self.argument -> at(1).dataUse as context in <DATAUSELABEL>
 else if (self.name = 'not') then 'not' self.argument.dataUse as context in <DATAUSELABEL>
 else if (self.name = 'size') then 'size(' self.argument.dataUse as context in <DATAUSELABEL> ')'
 			 					 endif
Comments
The description above shall be applied for the predefined instances of the PredefinedFunction element. For the user-defined PredefinedFunction instances other, user-defined syntax can be used.
[bookmark: _Toc49244536]6.2.27	LiteralValueUse
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context LiteralValueUse
LITERALVALUEUSELABEL ::= if not self.value.oclIsUndefined() then
								self.value
else not self.intValue.oclIsUndefined() then
	self.intValue
else not self.boolValue.oclIsUndefined() then
	self.boolValue
endif
self.value
Comments
No comments.
6.2.27	DataType
Concrete Graphical Notation
This is an abstract metaclass, therefore no graphical representation is defined.
Formal Description
context DataType
CONSTRAINTLABEL ::=	foreach c: Constraint in self.constraint newline()
				 		c as context in <SINGLECONSTRAINTLABEL>
						end
Comments
No comments.
6.2.28	EnumDataType
Concrete Graphical Notation
[image: Text

Description automatically generated with medium confidence]
Formal Description
context EnumDataType
ENUMERATIONDATATYPENAMELABEL ::= self.name
ENUMERATIONVALUELABEL ::=	foreach v: SimpleDataInstance in self.value newline()
									v.name
								end
Comments
The CONSTRAINTLABEL is optional.
[bookmark: _Toc49244537]6.3	Time
[bookmark: _Toc49244538]6.3.1	TimeLabel
Concrete Graphical Notation
[image:]
Formal Description
context TimeLabel
TIMELABELLABEL ::= self.name
Comments
A TimeLabel shape shall be attached to the labelled AtomicBehaviour by a thin dashed line.
[bookmark: _Toc49244539]6.3.2	TimeLabelUse
Concrete Graphical Notation
This metaclass has no dedicated shape, it is used solely in the shapes of other metaclasses.
Formal Description
context TimeLabelUse
TIMELABELUSELABEL ::= self.timeLabel.name self as context in <KINDLABEL>
KINDLABEL ::= '[' if self.kind = TimeLabelUseKind::first then 'first'
		 	else if self.kind = TimeLabelUseKind::previous then 'previous'
		 	else if self.kind = TimeLabelUseKind::last then 'last'
				endif ']'
Comments
If self.kind = TimeLabelUseKind::last then <KINDLABEL> is optional.
[bookmark: _Toc49244540]6.3.3	Wait
Concrete Graphical Notation
[image:]
Formal Description
context Wait
DURATIONLABEL ::= self.period as context in <DATAUSELABEL>
Comments
The Wait shape shall cover all the lifelines of that component instance, which is referred to by self.componentInstance.
[bookmark: _Toc49244541]6.3.4	Quiescence
Concrete Graphical Notation
[image:]
Formal Description
context Quiescence
DURATIONLABEL ::= self.period as context in <DATAUSELABEL>
GATELABEL ::= self.gateReference.gate as context in <GATEINSTANCENAMELABEL>
Comments
GATELABEL is optional.
If the Quiescence refers to a component instance (property self.componentInstance is set), then the Quiescence shape:
shall cover all the lifelines of that component instance; and
GATELABEL shall not be present,
otherwise the Quiescence shape shall:
either cover only the lifeline of that gate, which is referred to by self.gateReference if notation (a) defined in clause 6.5.1 is used; or
the GATELABEL shall be present if notation (b) defined in clause 6.5.1 is used.
[bookmark: _Toc49244542]6.3.5	TimeConstraint
Concrete Graphical Notation
[image:]
Formal Description
context TimeConstraint
TIMECONSTRAINTLABEL ::= self.timeConstraintExpression as context in <DATAUSELABEL>
Comments
A TimeConstraint shape shall be attached to an AtomicBehaviour shape by a thin dashed line.
[bookmark: _Toc49244543]6.3.6	TimerStart
Concrete Graphical Notation
[image:]
Formal Description
context TimerStart
TIMERSTARTLABEL ::= self.timer.name
DURATIONLABEL ::= self.period as context in <DATAUSELABEL>
Comments
The TimerStart shape shall cover all the lifelines of that component instance, which is referred to by self.componentInstance.
[bookmark: _Toc49244544]6.3.7	TimeOut
Concrete Graphical Notation
[image:]
Formal Description
context TimeOut
TIMEOUTLABEL ::= self.timer.name
Comments
The TimeOut shape shall cover all the lifelines of that component instance, which is referred to by self.componentInstance.
[bookmark: _Toc49244545]6.3.8	TimerStop
Concrete Graphical Notation
[image:]
Formal Description
context TimerStop
TIMERSTOPLABEL ::= self.timer.name
Comments
The TimerStop shape shall cover all the lifelines of that component instance, which is referred to by self.componentInstance.
[bookmark: _Toc49244546]6.4	Test Configuration
[bookmark: _Toc49244547]6.4.1	TestConfiguration
Concrete Graphical Notation
[image:]
Formal Description
context TestConfiguration
TESTCONFIGURATIONNAMELABEL ::= self.name
Comments
Into the lower empty compartment the elements of the TestConfiguration shall be placed.
[bookmark: _Toc49244548]6.4.2	GateType
Concrete Graphical Notation
If self.kind = GateTypeKind::Message, then
[image:]
If self.kind = GateTypeKind::Procedure, then
[image:]
Formal Description
context GateType
GATETYPENAMELABEL ::= self.name
DATATYPELISTLABEL ::= self.dataType.name->separator(',')
Comments
No comments.
[bookmark: _Toc49244549]6.4.3	GateInstance
Concrete Graphical Notation
[image:]
Formal Description
context GateInstance
GATEINSTANCENAMELABEL ::= self.name [':' self.type.name]
Comments
In GATEINSTANCENAMELABEL the ':' self.type.name is optional.
[bookmark: _Toc49244550]6.4.4	ComponentType
Concrete Graphical Notation
[image:]
Formal Description
context ComponentType
COMPONENTTYPELABEL ::= self.name
TIMERLISTLABEL ::= self.timer.name->separator(',')
VARIABLELISTLABEL ::= 	foreach v:Variable in self.variable separator(',')
self.variable.name ':' self.variable.dataType.name
end
Comments
A ComponentType shape shall contain all GateInstance shapes defined for the corresponding ComponentType, at any side or corner.
The compartments containing Timer and Variable are optional (that is any of them or both may be omitted). If an optional compartment is present, its content shall also be present.
[bookmark: _Toc49244551]6.4.5	ComponentInstance
Concrete Graphical Notation
[image:]
Formal Description
context ComponentInstance
COMPONENTROLELABEL ::= if self.role = ComponentInstanceRole::SUT then 'SUT' else 'TESTER' endif
COMPONENTINSTANCENAMELABEL ::= self.name':'self.type.name
Comments
A ComponentInstance shape shall contain all GateInstance shapes defined for the corresponding ComponentType, at any side or corner.
The terminal symbols 'SUT' and 'TESTER' shall be typed in bold.
NOTE:	If the ComponentInstance shape is used inside the Behaviour compartment of a TestSpecification shape, all the rectangles representing the GateInstance(s) of a ComponentInstance may be left out, see notation (b) in clause 6.5.1.
[bookmark: _Toc49244552]6.4.6	Connection
Concrete Graphical Notation
[image:]
Formal Description
context Connection
NAMEOFCONNECTIONLABEL ::= self.name
Comments
NAMEOFCONNECTIONLABEL is optional.
[bookmark: _Toc49244553]6.5	Test Behaviour
[bookmark: _Toc49244554]6.5.1	TestDescription
Concrete Graphical Notation
[image:]
Formal Description
context TestDescription
ORDERINGLABEL ::= 	 if self.isLocallyOrdered = false then 'Globally Ordered'
else 'Locally Ordered'
endif
TESTDESCRIPTIONNAMELABEL ::= self as context in <NAMEDELEMENTLABEL>
TDPARAMETERLABEL ::= foreach p:Parameter in self.formalParameter separator(',')
p as context in <ParameterLabel>
 end
TESTOBJECTIVELISTLABEL ::= foreach t:TestObjective in self.testObjective separator(',')
t as context in <NAMEDELEMENTLABEL>
 end
TESTCONFIGURATIONNAME ::= self.testConfiguration as context in <NAMEDELEMENTLABEL>
Comments
In case of a globally ordered TestDescription (self. isLocallyOrdered = false) then the ORDERINGLABEL is optional. The result of the production rule of ORDERINGLABEL shall be typed by bold font.
The compartments containing Parameter, TestObjective and Behaviour are optional (that is any or all of them may be omitted). If an optional compartment is present, its content shall also be present.
In the lowest compartment the behaviour of the test description may be described. In this compartment, there shall be as many ComponentInstance shapes as many component instances are defined in the TestConfiguration referenced in a Configuration compartment. Alternatively, the lowest compartment may refer to a separate TDL behaviour diagram containing the representation of the TestDescription behaviour.
For each ComponentInstance shape either the rectangles representing the GateInstance(s) shall be (a) shown or (b) not shown.
In notation (a) from each gate instance a vertical line ("lifeline") shall originate, to which each Behaviour element defined in that test description and associated with that gate shall be attached:
If a component instance has only one gate then the GateInstanceNameLabel is optional.
If a GateInstance of a ComponentInstance is not connected in the TestConfiguration referenced in a Configuration compartment, it is optional if that GateInstance and its lifeline are shown or not.
In notation (b) from the ComponentInstance shape only one vertical line ("lifeline") shall originate, to which each Behaviour element defined in that test description and associated with any of the GateInstance(s) of that ComponentInstance shall be attached.
The time of a lifeline passes from top to down.
Implementation only of one of the two notations (a) and (b) is required, the implementation of the other is optional.
If both notations are implemented, for a given ComponentInstance, the two notations, (a) and (b) shall not be mixed.
NOTE:	In a TestDescription the two notations, (a) and (b) may be mixed for different ComponentInstances, that is for some ComponentInstance(s) the notation (a) while for other ComponentInstance(s) the notation (b) may be used.
[bookmark: _Toc49244555]6.5.2	Behaviour
Concrete Graphical Notation
This is an abstract metaclass, therefore no graphical representation is defined.
Formal Description
n.a.
Comments
To a shape of any subclass of Behaviour, the following test objective reference shape may be attached by a thin dashed line.
[image:]
[bookmark: _Toc49244556]6.5.3	CombinedBehaviour
Concrete Graphical Notation
If the TestDescription containing the CombinedBehaviour is locally ordered, then
[image:]
If the TestDescription containing the CombinedBehaviour is globally ordered, then
[image:]
Formal Description
n.a.
Comments
CombinedBehaviour is an abstract metaclass that can be refined to several subclasses. The figure above gives a general overview, how the combined behaviour elements shall be organized. Further constraints are explained in the respective clauses describing the symbols of subclasses of CombinedBehaviour. Depending on the concrete type of the CombinedBehaviour, it may or may not contain more than one block. The outermost border of the contained Block(s) shall not be visible. If more than one block is defined, they shall be separated by thin dashed lines. Any number of periodic and/or exceptional behaviour may be attached in any order to a CombinedBehaviour.
A CombinedBehaviour shape shall cover all the lifelines.
If the CombinedBehaviour is contained within a locally ordered TestDescription, the lifelines of non-participating components shall be masked by graying out or completely hidden within the blocks of AlternativeBehaviour, OptionalBehaviour, and ExceptionalBehaviour.
If the CombinedBehaviour is contained within a locally ordered TestDescription, gray dashed lines shall be shown as separators between every Behaviour contained in every Block of the CombinedBehaviour. The separators outline individual segments within the global ordering of all Behaviours within the CombinedBehaviour, where each segment shall contain exactly one of the Behaviours directly contained within the CombinedBehaviour.
[bookmark: _Toc49244557]6.5.4	Block
Concrete Graphical Notation
[image:]
Formal Description
context Block
GUARDLABEL ::= self.guard.expression as context in <DATAUSELABEL>
Comments
A Block shall not stand on its own, only as a part of a CombinedBehaviour. Therefore the border of the Block is not visible (the border on the figure above is indicated only for visualization purposes). If a CombinedBehaviour contains more than one Block, they shall be separated by dashed lines.
The GUARDLABEL is optional if it is not stated otherwise in the containing CombinedBehaviour. If GUARDLABEL is present, it shall be placed in between square brackets ('[' and ']'), and in a globally ordered TestDescription the GUARDLABEL shall be placed at the top left part of the symbol of the Block, while in a locally ordered TestDescription the GUARDLABEL(s) shall be placed close to the top border of the symbol of the Block and close to the lifeline of the related ComponentInstance.
[bookmark: _Toc49244558]6.5.5	CompoundBehaviour
Concrete Graphical Notation
[image:]
Formal Description
n.a.
Comments
[GUARDLABEL] in its contained Block is optional.
[bookmark: _Toc49244559]6.5.6	BoundedLoopBehaviour
Concrete Graphical Notation
[image:]
Formal Description
context BoundedLoopBehaviour
ITERATIONLABEL ::= self.numIteration.expression as context in <DATAUSELABEL>
Comments
In a globally ordered TestDescription, the iteration: ITERATIONLABEL shall be placed at the top right part of the symbol of the Block, while in a locally ordered TestDescription the iteration: ITERATIONLABEL(s) shall be placed shall be placed at the top left part of the symbol of the Block, while in a locally ordered TestDescription the iteration: ITERATIONLABEL(s) shall be placed close to the top border of the symbol of the Block, and close to the lifeline of the related ComponentInstance.
[bookmark: _Toc49244560]6.5.7	UnboundedLoopBehaviour
Concrete Graphical Notation
[image:]
Formal Description
n.a.
Comments
[GUARDLABEL] in its contained Block is optional.
[bookmark: _Toc49244561]6.5.8	OptionalBehaviour
Concrete Graphical Notation
[image:]
Formal Description
n.a.
Comments
[GUARDLABEL] in its contained Block is optional.
[bookmark: _Toc49244562]6.5.9	AlternativeBehaviour
Concrete Graphical Notation
[image:]
Formal Description
n.a.
Comments
Any number of Blocks may be contained, they shall be separated by dashed lines.
[GUARDLABEL] in any Block is optional.
[bookmark: _Toc49244563]6.5.10	ConditionalBehaviour
Concrete Graphical Notation
[image:]
Formal Description
n.a.
Comments
Any number of Blocks may be contained, they shall be separated by dashed lines.
If there are more than one Block, then the [GUARDLABEL] in the last Block is optional.
[bookmark: _Toc49244564]6.5.11	ParallelBehaviour
Concrete Graphical Notation
 [image:]
Formal Description
n.a.
Comments
Any number of Blocks may be contained, they shall be separated by dashed lines.
[GUARDLABEL] in any Block is optional.
[bookmark: _Toc49244565]6.5.12	DefaultBehaviour
Concrete Graphical Notation
[image:]
Formal Description
context DefaultBehaviour
DEFAULTCOMPONENTLABEL ::= if not self.guardedComponent->isEmpty() then
'for Component ' self.guardedComponent.name
else
' '	
endif
Comments
A DefaultBehaviour shape may be attached to any CombinedBehaviour.
[GUARDLABEL] in its contained Block is optional.
DEFAULTCOMPONENTLABEL shall only present if guardedComponent is set.
[bookmark: _Toc49244566]6.5.13	InterruptBehaviour
Concrete Graphical Notation
[image:]
Formal Description
context InterruptBehaviour
INTERRUPTCOMPONENTLABEL ::= if not self.guardedComponent->isEmpty() then
'for Component ' self.guardedComponent.name
 else
			' '	
 endif
Comments
An InterruptBehaviour shape may be attached to any CombinedBehaviour.
[GUARDLABEL] in its contained Block is optional.
INTERRUPTCOMPONENTLABEL shall only present if guardedComponent is set.
[bookmark: _Toc49244567]6.5.14	PeriodicBehaviour
Concrete Graphical Notation
[image:]
Formal Description
context PeriodicBehaviour
TIMELABEL ::= self.period as context in <DATAUSELABEL>
Comments
A PeriodicBehaviour shape may be attached to any CombinedBehaviour.
[GUARDLABEL] in its contained Block is optional.
[bookmark: _Toc49244568]6.5.15	Break
Concrete Graphical Notation
[image:]
Formal Description
n.a.
Comments
The Break shape shall cover all the lifelines.
[bookmark: _Toc49244569]6.5.16	Stop
Concrete Graphical Notation
[image:]
Formal Description
n.a.
Comments
The Stop shape shall cover all the lifelines.
[bookmark: _Toc49244570]6.5.17	VerdictAssignment
Concrete Graphical Notation
[image:]
Formal Description
context Verdict
VERDICTLABEL ::= self.verdict as context in <DATAUSELABEL>
Comments
The VerdictAssignment shape shall cover all the lifelines.
[bookmark: _Toc49244571]6.5.18	Assertion
Concrete Graphical Notation
[image:]
Formal Description
context Assertion
CONDITIONLABEL ::= self.condition as context in <DATAUSELABEL>
VERDICTLABEL ::= self.otherwise as context in <DATAUSELABEL>
Comments
'otherwise' and VERDICTLABEL are optional. Either none of them or both of them shall be shown.
The Assertion shape shall cover all the lifelines, if componentInstance is not specified, otherwise it shall cover all the lifelines of that componentInstance.
[bookmark: _Toc49244572]6.5.19	Message
Concrete Graphical Notation
Point-to-point Message
[image:][image:]
Point-to-point Trigger Message
[image:][image:]
Point-to-multipoint Message
[image:]
Point-to-multipoint Trigger Message
[image:]
Formal Description
context Message
ARGUMENTLABEL ::= self.argument as context in <DATAUSELABEL>
VARIABLELABEL ::= self.target.valueAssignment.variable.name
SOURCEGATELABEL ::= self.sourceGate.gate as context in <GATEINSTANCENAMELABEL>
TARGETGATELABEL ::= self.target.targetGate.gate as context in <GATEINSTANCENAMELABEL>
Comments
SOURCEGATELABEL, TARGETGATELABEL, VARIABLELABEL ':= ' are optional.
The ends of a message (GATEREFERENCE and TARGET) shall be placed onto the lifeline of the corresponding gate instances, if notation (a) defined in clause 6.5.1 is used. If notation (b) defined in clause 6.5.1 is used, then the corresponding end of a message shall be placed on the lifeline of the corresponding component instance and SOURCEGATELABEL, and/or TARGETGATELABEL shall be present, respectively.
In case of a point-to-point or a point-to-point trigger message, the VARIABLELABEL - if present - may be placed either above the arrow as an assignment or under the arrowhead.
In case of a point-to-multipoint or a point-to-multipoint trigger message, the source GATEREFERENCE shall be indicated by a small black square, and there shall be as many arrows present as many targets are in the point-to-multipoint message. In this case, optionally there may be a VARIABLELABEL presented under each arrowhead.
[bookmark: _Toc49244573]6.5.20	ProcedureCall
Concrete Graphical Notation
[image:]
Formal Description
context ProcedureCall
PROCCALLARGUMENTLABEL ::= self.signature.name '(' foreach a: ParameterBinding in self.argument separator(',')
															a.parameter.name ' := ' a.dataUse as context in <DATAUSELABEL>
														 end ')'
VALUEASSIGNMENTLABEL ::= foreach v: ValueAssignment in self.Target.valueAssignment separator(',')
								v.variable.name ' := ' v.parameter.name
							 end
Comments
SOURCEGATELABEL, TARGETGATELABEL, VALUEASSIGNMENTLABEL are optional.
The ends of a message (GATEREFERENCE and TARGET) shall be placed onto the lifeline of the corresponding gate instances, if notation (a) defined in clause 6.5.1 is used. If notation (b) defined in clause 6.5.1 is used, then the corresponding end of a message shall be placed on the lifeline of the corresponding component instance and SOURCEGATELABEL, and/or TARGETGATELABEL shall be present, respectively.
A procedure call consists of one calling and one or several reply ProcedureCalls. The lifeline of the called component instance of a procedure call if notation (b) defined in clause 6.5.1 is used or the lifeline of the corresponding gate instance of that component instance if notation (a) defined in clause 6.5.1 is used shall be modified between the calling and the last reply ProcedureCalls: instead of a line a narrow rectangle, a so called 'ExecutionSymbol' shall be used.
NOTE:	The reply/replies may be in block(s) of an AlternativeBehaviour.
EXAMPLE:
[image:]
[bookmark: _Toc49244574]6.5.21	ActionReference
Concrete Graphical Notation
[image:]
Formal Description
context ActionReference
ACTIONREFNAMELABEL ::= self.action as context in <ACTIONNAMELABEL>
ACTIONARGUMENTLABEL ::= foreach p:ParameterBinding in self.argument separator(',')
p.dataUse as context in <DATAUSELABEL>
 end
Comments
(ACTIONARGUMENTLABEL) is optional.
In case the ActionReference is not related to a ComponentInstance (the componentInstance property is not set), the ActionReference shape shall cover all the lifelines, otherwise only all the lifelines of the referenced ComponentInstance.
[bookmark: _Toc49244575]6.5.22	InlineAction
Concrete Graphical Notation
[image:]
Formal Description
context InlineAction
INLINEBODYLABEL ::= self.body
Comments
In case the InlineAction is not related to a ComponentInstance (the componentInstance property is not set), the InlineAction shape shall cover all the lifelines, otherwise only all the lifelines of the referenced ComponentInstance.
[bookmark: _Toc49244576]6.5.23	Assignment
Concrete Graphical Notation
[image:]
Formal Description
context Assignment
LHSLABEL ::= self.variable as context in <VARIABLEUSELABEL>
RHSLABEL ::= self.expression as context in <DATAUSELABEL>
Comments
The Assignment shape shall cover all the lifelines of that ComponentInstance which is referred to by the componentInstance property of the Assignment.
[bookmark: _Toc49244577]6.5.24	TestDescriptionReference
Concrete Graphical Notation
If self.testDescription.isLocallyOrdered = true, then
[image:]
If self.testDescription.isLocallyOrdered = false, then
[image:]
Formal Description
context TestDescriptionReference
TESTDESCRIPTIONNAMELABEL ::= self.testDescription.name
TDARGUMENTLABEL ::= foreach p:ParameterBinding in self.argument separator(',')
p.dataUse as context in <DATAUSELABEL>
 end

BINDINGSLABEL ::= foreach c : ComponentInstanceBinding in self.componentInstanceBinding separator(',')	
c.componentInstanceBinding.actualComponent.name ' -> ' c.componentInstanceBinding.formalComponent.name
end
Comments
(TDARGUMENTLABEL) and BINDINGSLABEL are optional (that is any of them or both may be omitted).
The TestDescriptionReference shape shall cover all the lifelines.
If the referenced TestDescription is globally ordered, i.e. its isLocallyOrdered property is set to false, gray dashed lines shall be shown above and below the TESTDESCRIPTIONNAMELABEL.
[bookmark: _Toc49244578]
Annex A (informative):
Examples
[bookmark: _Toc49244579]A.0	Overview
This annex provides several examples to illustrate how the different elements of the TDL Graphical Syntax can be used and demonstrates the applicability of TDL in several different areas.
The first example in clause A.1 demonstrates the usage of data-related concepts.
The second example in clause A.2 shows a scenario when a 'Tester' performs a test scenario on one interface of the 'SUT'. The example is taken from ETSI TS 136 523-1 [i.1].
The third example in clause A.3 provides an example for interoperability testing in IMS. The example is taken from ETSI TS 186 011-2 [i.2].
[bookmark: _Toc49244580]A.1	Illustration of Data use in TDL Graphical Syntax
[image:]
Figure A.1.1: Illustration of Data use in TDL Graphical Syntax Part 1
[image: DataExample -1]
Figure A.1.2: Illustration of Data use in TDL Graphical Syntax Part 2
[bookmark: _Toc49244581]A.2	Interface Testing
[image:]
Figure A.2.1: Illustration of an interface testing in TDL Graphical Syntax Part 1
[image: Layer_2_DL_SCH_Data_Transfer-1 (1)]
Figure A.2.2: Illustration of an interface testing in TDL Graphical Syntax Part 2
[bookmark: _Toc49244582]A.3	Interoperability Testing
[image: IMS_NNI_General_Capabilities-0 (1)]
Figure A.3.1: Illustration of an interoperability testing in TDL Graphical Syntax Part 1
[image:]
Figure A.3.2: Illustration of an interoperability testing in TDL Graphical Syntax Part 2
[image: IMS_NNI_General_Capabilities-2 (1)]
Figure A.3.3: Illustration of an interoperability testing in TDL Graphical Syntax Part 3

[bookmark: _Toc49244583]History
	Document history

	V1.1.1
	June 2015
	Publication

	V1.2.1
	September 2016
	Publication

	V1.3.1
	May 2018
	Publication

	V1.4.1
	June 2020
	Membership Approval Procedure	MV 20200823:	2020-06-24 to 2020-08-24

	V1.4.1
	August 2020
	Publication

ETSI
image82.jpeg

image83.jpeg

image2.emf
DescriptionDESCRIPTIONLABELObjective URIURIOFOBJECTIVELABELTest ObjectiveTESTOBJECTIVENAMELABEL

image3.emf
context TestObjectiveTESTOBJECTIVENAMELABEL ::= self.nameDESCRIPTIONLABEL ::= self.descriptionURIOFOBJECTIVELABEL ::= self.objectiveURI->newline()

image4.emf
Test DescriptionTESTDESCRIPTIONNAMELABEL(<TDARGUMENTLABEL>)BINDINGSLABEL

image5.emf
context TestDescriptionReferenceTESTDESCRIPTIONNAMELABEL ::= self.testDescription.nameTDARGUMENTLABEL ::= foreach d:DataUse in self.actualParameter separator(',')d as context in <DATAUSELABEL>endBINDINGSLABEL ::= foreach c : ComponentInstanceBinding in self.componentInstanceBinding separator(',') c.componentInstanceBinding.actualComponent.name '->' c.componentInstanceBinding.formalComponent.name end

image6.emf
Name<ELEMENTNAMELABEL>#ELEMENT#

image7.emf
Qualified Name<QUALIFIEDNAMELABEL>#NAMEDELEMENT#

image8.emf
import

IMPORTEDELEMENTSLABEL

PNLABEL

PNLABEL

import

IMPORTEDELEMENTSLABEL

image9.emf
COMMENTLABEL#ELEMENT#

image10.emf
Annotation TypeANNOTATIONTYPENAMELABEL

image11.emf
KEYLABEL VALUELABEL VALUELABEL#ELEMENT#

image12.emf
DescriptionDESCRIPTIONLABELObjective URIURIOFOBJECTIVELABELTest ObjectiveTESTOBJECTIVENAMELABEL

image13.png

image14.emf
Simple Data TypeSIMPLEDATATYPENAMELABEL

image15.png

image16.emf
MEMBERLABELStructured Data TypeSTRUCTUREDDATATYPENAMELABEL

image17.png

image18.emf
ITEMTYPELABELCollection Data TypeCOLLECTIONDATATYPENAMELABEL

image19.png

image20.emf
PROCEDUREPARAMETERLABELProcedure SignaturePROCEDURESIGNATURENAMELABEL

image21.png

image22.emf
TimeTIMELABEL

image23.emf
Simple Data InstanceSIMPLEDATAINSTANCENAMELABEL#SIMPLEDATATYPE#

image24.emf
MEMBERASSIGNMENTLABEL ::= foreach m : MemberAssignment in self.memberAssignment newline()if not self.member.name.oclIsUndefined() then [self.member.name ':=']else' 'endifself.memberSpec as context in <STATICDATAUSELABEL>endcontext StructuredDataInstanceMEMBERASSIGNMENTLABELStructured Data InstanceSTRUCTUREDDATAINSTANCENAMELABELUNASSIGNEDMEMBERLABEL#STRUCTUREDDATATYPE#STRUCTUREDDATAINSTANCENAMELABEL ::= self as context in <DATAINSTANCELABEL>UNASSIGNEDMEMBERLABEL ::= if self.unassignedMember = AnyValue then 'UnassignedMembers as ?' else if self.unassignedMember = AnyValueOrOmit then 'UnassignedMembers as *' endif

image25.emf
ITEMLABELCollection Data InstanceCOLLECTIONDATAINSTANCENAMELABEL#COLLECTIONDATATYPE#

image26.emf
ParameterACTIONPARAMETERLABELBodyACTIONBODYLABELActionACTIONNAMELABEL

image27.emf
ParameterFUNCTIONPARAMETERLABELBodyFUNCTIONBODYLABELFunctionFUNCTIONNAMELABEL Returns DATATYPELABEL

image28.emf
Resource URIRESOURCEURILABELData Resource MappingDATARESOURCEMAPPINGLABEL

image29.emf
Data Element MappingDATAELEMENTMAPPINGLABEL#MAPPABLEDATAELEMENT##DATARESOURCEMAPPING#Parameter MappingPARAMETERMAPPINGLABEL

image30.png

image31.emf
@TIMELABELLABEL#ATOMICBEHAVIOUR#

image32.emf
W (DURATIONLABEL)

image33.emf
Q (DURATIONLABEL)GATELABEL

image34.emf
{ TIMECONSTRAINTLABEL }#ATOMICBEHAVIOUR#

image35.emf
TIMERSTARTLABEL(DURATIONLABEL)

image36.emf
TIMEOUTLABEL

image37.emf
TIMERSTOPLABEL

image38.emf
Test ConfigurationTESTCONFIGURATIONNAMELABEL

image39.emf
GATETYPENAMELABELData Type: DATATYPELISTLABEL

image40.emf
GATETYPENAMELABELSignature: DATATYPELISTLABEL

image41.emf
GATEINSTANCENAMELABEL

image42.emf
COMPONENTTYPELABELTimerTIMERLISTLABELVariableVARIABLELISTLABEL<GATEINSTANCENAMELABEL>

image43.emf
COMPONENTROLELABELCOMPONENTINSTANCENAMELABEL<GATEINSTANCENAMELABEL>

image44.emf
NAMEOFCONNECTIONLABEL#GATEREFERENCE##GATEREFERENCE#

image45.emf
ORDERINGLABELTest Description TESTDESCRIPTIONNAMELABELTest ObjectiveTESTOBJECTIVELISTLABELParameterTDPARAMETERLABELConfigurationTESTCONFIGURATIONNAMEBehaviour

image46.emf
Test Objective Statisfied<TESTOBJECTIVELISTLABEL>#BEHAVIOUR#

image47.emf

type

periodic

exceptionalType

period: TIMELABEL

[GUARDLABEL]

[GUARDLABEL]

image48.emf

type

periodic

exceptionalType

period: TIMELABEL

[GUARDLABEL]

[GUARDLABEL]

image49.emf
[<GUARDLABEL>]

image50.emf
[<GUARDLABEL>]

compound

image51.emf
boundedLoop

iteration:ITERATIONLABEL

image52.emf
[<GUARDLABEL>]

unboundedLoop

image53.emf
[<GUARDLABEL>]optional

image54.emf
[<GUARDLABEL>]

[<GUARDLABEL>]

alternative

image55.emf
[<GUARDLABEL>]

[<GUARDLABEL>]

conditional

image56.emf
[<GUARDLABEL>][<GUARDLABEL>]parallel

image57.emf
[<GUARDLABEL>]defaultDEFAULTCOMPONENTLABEL

image58.emf
[<GUARDLABEL>]interruptINTERRUPTCOMPONENTLABEL

image59.emf
[<GUARDLABEL>]

periodicperiod:TIMELABEL

image60.emf

image61.emf

image62.emf
VERDICTLABEL

image63.emf
otherwise VERDICTLABELCONDITIONLABELAssert

image64.emf
ARGUMENTLABEL#GATEREFERENCE#VARIABLELABEL#TARGET# SOURCEGATELABEL TARGETGATELABEL

image65.emf
ARGUMENTLABELVARIABLELABEL :=#GATEREFERENCE##TARGET# SOURCEGATELABEL TARGETGATELABEL

image66.emf
ARGUMENTLABEL#GATEREFERENCE#VARIABLELABEL#TARGET# SOURCEGATELABEL TARGETGATELABEL

image67.emf
ARGUMENTLABELVARIABLELABEL :=#GATEREFERENCE##TARGET# SOURCEGATELABEL TARGETGATELABEL

image68.emf
ARGUMENTLABELVARIABLELABEL#GATEREFERENCE##TARGET# SOURCEGATELABEL TARGETGATELABEL

image69.emf
ARGUMENTLABELVARIABLELABEL#GATEREFERENCE##TARGET# SOURCEGATELABEL TARGETGATELABEL

image70.emf
PROCCALLARGUMENTLABEL#GATEREFERENCE#VALUEASSIGNMENTLABEL#TARGET# SOURCEGATELABEL TARGETGATELABEL

image71.emf
alternativeSUTS : SUTTYPETESTERT : TESTERTYPEProc(inParam := inValue)Proc(outParam := outValue)Proc(inParam := inValue)Proc(outParam := outValue)Proc(exceptionParam := excValue)

image72.emf
ActionACTIONREFNAMELABEL (ACTIONARGUMENTLABEL)

image73.emf
INLINEBODYLABEL

image74.emf
AssignmentLHSLABEL := RHSLABEL

image75.emf

Test Description
TESTDESCRIPTIONNAMELABEL

(<TDARGUMENTLABEL>)
BINDINGSLABEL

image76.emf

Test Description
TESTDESCRIPTIONNAMELABEL

(<TDARGUMENTLABEL>)
BINDINGSLABEL

image77.jpeg

image78.jpeg

image79.jpeg

image80.jpeg

image81.jpeg

image1.jpeg

