Draft ETSI ES 203 119-6 V1.3.1 (2021-12)
22

Draft ETSI ES 203 119-6 V1.23.1 (20210-1208)
Methods for Testing and Specification (MTS);
The Test Description Language (TDL);
Part 6: Mapping to TTCN-3

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
RES/MTS-TDL1-6v121
Keywords
methodology, model, testing, TTCN-3

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	7
Foreword	7
Modal verbs terminology	7
1	Scope	8
2	References	8
2.1	Normative references	8
2.2	Informative references	8
3	Definition of terms, symbols and abbreviations	9
3.1	Terms	9
3.2	Symbols	9
3.3	Abbreviations	9
4	Basic Principles	9
4.1	Introduction	9
4.2	Document Structure	9
4.3	Notational Conventions	10
4.3.0	General	10
4.3.1	Functions used in production rules	11
4.3.2	Predefined Annotations	11
4.4	Conformance	11
5	Foundation	11
5.1	Overview	11
5.2	Mapping of Foundation Elements	11
5.2.1	Element	11
5.2.2	NamedElement	12
5.2.3	PackageableElement	12
5.2.4	Package	12
5.2.5	ElementImport	12
5.2.6	Comment	13
5.2.7	Annotation	13
5.2.8	AnnotationType	13
5.2.9	TestObjective	13
5.2.10	Extension	13
6	Data	14
6.1	Overview	14
6.2	Mapping of Data Definition Elements	14
6.2.1	DataResourceMapping	14
6.2.2	MappableDataElement	14
6.2.3	DataElementMapping	14
6.2.4	ParameterMapping	14
6.2.5	DataType	14
6.2.6	DataInstance	14
6.2.7	SimpleDataType	14
6.2.8	SimpleDataInstance	15
6.2.9	StructuredDataType	15
6.2.10	Member	15
6.2.11	StructuredDataInstance	15
6.2.12	MemberAssignment	16
6.2.13	CollectionDataType	16
6.2.14	CollectionDataInstance	16
6.2.15	ProcedureSignature	16
6.2.16	ProcedureParameter	16
6.2.17	ParameterKind	16
6.2.18	Parameter	16
6.2.19	FormalParameter	17
6.2.20	Variable	17
6.2.21	Action	17
6.2.22	Function	17
6.2.23	UnassignedMemberTreatment	18
6.2.24	PredefinedFunction	18
6.3	Mapping of Data Use Elements	18
6.3.1	DataUse	18
6.3.2	ParameterBinding	18
6.3.3	StaticDataUse	18
6.3.4	DataInstanceUse	18
6.3.5	SpecialValueUse	21
6.3.6	AnyValue	21
6.3.7	AnyValueOrOmit	21
6.3.8	OmitValue	21
6.3.9	DynamicDataUse	21
6.3.10	FunctionCall	21
6.3.11	FormalParameterUse	22
6.3.12	VariableUse	24
6.3.13	PredefinedFunctionCall	25
6.3.14	LiteralValueUse	25
7	Time	26
7.1	Overview	26
7.2	Mapping of Time Elements	26
7.2.1	Time	26
7.2.2	TimeLabel	26
7.2.3	TimeLabelUse	27
7.2.4	TimeLabelUseKind	27
7.2.5	TimeConstraint	27
7.2.6	TimeOperation	28
7.2.7	Wait	29
7.2.8	Quiescence	29
7.2.9	Timer	29
7.2.10	TimerOperation	29
7.2.11	TimerStart	29
7.2.12	TimerStop	30
7.2.13	TimeOut	30
8	Test Configuration	30
8.1	Overview	30
8.2	Mapping of TestConfiguration Elements in Non-special Cases	30
8.2.1	Introduction	30
8.2.2	GateType	31
8.2.3	GateTypeKind	31
8.2.4	GateInstance	31
8.2.5	ComponentType	31
8.2.6	ComponentInstance	32
8.2.7	ComponentInstanceRole	32
8.2.8	GateReference	32
8.2.9	Connection	32
8.2.10	TestConfiguration	33
8.2.11	Definition of the component type of MTC	33
8.2.12	Definition of the component type of system	33
8.3	Mapping of TestConfiguration Elements in Special Cases	34
8.3.1	Introduction	34
8.3.2	Connectable and mappable GateType	34
8.3.3	A gate connected to a Tester and an SUT	34
8.3.4	More than one SUT	35
8.3.5	A gate of a Tester is connected to more SUTs	36
8.3.6	A gate is connected to more gates of the same component	36
9	Test Behaviour	37
9.1	Overview	37
9.2	Mapping of Test Description Elements	38
9.2.1	TestDescription	38
9.2.2	BehaviourDescription	40
9.3	Mapping of Combined Behaviour elements	40
9.3.1	Behaviour	40
9.3.2	Block	40
9.3.3	LocalExpression	40
9.3.4	CombinedBehaviour	40
9.3.5	SingleCombinedBehaviour	40
9.3.6	CompoundBehaviour	40
9.3.7	BoundedLoopBehaviour	41
9.3.8	UnboundedLoopBehaviour	41
9.3.9	OptionalBehaviour	41
9.3.10	MultipleCombinedBehaviour	43
9.3.11	AlternativeBehaviour	44
9.3.12	ConditionalBehaviour	44
9.3.13	ParallelBehaviour	44
9.3.14	ExceptionalBehaviour	45
9.3.15	DefaultBehaviour	47
9.3.16	InterruptBehaviour	47
9.3.17	PeriodicBehaviour	47
9.4	Mapping of Atomic Behaviour Elements	47
9.4.1	AtomicBehaviour	47
9.4.2	Break	47
9.4.3	Stop	48
9.4.4	VerdictAssignment	48
9.4.5	Assertion	48
9.4.6	Interaction	48
9.4.7	Message	48
9.4.8	ProcedureCall	49
9.4.9	Target	51
9.4.10	ValueAssignment	51
9.4.11	TestDescriptionReference	51
9.4.12	ComponentInstanceBinding	52
9.4.13	ActionBehaviour	52
9.4.14	ActionReference	52
9.4.15	InlineAction	52
9.4.16	Assignment	52
10	Predefined TDL Model Instances	53
10.1	Overview	53
10.2	Mapping of Predefined Instances of the 'SimpleDataType' Element	53
10.2.1	Boolean	53
10.2.2	Integer	53
10.2.3	String	53
10.2.4	Verdict	53
10.3	Mapping of Predefined Instances of 'SimpleDataInstance' Element	53
10.3.1	true	53
10.3.2	false	53
10.3.3	pass	53
10.3.4	fail	53
10.3.5	inconclusive	53
10.4	Mapping of Predefined Instances of 'Time' Element	54
10.4.1	Second	54
10.5	Mapping of Predefined Instances of the 'Function' Element	54
10.5.1	Overview	54
10.5.2	Functions of Return Type 'Boolean'	54
10.5.3	Functions of Return Type 'Integer'	55
10.5.4	Functions of Return Type of Instance of 'Time'	56
Annex A (informative):	Examples of mapping TDL to TTCN-3	57
A.1	Introduction	57
A.2	A 3GPP Conformance Example in Textual Syntax	57
A.3	An IMS Interoperability Example in Textual Syntax	62
History	69

[bookmark: _Toc49264784]
Intellectual Property Rights
Essential patents
[bookmark: IPR_3GPP]IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc49264785]Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
The present document is part 6 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].
[bookmark: _Toc49264786]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc49264787]
1	Scope
The present document specifies how the elements of the Test Description Language (TDL) should be mapped to Testing and Test Control Notation version 3 (TTCN-3) [2]. The intended use of the present document is to serve as the basis for the development of TDL tools. The meta-model of TDL and the meanings of the meta-classes are described in ETSI ES 203 119-1 [1].
[bookmark: _Toc49264788]2	References
[bookmark: _Toc49264789]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ES203119_1][1]	ETSI ES 203 119-1 (V1.5.1): "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Part 1: Abstract Syntax and Associated Semantics".
[bookmark: REF_ES201873_1][2]	ETSI ES 201 873-1 (V4.9.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[bookmark: REF_ES203119_3][3]	ETSI ES 203 119-3 (V1.4.1): "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Part 3: Exchange Format".
[bookmark: _Toc49264790]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_TS136523_1][i.1]	ETSI TS 136 523-1 (V10.2.0): "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification (3GPP TS 36.523-1 version 10.2.0 Release 10)".
[bookmark: REF_TS186011_2][i.2]	ETSI TS 186 011-2: "Core Network and Interoperability Testing (INT); IMS NNI Interoperability Test Specifications (3GPP Release 10); Part 2: Test descriptions for IMS NNI Interoperability".
[bookmark: _Toc49264791]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc49264792]3.1	Terms
For the purposes of the present document, the following terms apply:
behaviour function: function used in TTCN-3 code that describes the behaviour of a TDL component instance
TTCNname: name of a TDL meta-model element that is used in the TTCN-3 code
NOTE:	A TTCNname of a TDL element follows the syntactical rules of identifiers specified in ETSI ES 201 8731 [2]. A TTCNname of a TDL element may contain a part that is derived from the TDL name with some prefixes and/or postfixes determined by a naming convention used in the TTCN-3 code.
[bookmark: _Toc49264793]3.2	Symbols
Void.
[bookmark: _Toc49264794]3.3	Abbreviations
[bookmark: EDM_beginabb_]For the purposes of the present document, the following abbreviations apply:
IMS	IP Multimedia Subsystem
MTC	Main Test Component
PTC	Parallel Test Component
SUT	System Under Test
TDL	Test Description Language
TTCN-3	Testing and Test Control Notation version 3
[bookmark: EDM_endabb_][bookmark: _Toc49264795]4	Basic Principles
[bookmark: _Toc49264796]4.1	Introduction
While both TDL and TTCN-3 are standardized languages, there are various ways how TTCN-3 code can be derived from a TDL test description. This may result in different or even incompatible code intended to implement the same test description. Without a standardized mapping of TDL to TTCN-3, there could be a proliferation of different and possibly incompatible tool- and user-specific mappings of TDL test descriptions to executable test cases which can present new challenges to users and tool vendors.
A standardized mapping between the two languages provides a consistent approach for producing executable tests from high level test descriptions specified in TDL. This enables the generation of executable tests from TDL test descriptions in a (semi-) automatic way, and by extension of the re-use of existing test tools and frameworks for test execution. This way, test engineers can concentrate on the specification of test descriptions at a higher level of abstraction, while having a clear expectation of what the resulting test implementation will look like.
[bookmark: _Toc49264797]4.2	Document Structure
The meta-model of the Test Description Language is specified in ETSI ES 203 119-1 [1]. The present document specifies how the elements of the meta-model of TDL in locally ordered 'TestDescriptions' should be mapped to TTCN3 code. The mapping of the globally ordered 'TestDescription's is outside the scope of the present document.
The structure of the present document follows the structure of the meta-model specification in ETSI ES 203 119-1 [1]. The clauses 5 to 10 describe the standardized mappings of the meta-model elements with identical clause numbers in ETSI ES 203 119-1 [1]. In each clause, first the description of the mapping of the corresponding meta-model element is described. It may be followed by a Constraints section, if the mapping is provided only with limitations. At the end of a clause an Example clause may exist to illustrate the mapping of the corresponding meta-model element. In the Examples the textual (specified in ETSI ES 203 119-1 [1]) or the graphical (specified in ETSI ES 203 119-3 [3]) notations of TDL can be used.
In some cases the structure of the TTCN-3 code may differ from the structure of the TDL specification or it requires some additional specification in TTCN-3. These special cases are described in clauses 8.2.11, 8.2.12 and 8.3.
At the end of the present document in Annex A several examples illustrate how the TTCN-3 code will look like after the rules of mapping specified in the present document are applied.
[bookmark: _Toc49264798]4.3	Notational Conventions
[bookmark: _Toc49264799]4.3.0	General
Elements (e.g. meta-classes, properties, etc.) from the TDL meta-model [1] are typed in between 'single quotes', e.g. 'StructuredDataType' or 'returnType'.
The TTCN-3 code elements (keywords, symbols, etc.) are typed in bold Courier New font, e.g. type port or { .
The TTCN-3 code to be generated is described by production rules, where applicable. The production rules are specified in between << and >> symbols. Inside a production rule, the concatenation between elements of that production rule is specified by a plus (+) symbol.
Iterations over collections of attributes of a metaclass make use of a function collect() with the following syntax: propertyName.collect(VariableName ':' expression), where VariableName is an alphanumeric word signifying the variable used in the subsequent expression, . propertyName is a string that shall be the same as the name of a property of a TDL metaclass. The type of this property determines the type of the variable denoted by VariableName.
The separator between the elements of an iteration is specified by the concat() function.
EXAMPLE 1:
The production rule:
type record <<self.name>> {
<< member.collect(m | m.dataType.name + " " + m.name()).concat(",")>>
}

for this TDL description
Type MSG (sessionID of type integer, content of type charstring);
will provide the following TTCN-3 code snippet:
type record MSG {
integer sessionID,
charstring content
}
The function select() selects a TDL element with a given value of a property.
EXAMPLE 2:
	componentInstance.select(c | c.role = Tester) selects a 'componentInstance' whose 'role' property has a value of 'Tester'.
Other helper functions used in the production rules are collected in clause 4.3.1, while the predefined 'AnnotationType's that can be used to control the TTCN-3 code generation are listed in clause 4.3.2.
[bookmark: _Toc49264800]4.3.1	Functions used in production rules
behaviourFunctionInReferencedTD(): returns the name of the behaviour function used in a referenced 'TestDescription' of the same tester component.
equivalent(): returns the equivalent of the corresponding TDL element. If none of the structural modifications - described in clause 8.3 - on a TDL configuration is to be applied then the element.equivalent() is the element itself, otherwise what is specified in the corresponding sub-clause of clause 8.3.
getKind(): returns the kind of an 'importedElement' (e.g. type, template, const, function, etc.) that can be used in a TTCN-3 import statement.
toLower(): returns the value of a literal converted to all lowercase characters.
TTCNname(): returns the name of the corresponding TDL element that will be used in the TTCN-3 code.
[bookmark: _Toc49264801]4.3.2	Predefined Annotations
A Predefined Annotation is an 'Annotation', whose 'key' is one of the following predefined 'AnnotationTypes'. The Predefined Annotations are used to help the TTCN-3 code generation in cases where the TTCN-3 code to be generated cannot be determined just from the TDL description:
TTCN3Code: this 'AnnotationType' indicates that the 'body' of the 'Annotation' or of an 'InlineAction' contains a valid TTCN-3 code.
Value: this 'AnnotationType' indicates that the annotated element shall not be treated as a template or a template type.
[bookmark: _Toc49264802]4.4	Conformance
For an implementation claiming to conform to this version of the mapping from TDL to TTCN-3, all features specified in the present document and in ETSI ES 203 119-1 [1] shall be implemented consistently with the requirements given in the present document and ETSI ES 203 119-1 [1].
[bookmark: _Toc49264803]5	Foundation
[bookmark: _Toc49264804]5.1	Overview
'Package's are mapped to TTCN-3 modules, 'ElementImport's to import statements, while 'Comment's, 'Annotation's, 'AnnotationType's and 'TestObjective's to TTCN-3 comments.
[bookmark: _Toc49264805]5.2	Mapping of Foundation Elements
[bookmark: _Toc49264806]5.2.1	Element
This is an abstract metaclass, therefore no mapping is defined.
Naming is different in TDL and in TTCN-3, therefore the names of the 'Element's used in TDL may not be used in TTCN-3. On one hand the set of characters allowed to be used in a TDL name is larger than the set allowed in TTCN3 and on the other hand a TDL name may be a reserved keyword in TTCN-3. That is why the term TTCNname is introduced. A TTCNname of an 'Element' is the name of the 'Element' that is used in the TTCN-3 code.
A TTCNname may contain a part that is derived from the TDL name with some prefixes and/or postfixes determined by a naming convention used in the TTCN-3 code.
The present document does not specify how a TTCNname is generated from a TDL name. Neither the method how the TDL names are converted to valid TTCN-3 names nor the naming convention to be used in the TTCN-3 code, however the present document recommends a naming convention. The basic assumption of the recommended TTCNname is that it contains a part which is generated from the TDL name and it may be extended by some prefix(es) and/or postfix(es).
NOTE 1:	The naming convention used in the present document is only a recommendation, in a concrete tool or implementation a different one may be used.
NOTE 2:	In the following clauses the function TTCNname() will be used to get the TTCNname of the corresponding 'Element'.
[bookmark: _Toc49264807]5.2.2	NamedElement
This is an abstract metaclass, therefore no mapping is defined.
[bookmark: _Toc49264808]5.2.3	PackageableElement
This is an abstract metaclass, therefore no mapping is defined.
[bookmark: _Toc49264809]5.2.4	Package
A 'Package' shall be mapped to a module.
module <<self.TTCNname()>> {
}
For all import: as defined in clause 5.2.5.
NOTE:	In TTCN-3 a module cannot contain another module, therefore a contained 'Package' will also be mapped to a "standalone" module. If information about the 'Package' structure needs to be kept in TTCN-3, then use a suitable naming convention.
[bookmark: _Toc49264810]5.2.5	ElementImport
The 'ElementImport' shall be mapped to import statement(s).
If the 'importedElement' is empty then an import … all statement shall be used:
import from <<self.importedPackage.TTCNname()>> all;
otherwise for all the 'importedElement' a selected import statement shall be used:
	<< importedElement.collect(i | "import from " +" " + self.importedPackage.TTCNname() +" " +i.getKind() + " " + i.TTCNname()).concat(";")>>
NOTE:	How the kind of the 'importedElement' (e.g. type, template, const, function, etc.) is determined is outside the scope of the present document. For this purpose e.g. an annotation or a naming convention can be used.
[bookmark: _Toc49264811]5.2.6	Comment
A 'Comment' shall be mapped to a comment:
/* <<self.body>> */
[bookmark: _Toc49264812]5.2.7	Annotation
If the 'key' of the 'Annotation' is the predefined 'AnnotationType' TTCN3Code, then the 'Annotation' shall be mapped to its 'value' (that is to the TTCN-3 code itself), otherwise it shall be mapped to a comment:
/*
ANNOTATION <<self.key.TTCNname()>>
<<self.value>>
*/
[bookmark: _Toc49264813]5.2.8	AnnotationType
'AnnotationType' shall be mapped to a comment:
/*
ANNOTATION TYPE <<self.TTCNname()>>
*/
If the 'AnnotationType’ has an extension:
/*
ANNOTATION TYPE <<self.TTCNname()>> EXTENDS <<self.extension.extending.TTCNname()>>
*/
[bookmark: _Toc49264814]5.2.9	TestObjective
The 'TestObjective' shall be mapped to a comment:
/*
Test Objective <<self.name>>
Description: <<self.description>>
Objective URI: <<self.objectiveURI>>
*/
[bookmark: _Toc49264815]5.2.10	Extension
This metaclass has no dedicated mapping, it is used solely in mapping of other metaclasses.
[bookmark: _Toc49264816]6	Data
[bookmark: _Toc49264817]6.1	Overview
Mapping of data definitions can either be done by the explicit 'DataElementMapping's provided by the user or if no 'DataElementMapping' is provided, then the TDL data definitions shall be mapped as they are specified in the following clauses. If there is a 'DataElementMapping' provided for a 'StructuredDataType' then mappings shall be provided for all of its 'Member's.
TDL does not make a distinction if a data instance is a value or a template, while TTCN-3 does. By default, all TDL 'DataInstance's, 'FormalParameter's, 'Variable's and return values of the 'Function's shall be mapped to a TTCN3 template unless an 'Annotation' with the predefined 'AnnotationType' Value instructs otherwise. The 'PredefinedFunctionCall's and the predefined instances of the 'SimpleDataType' and 'SimpleDataInstance' elements shall be mapped to their TTCN-3 counterparts, while predefined instance 'Second' of 'Time' element shall be mapped to TTCN-3 data type float.
The 'DataUse's are mapped to their TTCN-3 counterparts, the 'DataInstanceUse' is a usage of a template or a constant; 'SpecialValueUse's are mapped to the TTCN-3 AnyValue (?), AnyValueOr None (*) and the special value omit, respectively; 'FunctionCall's and 'PredefinedFunctionCall's to function calls or operator invocation, 'FormalParameterUse' and 'VariableUse' to usage of a formal parameter or a variable. The inline modification of the 'DataUse's are mapped to a (sequence of) template modification(s).
[bookmark: _Toc49264818]6.2	Mapping of Data Definition Elements
[bookmark: _Toc49264819]6.2.1	DataResourceMapping
If 'DataResourceMapping' is provided, then its 'resourceURI' shall be used to locate the resource, where the 'DataElementMapping'(s) can be found.
[bookmark: _Toc49264820]6.2.2	MappableDataElement
This is an abstract metaclass, therefore no mapping is defined.
[bookmark: _Toc49264821]6.2.3	DataElementMapping
If a 'DataElementMapping' is provided by the user, then it shall be used for mapping the corresponding data definitions.
[bookmark: _Toc49264822]6.2.4	ParameterMapping
If there is a 'ParameterMapping' provided by the user for a 'Member' of a 'StructuredDataType' or a 'FormalParameter' of an 'Action' or a 'Function' then it shall be used for mapping the corresponding data definitions.
[bookmark: _Toc49264823]6.2.5	DataType
This is an abstract metaclass, therefore no mapping is defined.
[bookmark: _Toc49264824]6.2.6	DataInstance
This is an abstract metaclass, therefore no mapping is defined.
[bookmark: _Toc49264825]6.2.7	SimpleDataType
If there is a 'DataElementMapping' provided for a 'SimpleDataType' then it shall be used for the mapping, otherwise a 'SimpleDataType' shall be mapped to the TTCN-3 data type charstring, except for the Predefined Instances of the 'SimpleDataType' Element that shall be mapped according to the rules specified in clause 10.2.
The following TTCN-3 type definition of SimpleType shall be made in the declaration part of the module:
type charstring SimpleDataType;
For each SimpleDataType:
type SimpleDataType <<self.TTCNname()>> ;
[bookmark: _Toc49264826]6.2.8	SimpleDataInstance
A 'SimpleDataInstance' shall be mapped to a const if an 'Annotation' with the predefined 'AnnotationType' Value instructs this, otherwise it shall be mapped to a template.
If there is a 'DataElementMapping' provided for a 'SimpleDataInstance' then it shall be used for the mapping, otherwise a 'SimpleDataInstance' shall be mapped to:
template <<self.datatype.TTCNname()>> <<self.TTCNname()>> := " <<self.TTCNname()>> ";
or if an 'Annotation' with the predefined 'AnnotationType' Value is used, to:
const <<self.datatype.TTCNname()>> <<self.TTCNname()>> := " <<self.TTCNname()>> ";
[bookmark: _Toc49264827]6.2.9	StructuredDataType
If there is a 'DataElementMapping' provided for a 'StructuredDataType' then it shall be used for the mapping, otherwise if no ‘Constraint’ is associated to the 'StructuredDataType', a 'StructuredDataType'it shall be mapped to a record:
[bookmark: _Hlk71108095]type record <<self.TTCNname()>> {
<< allMembers().collect(m | m.dataType.TTCNname() + " " + m.TTCNname()).concat(",")>>
}
If a 'member' is optional (self.member.isOptional = true) then the TTCN-3 keyword optional shall be inserted after the TTCNname of that 'member'.
If a ‘Constraint’ with predefined ‘ConstraintType’ ‘union’ is associated to a ‘StructuredDataType’ then it shall be mapped to a union type:
type union <<self.TTCNname()>> {
<< allMembers().collect(m | m.dataType.TTCNname() + " " + m.TTCNname()).concat(",")>>
}
If a ‘Constraint’ with the predefined ‘ConstraintType’ ‘uniontype’ is associated to a ‘StructuredDataType’ then it shall be mapped to TBD
Constraints
If there is a 'DataElementMapping' provided for a 'StructuredDataType' then a mapping shall be provided for all of its 'Member's.
[bookmark: _Toc49264828]6.2.10	Member
This metaclass has no dedicated mapping, it is used solely in the mapping of other metaclasses.
[bookmark: _Toc49264829]6.2.11	StructuredDataInstance
A 'StructuredDataInstance' shall be mapped to a const if an 'Annotation' with the predefined 'AnnotationType' Value instructs this, otherwise it shall be mapped to a template.
If there is a 'DataElementMapping' provided for a 'StructuredDataInstance' then it shall be used for the mapping, otherwise a 'StructuredDataInstance' shall be mapped to:
template <<self.datatype.TTCNname()>> := {
<< memberAssignment.collect(m | m.member.TTCNname() + ":= " + m.memberSpec).concat(",")>>
}
or if an 'Annotation' with the predefined 'AnnotationType' Value is used, to:
const <<self.datatype.TTCNname()>> := {
<< memberAssignment.collect(m | m.member.TTCNname() + ":= " m.memberSpec).concat(",")>>
}
A 'memberSpec' shall be mapped to a corresponding 'StaticDataUse' according to clause 6.3.3 of the present document.
If 'Annotation' with the predefined 'AnnotationType' Value is not used and a 'StructuredDataInstance' has no 'MemberAssignment' for a given 'Member' of its 'StructuredDataType', and:
'unassignedMember' is set to 'AnyValue' then the 'memberSpec' of that member shall be mapped to ?;
'unassignedMember' is set to 'AnyValueOrOmit' then the 'memberSpec' of that member shall be mapped to * if it is optional or ? if it is non-optional.
Constraints
For a constant, 'memberSpec's shall be specified for all of its 'member's.
[bookmark: _Toc49264830]6.2.12	MemberAssignment
This metaclass has no dedicated mapping, it is used solely in mapping of other metaclasses.
[bookmark: _Toc49264831]6.2.13	CollectionDataType
If there is a 'DataElementMapping' provided for a 'CollectionDataType' then it shall be used for the mapping, otherwise if no ‘Constraint’ is associated to the 'CollectionDataType', a 'CollectionDataType'it shall be mapped to an unrestricted record of itemType:
[bookmark: _Hlk71118680]type record of <<self. itemType.TTCNname()>> <<self.TTCNname()>> ;
If a ‘Constraint’ with the predefined ‘ConstraintType’ ‘length’ is associated to a 'CollectionDataType' and a single ‘quantifier’ element, it shall be mapped to a restricted record of itemType with the exact length specified by the ‘quantifier‘:
type record length(<<self.constraint.quantifier>>) of
<<self. itemType.TTCNname()>> <<self.TTCNname()>> ;
If a ‘Constraint’ with the predefined ‘ConstraintType’ ‘length’ is associated to a 'CollectionDataType' and two ‘quantifier’ elements, it shall be mapped to a restricted record of itemType with a minumum and maximum length defined by the two ‘quantifier‘ elements:
type record length(<< self.contstraint.quantifier.collect(q | q.TTCNname()).concat("..")>>) of
 	<<self. itemType.TTCNname()>> <<self.TTCNname()>> ;

[bookmark: _Toc49264832]6.2.14	CollectionDataInstance
A 'CollectionDataInstance' shall be mapped to:
{ << item.collect(i | i).concat(",")>> }
[bookmark: _Toc49264833]6.2.15	ProcedureSignature
If there is a 'DataElementMapping' provided for a 'ProcedureSignature' then it shall be used for the mapping, otherwise a 'ProcedureSignature' shall be mapped to a signature definition:
signature <<self.TTCNname()>> (<< parameter.select(p | p.kind = IN or p.kind = OUT).collect(p | p.kind.toLower() + " " + p.dataType.TTCNname()+ " " +p.TTCNname())).concat(",")>>) exception (<< parameter.select(p | p.kind = EXCEPTION).collect(p | p.dataType.TTCNname()).concat(",")>>)
The exception type list shall not contain the same type more than once.
[bookmark: _Toc49264834]6.2.16	ProcedureParameter
This metaclass has no dedicated mapping, it is used solely in the mapping of other metaclasses.
[bookmark: _Toc49264835]6.2.17	ParameterKind
This metaclass has no dedicated mapping, it is used solely in the mapping of other metaclasses.
[bookmark: _Toc49264836]6.2.18	Parameter
This is an abstract metaclass, therefore no mapping is defined.
[bookmark: _Toc49264837]6.2.19	FormalParameter
This metaclass has no dedicated mapping, it is used solely in the mapping of other metaclasses.
[bookmark: _Toc49264838]6.2.20	Variable
A 'Variable' shall be mapped to a var if an 'Annotation' with the predefined 'AnnotationType' Value instructs this, otherwise it shall be mapped to a var template:
var template <<self.dataType.TTCNname()>> <<self.TTCNname()>>;
or if an 'Annotation' with the predefined 'AnnotationType' Value is used,
var <<self.dataType.TTCNname()>> <<self.TTCNname()>>;
[bookmark: _Toc49264839]6.2.21	Action
An 'Action' shall be mapped to a TTCN-3 function with no return type.
If there is a 'DataElementMapping' provided for an 'Action' then it shall be used for the mapping, otherwise an 'Action' shall be mapped to:
function <<self.TTCNname()>> (<< formalParameter.collect(f | f. dataType.TTCNname() + " " + f.TTCNname()).concat(",")>>) {
	/*
<<self.body>>
	*/
}
A 'formalParameter' shall be mapped to a non-template parameter if an 'Annotation' with the predefined 'AnnotationType' Value instructs this, otherwise it shall be mapped to a template parameter.
For a template parameter, the TTCN-3 template keyword shall be inserted in front of its type name.
Constraints
If there is a 'DataElementMapping' provided for an 'Action' then 'DataElementMapping' shall be provided for all its 'formalParameter's.
[bookmark: _Toc49264840]6.2.22	Function
A 'Function' shall be mapped to a TTCN-3 function with a return type.
If there is a 'DataElementMapping' provided for a 'Function' then it shall be used for the mapping, otherwise a 'Function' shall be mapped to:
function <<self.TTCNname()>> (<< formalParameter.collect(f | f. dataType.TTCNname() + " " + f.TTCNname()).concat(",")>>) return <<self.returnType.TTCNname()>> {
	/*
<<self.body>>
	*/
}
A 'formalParameter' shall be mapped to a non-template parameter if an 'Annotation' with the predefined 'AnnotationType' Value instructs this, otherwise it shall be mapped to a template parameter. For a template parameter, the TTCN-3 template keyword shall be inserted in front of its type name.
The 'returnType' shall be mapped to a data type if an 'Annotation' with the predefined 'AnnotationType' Value instructs this, otherwise it shall be mapped to a template data type. If the 'returnType' is a template, then the TTCN-3 template keyword shall be inserted after the return keyword.
Constraints
If there is a 'DataElementMapping' provided for a 'Function' then 'DataElementMapping' shall be provided for all its 'formalParameter's and for its returnType.
[bookmark: _Toc49264841]6.2.23	UnassignedMemberTreatment
This metaclass has no dedicated mapping, it is used solely in the mapping of other metaclasses.
[bookmark: _Toc49264842]6.2.24	PredefinedFunction
This metaclass has no dedicated mapping. See clause 10.5.
6.2.25	EnumDataType
If there is a 'DataElementMapping' provided for an 'EnumDataType' then it shall be used for the mapping, otherwise an 'EnumDataType' shall be mapped to an enumerated type:
type enumerated <<self.TTCNname()>> {
	<< value.collect(v | v.TTCNname()).concat(",")>>
}
[bookmark: _Toc49264843]6.3	Mapping of Data Use Elements
[bookmark: _Toc49264844]6.3.1	DataUse
This is an abstract metaclass, therefore no mapping is defined. Mapping of 'DataUse' depends on it sub-class.
In case a 'reduction' is provided, it shall be mapped to dot-notation or array access expression.
If in a 'MemberReference' of a 'reduction' the 'member' is defined then it shall be mapped to:
<<self.member.TTCNname()>>
If in a 'MemberReference' of a 'reduction' the 'collectionIndex' is defined then it shall be mapped to:
[<<self.collectionIndex>>]
[bookmark: _Toc49264845]6.3.2	ParameterBinding
This metaclass has no dedicated mapping, it is used solely in mapping of other metaclasses.
[bookmark: _Toc49264846]6.3.3	StaticDataUse
This is an abstract metaclass, therefore no mapping is defined. Mapping of 'StaticDataUse' depends on it sub-class.
[bookmark: _Toc49264847]6.3.4	DataInstanceUse
If self.dataInstance is provided, a 'DataInstanceUse' shall be mapped to a usage of a template or a constant if an 'Annotation' with the predefined 'AnnotationType' Value instructs this.
If a 'DataInstanceUse' has argument(s) then it shall be mapped to an inline template modification. If at least one argument has also argument(s), then before the actual usage of the data, a sequence of template modifications shall be generated.
If no argument specified:
<<self.dataInstance.TTCNname()>>
If argument(s) are specified, but the argument(s) themselves have no argument(s):
	modifies <<self.dataInstance.TTCNname()>> := { << argument.collect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }
If self.dataInstance is not provided, then:
	<<self.dataType.TTCNname()>> : { << argument.collect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }
In case of nested arguments (there is at least one argument that has argument(s)) the argument(s) shall be processed in an iterative way:
Take the "innermost" argument (the argument that has no further argument).
Define a temporary template to which the proper template modification (as described above) is assigned.
Use this temporary template in the template modification at the next, "outer" level.
Repeat until the "outermost" argument is processed.
EXAMPLE:
TDL:
 	Type SESSIONS (id1 of type Integer, id2 of type Integer);
 	Type MSG (ses of type SESSIONS, content of type String);
 	Type ENCAPSULATED_MSG (header of type String, msg of type MSG);

SESSIONS s1(id1 = 1, id2 = 2);
SESSIONS s2(id1 = 11, id2 = 22);
MSG m1(ses = s1, content = "m1");

SESSIONS c_s1(id1 = 1, id2 = 2) with {VALUE} ; -- predefined annotation
SESSIONS c_s2(id1 = 11, id2 = 22) with {VALUE} ; -- predefined annotation
MSG c1(ses = c_s1, content = "c1") with {VALUE} ; -- predefined annotation

ENCAPSULATED_MSG e_m(header = "h", msg = m1);
ENCAPSULATED_MSG e_m2(header = "hh", msg = (ses = s2, content = "e_m2");
ENCAPSULATED_MSG e_m3(header = "hhh", msg = m1(ses := s2, content := "e_m3");

Action ACT(MSG m);

…

variable v1 of type MSG with {VALUE} ; -- predefined annotation
variable v2 of type MSG;
variable v3 of type MSG;

perform action ACT(m1(content = "a1"));
perform action ACT(m1(ses = s2, content = "a2"));
perform action ACT(c1(ses = c_s2, content = "c2"));
perform action ACT(m1(ses = s1(id1 = 111), content = "a3"));

v1 = m1(content = "v1");
v2 = m1(content = "v2");
v3 = m1(ses = s1(id1 = 111), content = "v3");

TTCN-3:
type record SESSIONS {
 integer id1,
 integer id2
 }

type record MSG {
 SESSIONS ses,
 charstring content
}

type record ENCAPSULATED_MSG {
 charstring header,
 MSG
}

function ACT(template MSG m){};

template SESSIONS s1 := {id1 := 1, id2 := 2}
template SESSIONS s2 := {id1 := 1, id2 := 2}
template MSG m1 := {ses := s1, content := "m1"}

const SESSIONS c_s1 := {id1 := 1, id2 := 2}
const SESSIONS c_s2 := {id1 := 1, id2 := 2}
const MSG c1 := {ses := c_s1, content := "c1"}

template ENCAPSULATED_MSG e_m := {header := "h", msg := m1}
template ENCAPSULATED_MSG e_m2 := {header := "hh", msg := {ses := s2, content := "e_m2"}}

If the argument has an argument (nested arguments), an iterative template modification shall be used:
template MSG t_m1_1 modifies m1 :={ses := s2, content := "e_m3"}
template ENCAPSULATED_MSG e_m4 := {header := "hh", msg := t_m1_1}

// …

var MSG v1;
var template MSG v2;
var template MSG v3;

ACT(modifies m1 := {content := "a1"});
ACT(modifies m1 := {ses := s2, content := "a2"});

If the dataInstance used in 'DataInstanceUse' is not a template, but a value, then it shall be assigned to a temporary template which can later be modified:
template MSG t_tc1 := c1;
ACT(modifies t_tc1 := {ses := c_s2, content := "c2"});

If the argument has an argument (nested arguments), an iterative template modification shall be used:
template SESSIONS t_s1_1 modifies s1 := {id1 := 111};
ACT(modifies m1 := {ses := t_s1_1, content := "a3"});

If the 'DataInstanceUse' is used as a value, valueof() function shall be used:
v1 := valueof(modifies m1 := {content := "v1"});

If the 'DataInstanceUse' with argument(s) is used at the right hand side of an 'Assignment', then a temporary template (t_t2 and t_t3 in the example) shall be defined and this temporary template shall be used in the 'Assignment'.
template MSG t_t2 modifies m1 := {content := "v2"}
v2 := t_t2;

template SESSIONS t_s1_2 modifies s1 := {id1 := 111}
template MSG t_t3 modifies m1 := {ses := t_s1_2, content := "v3"}
v3 := t_t3;

The following applies in case 'DataInstanceUse' is used at the right hand side of:
'memberSpec' of 'MemberAssignment';
'item' of 'CollectionDataInstance;
'dataUse' of 'ParameterBinding'; or
'expression' of 'Assignment'.
If the 'StructuredDataType' of the 'DataInstanceUse' extends the 'StructuredDataType' (targetType) at the left hand side then field assignment shall be used:
	{ <<targetType.allMembers().collect(m | <<m.TTCNname()>> + " := " + <<self.dataInstance.TTCNname()>> + "." + <<m.TTCNname()>>).concat(",")>> }
[bookmark: _Toc49264848]6.3.5	SpecialValueUse
This is an abstract metaclass, therefore no mapping is defined. Mapping of 'SpecialValueUse' depends on its sub-class.
[bookmark: _Toc49264849]6.3.6	AnyValue
'AnyValue' shall be mapped to a TTCN-3 AnyValue symbol: ?
[bookmark: _Toc49264850]6.3.7	AnyValueOrOmit
'AnyValueOrOmit' shall be mapped to a TTCN-3:
AnyValue symbol: ? when it is assigned to a non-optional 'Member'.
AnyValueOrNone symbol: * when it is assigned to an optional 'Member'.
[bookmark: _Toc49264851]6.3.8	OmitValue
'OmitValue' shall be mapped to a TTCN-3 keyword omit.
[bookmark: _Toc49264852]6.3.9	DynamicDataUse
This is an abstract metaclass, therefore no mapping is defined. Mapping of ' DynamicDataUse' depends on its sub-class.
[bookmark: _Toc49264853]6.3.10	FunctionCall
A 'FunctionCall' shall be mapped to a TTCN-3 function call.
If no argument is specified (for the return value):
<<self.function.TTCNname()>> (<< argument.collect(a | a.dataUse).concat(",")>>)
If argument(s) are specified (for the return value), but the argument(s) themselves have no argument(s), a temporary template shall be defined. The name of this template (temp) shall be unique:
template <<self.parameter.dataType.TTCNname()>> temp :=
<<self.function.TTCNname()>> (<< argument.collect(a | a.dataUse).concat(",")>>)
modifies temp := { << argument.collect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }
In case of nested arguments (there is at least one argument that has argument(s)) the argument(s) shall be processed in an iterative way:
Take the "innermost" argument (the argument that has no further argument).
Define a temporary template to which the proper template modification (as described above) is assigned.
Use this temporary template in the template modification at the next, "outer" level.
Repeat until the "outermost" argument is processed.
EXAMPLE:
TDL:
 	Type SESSIONS (id1 of type Integer, id2 of type Integer);
 	Type MSG (ses of type SESSIONS, content of type String);

 	SESSIONS s1(id1 = 1, id2 = 2)
SESSIONS s2(id1 = 11, id2 = 22);
MSG m1(ses = s1, content = "m1");
Action ACT(MSG m);

	…
Function f () returns MSG;
variable vv of type MSG;

vv := instance returned from f();

perform action ACT(instance returned from f());
perform action ACT(instance returned from f()(content = "f"));
perform action ACT(instance returned from f()(ses = s1(id1 = 111), content = "f2"));

vv = instance returned from f()(content = "ff"));

TTCN-3:
type record SESSIONS {
 integer id1,
 integer id2
 }

type record MSG {
 SESSIONS ses,
 charstring content
}

function ACT(template MSG m){};

template SESSIONS s1 := {id1 := 1, id2 := 2}
template SESSIONS s2 := {id1 := 1, id2 := 2}
template MSG m1 := {ses := s1, content := "m1"}

function f () return MSG {…};

var template MSG vv;

'FunctionCall' with no argument:
vv := f();
ACT(f());

If the 'FunctionCall' has an argument, a temporary template (t_f_1 in the example) shall be defined that can be modified:
template MSG t_f_1 := f();
ACT(modifies t_f_1 := {content := "f"});

If the argument has an argument (nested arguments), an iterative template modification shall be used:
template SESSIONS t_s1_1 modifies s1 := {id1 := 111};
template MSG t_f_2 := f();
ACT(modifies t_f_2 := {ses := t_s1_1, content := "f2"});

If the 'FunctionCall' with argument(s) is used at the right hand side of an 'Assignment', then a temporary template (t_f_3_ in the example) shall be defined and this temporary template shall be used in the 'Assignment'.
template MSG t_f_3 := f();
template MSG t_f_3_ modifies t_f_3 := {content := "ff"};
vv := t_f_3_;

[bookmark: _Toc49264854]6.3.11	FormalParameterUse
If no argument specified, 'FormalParameterUse' shall be mapped to:
<<self.parameter.TTCNname()>>
If argument(s) are specified, but the argument(s) themselves have no argument(s), a temporary template shall be defined. The name of this template (temp) shall be unique:
template <<self.parameter.dataType.TTCNname()>> temp := <<self.parameter.TTCNname()>>
modifies temp := { << argument.collect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }
In case of nested arguments (there is at least one argument that has argument(s)) the argument(s) shall be processed in an iterative way:
Take the "innermost" argument (the argument that has no further argument).
Define a temporary template to which the proper template modification (as described above) is assigned.
Use this temporary template in the template modification at the next, "outer" level.
Repeat until the "outermost" argument is processed.
EXAMPLE:
TDL:
Test Description TD (p of type MSG) ….
 	Type SESSIONS (id1 of type Integer, id2 of type Integer);
 	Type MSG (ses of type SESSIONS, content of type String);

 	SESSIONS s1(id1 = 1, id2 = 2)
SESSIONS s2(id1 = 11, id2 = 22);
MSG m1(ses = s1, content = "m1");

Action ACT(MSG m);

	…
variable vv of type MSG;

vv := p;

//suppose action ACT is performed on 'ComponentInstance' CI
perform action ACT(p);
perform action ACT(p(content = "p"));
perform action ACT(p(ses = s1(id1 = 111), content = "p2"));

vv = p(content = "pp"));

TTCN-3:
type record SESSIONS {
 integer id1,
 integer id2
 }

type record MSG {
 SESSIONS ses,
 charstring content
}

function ACT(template MSG m){};

template SESSIONS s1 := {id1 := 1, id2 := 2}
template SESSIONS s2 := {id1 := 1, id2 := 2}
template MSG m1 := {ses := s1, content := "m1"}

//suppose action ACT is performed on 'ComponentInstance' CI
f_behaviourOfCIInTD(MSG p){

var template MSG vv;

'FormalParameterUse' with no argument:
vv := p;
ACT(p);

If the 'FormalParameterUse' has an argument, a temporary template (t_p_1 in the example) shall be defined that can be modified:
template MSG t_p_1 := p;
ACT(modifies t_p_1 := {content := "p"});

If the argument has an argument (nested arguments), an iterative template modification shall be used:
template SESSIONS t_s1_1 modifies s1 := {id1 := 111};
template MSG t_p_2 := p;
ACT(modifies t_p_2 := {ses := t_s1_1, content := "p2"});

If the 'FormalParameterUse' with argument(s) is used at the right hand side of an 'Assignment', then a temporary template (t_p_3_ in the example) shall be defined and this temporary template shall be used in the 'Assignment':
template MSG t_p_3 := p;
template MSG t_p_3_ modifies t_p_3 := {content := "pp"};
vv := t_p_3_;
}

[bookmark: _Toc49264855]6.3.12	VariableUse
A 'VariableUse' shall be mapped to a usage of a variable. If the 'VariableUse' is used in a function that runs on a 'ComponentInstance' and the 'ComponentInstance' is not the same as the 'componentInstance' of the 'VariableUse' then the 'VariableUse' is ignored.
If no argument is specified:
<<self.variable.TTCNname()>>
If argument(s) are specified, but the argument(s) themselves have no argument(s), a temporary template shall be defined. The name of this template (temp) shall be unique:
template <<self.variable.dataType.TTCNname()>> temp := <<self.variable.TTCNname()>>
modifies temp := { << argument.collect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }
In case of nested arguments (there is at least one argument that has argument(s)) the argument(s) shall be processed in an iterative way:
Take the "innermost" argument (the argument that has no further argument).
Define a temporary template to which the proper template modification (as described above) is assigned.
Use this temporary template in the template modification at the next, "outer" level.
Repeat until the "outermost" argument is processed.
EXAMPLE:
TDL:
 	Type SESSIONS (id1 of type Integer, id2 of type Integer);
 	Type MSG (ses of type SESSIONS, content of type String);

 	SESSIONS s1(id1 = 1, id2 = 2)
SESSIONS s2(id1 = 11, id2 = 22);
MSG m1(ses = s1, content = "m1");

Action ACT(MSG m);

	…
variable v of type MSG;
variable vv of type MSG;

v = m1;
v.ses = s2;

vv := v;
perform action ACT(v);

perform action ACT(v(content = "v"));
perform action ACT(v(ses = s1(id1 = 111), content = "v2"));

vv = v(content = "vv"));

TTCN-3:
type record SESSIONS {
 integer id1,
 integer id2
 }

type record MSG {
 SESSIONS ses,
 charstring content
}

function ACT(template MSG m){};

template SESSIONS s1 := {id1 := 1, id2 := 2}
template SESSIONS s2 := {id1 := 1, id2 := 2}
template MSG m1 := {ses := s1, content := "m1"}

var template MSG v;
var template MSG vv;

v := m1;
v.ses := s2;

'VariableUse' with no argument:
vv := v;
ACT(v);

If the 'VariableUse' has an argument, a temporary template (t_v_1 in the example) shall be defined that can be modified:
template MSG t_v_1 := v;
ACT(modifies t_v_1 := {content := "v"});

If the argument has an argument (nested arguments), an iterative template modification shall be used:
template SESSIONS t_s1_1 modifies s1 := {id1 := 111};
template MSG t_v_2 := v;
ACT(modifies t_v_2 := {ses := t_s1_1, content := "v2"});

If the 'VariableUse' with argument(s) is used at the right hand side of an 'Assignment', then a temporary template (t_v_3_ in the example) shall be defined and this temporary template shall be used in the 'Assignment':
template MSG t_v_3 := v;
template MSG t_v_3_ modifies t_v_3 := {content := "vv"};
vv := t_v_3_;

[bookmark: _Toc49264856]6.3.13	PredefinedFunctionCall
The 'PredefinedFunctionCall' shall be mapped to the TTCN-3 equivalent of the predefined function as is specified in clause 10.5. The actual parameters shall be mapped as is specified in clause 6.3.1.
[bookmark: _Toc49264857]6.3.14	LiteralValueUse
The 'LiteralValueUse' shall be mapped to TTCN-3 literal depending on its type. Unless otherwise specified, the value is mapped as is:
<<self.value>>
If the type is the predefined 'SimpleDataType' named String then the value is mapped to:
" <<self.value>> "
If the type has an annotation with annotation type whose name is "TTCN_DT_<TYPE_NAME>” (where <TYPE_NAME> is the name of a TTCN-3 built in type) then the value is mapped according to syntax specified in ETSI ES 201 8731 [2].
[bookmark: _Toc49264858]7	Time
[bookmark: _Toc49264859]7.1	Overview
In TDL, the 'Time' is a monotonically increasing function. In TTCN-3, in the function that describes the behaviour of a 'ComponentInstance' a timer called T_elapsedTimeOfComponent is started.
The 'TimeLabel's are mapped to float arrays with 3 elements to store the first, previous and last timestamps of execution of an 'AtomicBehaviour'.
The mapping of 'TimeConstraint's is provided for some well-defined cases.
The 'TimeOperations' are mapped to timer start and timeout operations, while the 'TimerOperation's are mapped to their TTCN-3 counterparts.
[bookmark: _Toc49264860]7.2	Mapping of Time Elements
[bookmark: _Toc49264861]7.2.1	Time
For handling the 'Time', in each component type a timer T_elapsedTimeOfComponent shall be defined, that shall be started after a component instance is created by the 'f_startOf' function. This timer shall be started for a 'long enough' duration. This duration can be specified e.g. by a module parameter mp_componentElapsedTimerMaxDuration.
[bookmark: _Toc49264862]7.2.2	TimeLabel
Each 'TimeLabel' shall be mapped to a variable of TimeLabel type, which is an array of 3 float elements. These variables shall be defined at the beginning of the behaviour function of that 'ComponentInstance' in which the 'TimeLabel' is defined.
In the definitions part of the module a TimeLabel data type and shall be defined:
type float TimeLabel[3];
In addition to that, three constants - to handle the indexes first, previous, last - shall be defined. The recommended naming convention is cg_tlk_ (timelabel kind):
const integer cg_tlk_first := 0;
const integer cg_tlk_previous := 1;
const integer cg_tlk_last := 2;
At the beginning of the behaviour function of that 'ComponentInstance' in which the 'TimeLabel' is specified, a variable shall be defined for that 'TimeLabel'. The recommended naming convention is v_tl_.
var TimeLabel <<self.TTCNname()>>;
If front of the code of that 'AtomicBehaviour' for which the 'TimeLabel' is defined, the following code shall be inserted:
if (not isbound(<<self.TTCNname()>>[cg_tlk_first])) {
<<self.TTCNname()>>[cg_tlk_last] := T_elapsedTimeOfComponent.read;
<<self.TTCNname()>>[cg_tlk_first] := <<self.TTCNname()>>[cg_tlk_last];
<<self.TTCNname()>>[cg_tlk_ previous] := <<self.TTCNname()>>[cg_tlk_last]
}
else {
<<self.TTCNname()>>[cg_tlk_ previous] := <<self.TTCNname()>>[cg_tlk_last];
<<self.TTCNname()>>[cg_tlk_last] := T_elapsedTimeOfComponent.read;
}
[bookmark: _Toc49264863]7.2.3	TimeLabelUse
The 'TimeLabelUse' shall be mapped to the following:
<<self.timeLabel.TTCNname()>>.[<<self.kind>>]
[bookmark: _Toc49264864]7.2.4	TimeLabelUseKind
The literals of the 'TimeLabelUseKind' shall be mapped to the names of those constants that are defined for this purpose (see clause 7.2.2). The recommended names are cg_tlk_first, cg_tlk_previous, and cg_tlk_last, respectively.
[bookmark: _Toc49264865]7.2.5	TimeConstraint
A timeConstraintExpression can only be mapped if it satisfies the following requirements.
For tester-input events:
The timeConstraintExpression shall be the return value of one of the following predefined functions:
<: instanceOf(Time), instanceOf(Time) Boolean
Denotes the standard mathematical less-than operation.
>: instanceOf(Time), instanceOf(Time) Boolean
Denotes the standard mathematical greater-than operation.
<=: instanceOf(Time), instanceOf(Time) Boolean
Denotes the standard mathematical less-or-equal operation.
>=: instanceOf(Time), instanceOf(Time) Boolean
Denotes the standard mathematical greater-or-equal operation.
==: instanceOf(DataUse), instanceOf(DataUse) Boolean
Denotes equality of the results from the evaluation of the 'DataUse's supplied as arguments. The 'DataUse's, shall refer to the same 'DataType'. Equality shall be determined based on content and not on identity.
The arguments of these functions shall be one of the following two options:
First argument is the return value of the predefined function _+_: instanceOf(Time), instanceOf(Time) instanceOf(Time) where its first argument is a 'TimeLabelUse' that is interpreted as a point in time and its second argument is an InstanceOf(Time) that is interpreted as a duration; and the second argument is a TimeLabelUse that is interpreted as a point in time
First argument is the return value of the predefined function _-_: instanceOf(Time), instanceOf(Time) instanceOf(Time) where its arguments are 'TimeLabelUse's that are interpreted as points in time; and the second argument is an InstanceOf(Time) that is interpreted as a duration
None of the arguments of the functions above shall be 'SpecialValueUse' elements.
The timeConstraintExpression shall be mapped to the following right after the code of the constrained 'AtomicBehaviour' in the behaviour function(s) of the related component(s):
if(<<timeConstraintExpression>>) { setverdict (pass)} else {setverdict(fail)};
For other 'AtomicBehaviour's:
The timeConstraintExpression shall be the return value of the following predefined function:
==: instanceOf(DataUse), instanceOf(DataUse) Boolean
Denotes equality of the results from the evaluation of the 'DataUse's supplied as arguments. The 'DataUse's, shall refer to the same 'DataType'. Equality shall be determined based on content and not on identity).
The arguments of this function shall be:
The first argument shall be a 'TimeLabelUse' that is interpreted as a point in time (point2). This shall use the timeLabel of the constrained 'AtomicBehaviour'.
The second argument shall be the return value of the predefined function _+_: instanceOf(Time), instanceOf(Time) instanceOf(Time) where its first argument is a 'TimeLabelUse' that is interpreted as a point in time (point1) and its second argument is an InstanceOf(Time) that is interpreted as a duration.
The 'TimeLabelUse' used in the first argument shall denote a point in time that happens later than the point in time denoted by the 'TimeLabelUse' used in the second argument.
None of the arguments of the functions above shall be 'SpecialValueUse' elements.
The timeConstraintExpression shall be mapped to the following:
a timer shall be declared in the behaviour function of that component(s) that contains the constrained 'AtomicBehaviour'. The name of the timer (t1 in the example below) shall be unique. The recommended naming convention is Tl_constraint_:
timer Tl_constraint_t1;
in the behaviour function(s) of the related component right after the code of that 'AtomicBehaviour' whose timeLabel is used as point1 a timer start instruction shall be generated, whose argument shall be the InstanceOf(Time) that is interpreted as a duration (duration in the example below):
Tl_constraint_t1.start(duration);
in front of the code of the of the constrained 'AtomicBehaviour' the following shall be added:
if(not Tl_constraint_t1.running) {
setverdict(false)
}
else {
alt{
[]	Tl_constraint_t1.timeout {};
[else] {repeat;}
}
}
NOTE:	The [else] branch is used to suppress the potential active defaults.
[bookmark: _Toc49264866]7.2.6	TimeOperation
This is an abstract metaclass, therefore no mapping is defined. Mapping of 'TimeOperation' depends on its sub-class.
The TTCN-3 code of the sub-classes of 'TimeOperation' shall be placed into the behaviour function of the 'componentInstance'.
[bookmark: _Toc49264867]7.2.7	Wait
The wait instruction is mapped to a timer start and a timeout. To suppress the potential defaults to be activated before the timer expires, the timeout shall be placed into an alt instruction, whose second alternative shall be [else].
A timer shall be defined in the behaviour function of that component instance in which 'Wait' occurs:
timer Tl_WAIT;
The 'Wait' itself shall be mapped to (<<self. period>> shall be a float expression):
Tl_WAIT.start(<<self. period>>);
alt {
[] Tl_WAIT.timeout {}
[else] {}
}
[bookmark: _Toc49264868]7.2.8	Quiescence
The 'Quiescence' is mapped to a timer start operation and an alt instruction. The '_id' part of the timer name shall be a unique identifier (that is each 'Quiescence' shall have its own timer). If a 'Quiescence occurs as the first tester-input event of a 'Block' of an 'AlternativeBehaviour', then follow the steps specified in clause 9.3.11:
timer Tl_quiescence_id.start(<<self.period>>);
alt {
[] Tl_quiescence_id.timeout {setverdict(pass)}
If the 'componentInstance' or gateReference.component contains a message gate:
[] any port.receive;{setverdict(fail)}
If the 'componentInstance' or gateReference.component contains a procedure gate:
[] any port.getcall;{setverdict(fail)}
}
[bookmark: _Toc49264869]7.2.9	Timer
A 'Timer' shall be mapped to a TTCN-3 timer definition:
timer <<self.TTCNname()>>;
The recommended naming convention for timers defined in a component type is T_ while for other timers Tl_.
[bookmark: _Toc49264870]7.2.10	TimerOperation
This is an abstract metaclass, therefore no mapping is defined.
The TTCN-3 code of the sub-classes of 'TimerOperation' shall be placed into the behaviour function of the 'componentInstance'.
[bookmark: _Toc49264871]7.2.11	TimerStart
The 'TimerStart' shall be mapped to the following (<<self. period>> shall be a float expression):
<<self.timer.TTCNname()>>.start(<<self. period>>);
[bookmark: _Toc49264872]7.2.12	TimerStop
The 'TimerStop' shall be mapped to:
<<self.timer.TTCNname()>>.stop;
[bookmark: _Toc49264873]7.2.13	TimeOut
The 'TimeOut' shall be mapped to:
<<self.timer.TTCNname()>>.timeout;
[bookmark: _Toc49264874]8	Test Configuration
[bookmark: _Toc49264875]8.1	Overview
A TDL 'GateType' definition is mapped to a TTCN-3 port type definition, a 'ComponentType' definition to a component type definition, a 'GateInstance' definition to a port instance specification within a component type definition, a 'ComponentInstance' specification to a parallel test component and the connections to connect or map instructions.
Apart from mapping the elements of the test configuration defined in TDL, some additional definitions are needed:
definition of the component type of mtc
definition of the component type of system
In TDL, the types of the allowed connections are wider than those in TTCN-3. If a TDL 'TestConfiguration' contains connections that are not allowed in TTCN-3, then the configuration in TTCN-3 will differ from the configuration in TDL, e.g. the number of port instances defined in a component type, name or type of ports, etc. may be different. The function 'equivalent()' will be used to denote the TTCN-3 equivalent of a TDL construct.
[bookmark: _Toc49264876]8.2	Mapping of TestConfiguration Elements in Non-special Cases
[bookmark: _Toc49264877]8.2.1	Introduction
This clause provides the mapping of elements of a TDL 'TestConfiguration', if it does not contain any of the following:
a 'GateType' whose instances take part both in a 'Connection' between a 'ComponentInstance' in the role of 'Tester' and a 'ComponentInstance' in the role of 'SUT' (Tester-SUT connection) and in a 'Connection' between 'ComponentInstance's in the role of 'Tester' (Tester-Tester connection);
a 'GateReference' that is connected both to a 'ComponentInstance' in the role of 'Tester' and a 'ComponentInstance' in the role of 'SUT';
more than one 'ComponentInstance' in the role of 'SUT';
a 'GateReference' of a 'ComponentInstance' in the role of 'Tester' that is connected to two different 'ComponentInstance's in the role of 'SUT';
a 'GateReference' of a 'ComponentInstance' in the role of 'Tester' that is connected to two different 'GateInstance's of the same 'ComponentInstance'.
[bookmark: _Toc49264878]8.2.2	GateType
A 'GateType' is mapped to a port type definition, where for each 'DataType' referenced in the 'dataType' property, the corresponding message data type (in the case if property 'kind' is set to 'Message') or signature (in the case if property 'kind' is set to 'Procedure') is listed as 'inout' in the port type definition. The recommended naming convention for the GateType is <<self.name>>_PT.
If property 'kind' is set to 'Message':
type port <<self.equivalent().TTCNname()>> message {
inout << allDataTypes().collect(d | d. equivalent().name).concat(",") ;>>
}
If property 'kind' is set to 'Procedure'
type port <<self.equivalent().name>> procedure {
inout << allDataTypes().collect(d | d.equivalent().name).concat(",") ;>>
}
EXAMPLE:
TDL:

TTCN-3:
type port GT1_PT message {
inout DT1,DT2;
}
[bookmark: _Toc49264879]8.2.3	GateTypeKind
This metaclass has no dedicated mapping, it is used solely in mapping of other metaclasses.
[bookmark: _Toc49264880]8.2.4	GateInstance
A 'GateInstance' definition is mapped to a port instance definition within a component type definition. The recommended TTCNname is <<self. name>>:
port <<self.type.TTCNname()>> << self.TTCNname() >> ;
A 'GateInstance' definition will only be used in a 'ComponentType' definition.
[bookmark: _Toc49264881]8.2.5	ComponentType
In TTCN-3, only the behaviour of the testers can be defined. Therefore only those 'ComponentType's shall be mapped that have at least one 'ComponentInstance' in the role of Tester.
A 'ComponentType' is mapped to a component type definition. The contained 'Variable's, 'Timer's and 'GateInstance's are mapped to the corresponding TTCN-3 constructs according to the mapping specifications in the respective clauses.
The recommended naming convention for a component type is <<self.name>>_CT, for a timer is T_<<self.name>>, while the recommended naming convention for a variable is v_<<self.name>>:
type component <<self.equivalent().TTCNname()>> {
timer T_elapsedTimeOfComponent := mp_componentElapsedTimerMaxDuration;
<< timer.collect(t | "timer " +t.TTCNname()).concat(";")>>
<< variable.collect(v | "var " +v.dataType.TTCNname()+" "+v.TTCNname()).concat(";")>>
<< gateInstance.collect(g | "port " +g.equivalent().type.TTCNname() + " " + g.equivalent().TTCNname()).concat(";")>>
}
NOTE:	mp_componentElapsedTimerMaxDuration is a float module parameter that determines the maximal duration of the lifetime of componentInstances.
If the 'ComponentType’ has an extension then:
type component <<self.equivalent().TTCNname()>> extends <<self.extension.extending.equivalent().TTCNname())>> {}
EXAMPLE:
TDL:

TTCN-3:
type component CompType_CT {
timer T_elapsedTimeOfComponent := mp_componentElapsedTimerMaxDuration;
timer T_T1;
timer T_T2;
var DT1 v_V1;
var DT2 v_V2;
port GT_PT G;
}
[bookmark: _Toc49264882]8.2.6	ComponentInstance
A 'ComponentInstance' in the role of 'Tester' is mapped to a parallel test component (PTC). The PTC is created by the 'TestConfiguration'. The variable that holds the address of the PTC is defined in the component type of MTC (see clause 8.2.11).
[bookmark: _Toc49264883]8.2.7	ComponentInstanceRole
This metaclass is not to be mapped.
[bookmark: _Toc49264884]8.2.8	GateReference
A 'GateReference' shall be mapped to:
<<self.gate.TTCNname()>>
[bookmark: _Toc49264885]8.2.9	Connection
In TTCN-3, only the behaviour of the testers can be defined. Therefore only the Tester-SUT and inter-Tester 'Connection's shall be mapped, while the inter-SUT 'Connection's shall not be mapped. The Tester-SUT connections shall be mapped to map instructions, while the inter-Tester connections to connect instructions.
Tester-SUT 'Connection's (If one <<self.endpoint.component.role>> is SUT):
map(<<self.endPoint->at(0).component.TTCNname()>> : <<self.endPoint-> at(0).equivalent().gate.TTCNname()>> , <<self.endPoint->at(1).component.TTCNname()>> : <<self.endPoint->at(1).equivalent().gate. TTCNname()>>);
where at the "SUT side" of the 'Connection' system shall be used instead of self.endpoint.component.TTCNname().
Inter-Tester connections (If both <<self.endpoint.component.role>> are Tester):
connect(<<self.endPoint->at(0).component.TTCNname()>> : <<self.endPoint-> at(0).gate.equivalent().TTCNname()>> , <<self.endPoint->at(1).component.TTCNname()>> : <<self.endPoint->at(1).gate.equivalent().TTCNname()>>);
Inter-SUT connections (If both <<self.endpoint.component.role>> are SUT): no code shall be generated.
[bookmark: _Toc49264886]8.2.10	TestConfiguration
A 'TestConfiguration' is mapped to a function that creates and connects the corresponding parallel test components (PTCs). The variables that store the addresses of the created PTCs are defined in the component type of MTC.
Alternatively, if in an implementation usage of a function for this purpose is inconvenient, then the body of the below defined function may be generated into the testcase at the same place where this function is called (see clause 9.2.1):
function f_setupTestConfiguration<<self.TTCNname()>> () runs on MTC_CT {
<< componentInstance.select(c | c.role = Tester).collect(c | c.TTCNname() + " := " + c.type.equivalent().TTCNname()+".create").concat(";")>>
<< connection.collect(c | as in 8.2.9).concat(";")>>
}
[bookmark: _Toc49264887]8.2.11	Definition of the component type of MTC
In TTCN-3, the test cases are executed on a component instance called main test component (MTC). The TTCN-3 code shall also contain the definition of the component type of the MTC. This component type shall contain no gate instance definitions, but shall contain variable definitions that will be used to store the addresses of the PTCs used in the test configuration. The recommended naming convention for these variables are: vc_ <<self.name>>:
type component MTC_CT {
<< componentInstance.select(c | c.role = Tester).collect(c | "var "+c.type.equivalent().TTCNname() + " vc_" + c.TTCNname()).concat(";")>>
}
[bookmark: _Toc49264888]8.2.12	Definition of the component type of system
If a 'TestConfiguration' contains only one 'ComponentInstance' in the role SUT, then its type will be the type of the system component in TTCN-3. If it contains 'Variable's, 'Timer's, they shall not to be mapped, only the 'GateInstance's:
type component System_CT {
<< gateInstance.collect(g | "port " +g.equivalent().type.equivalent().TTCNname() + " "+g.equivalent().TTCNname()).concat(";")>>
}
[bookmark: _Toc49264889]8.3	Mapping of TestConfiguration Elements in Special Cases
[bookmark: _Toc49264890]8.3.1	Introduction
This clause collects the cases when the TTCN-3 test configuration will differ from the TDL test configuration due to connectivity restrictions in TTCN-3. These situations can be eliminated from the TDL 'TestDescriptions' by applying a proper model transformation or can be handled as special cases during the mapping.
In a TDL description the combination of some or all the following cases may exist.
NOTE:	Because mapping of these special cases will require to define additional/different ports, components in TTCN-3, it may mean that two component or gate instances that had the same type in TDL may have different types in TTCN-3. It may cause duplications in the TTCN-3 code and may cause that referencing 'TestDescription's on compatible 'TestConfiguration's will not be possible without regenerating the code of the referenced 'TestDescription' with the 'TestConfiguration' of the referencing 'TestDescription'.
[bookmark: _Toc49264891]8.3.2	Connectable and mappable GateType
In several TTCN-3 frameworks, it shall be declared at the port type definition if the instances of that port type are either connectable or mappable, but not both. In these frameworks a 'GateType' whose instances take part both in 'Connection's between a 'ComponentInstance' in the role of 'Tester' and a 'ComponentInstance' in the role of 'SUT' (Tester-SUT connection) and in 'Connection's between 'ComponentInstance's in the role of 'Tester' (inter-Tester connection) shall be mapped to two different port types.
The recommended naming convention: <<self.type.name>>_to_map_GT and <<self.type.name>>_to_connect_GT.
EXAMPLE:
TDL:

TTCN-3:
type port GT1_to_map_PT message {
inout DT1, DT2;
}
type port GT1_to_connect_PT message {
inout DT1, DT2;
}
[bookmark: _Toc49264892]8.3.3	A gate connected to a Tester and an SUT
In TDL, a 'GateReference' can be connected both to a 'ComponentInstance' in the role of 'Tester' and a 'ComponentInstance' in the role of 'SUT', which is not allowed in TTCN-3. In this case each related 'GateInstance' shall be mapped to two port instances, one for connections, one for mappings.
The recommended naming convention for 'GateInstance's: <<self.name>>_to_map and <<self.name>>_to_connect.
EXAMPLE:
TDL:

TTCN-3:

[bookmark: _Toc49264893]8.3.4	More than one SUT
In TDL, more SUTs can be specified, while in TTCN-3 only one system can exist. In this case the 'SUT' shall be "united" to one system. This means that in the type definition of the system component as may ports shall be specified, as many 'GateInstance's all the 'ComponentInstance's in the role of 'SUT' have altogether.
The recommended naming convention for the port names of the component type of the system: use the name of that Tester 'ComponentInstance' from which the gate is connected.
EXAMPLE:
TDL:

TTCN-3 equivalent:

type component System_CT {
port GT1_PT		SAg_from_TA;
port GT2_PT		SBg_from_TB;
}
[bookmark: _Toc49264894]8.3.5	A gate of a Tester is connected to more SUTs
In TDL, a 'GateReference' of a 'ComponentInstance' in the role of 'Tester' may be connected to more than one different 'ComponentInstance' in the role of 'SUT', but in TTCN-3 a port can be mapped only to one system port. In these cases the 'GateInstance' of a 'Tester' shall be mapped to multiple ports. Consequence: a new component type with multiple port instances of the same type is required for that 'ComponentInstance'.
NOTE:	The TTCN-3 component type may be different of 'ComponentInstance's of the same TDL 'ComponentType'.
Naming convention for the 'multiplied' Tester ports: use the name of that SUT to which it is connected.
EXAMPLE:
In TDL (type of TA, TB is the same: TType):

In TTCN-3 the type of TA and TB become different:

type component TType_CT { //'regular' component type; type of TB
port GT_PT_	Tg;
}
type component TType_for_TA_CT { // component type of TA
port GT_PT		Tg_to_SA;
port GT_PT		Tg_to_SB;
}
[bookmark: _Toc49264895]8.3.6	A gate is connected to more gates of the same component
In TDL, a 'GateReference' of a 'ComponentInstance' in the role of 'Tester' may be connected to more than one different GateReference's of another 'ComponentInstance', while in TTCN-3 it is not allowed to connect or map a port instance to multiple port instances of the same component instance or to the system. In these cases the 'GateInstance' in question of a 'Tester' shall be mapped to multiple ports. Consequence: a new component type with multiple port instances of the same type is required for that 'ComponentInstance'.
NOTE:	The TTCN-3 component type may be different of 'ComponentInstance's of the same TDL 'ComponentType'.
The recommended naming convention for the "multiplied" Tester ports: use the name of the gate to which it is connected.
EXAMPLE:
In TDL (Type of T is TType, Type of C is CType):

TTCN-3 equivalent:

type component TType_for_T_CT { // component type of T
port GT_PT		Tg_to_CAg;
port GT_PT		Tg_to_CBg;
}
[bookmark: _Toc49264896]9	Test Behaviour
[bookmark: _Toc49264897]9.1	Overview
In TDL, a 'TestDescription' describes the behaviour of all the 'ComponentInstances' as a whole, while in TTCN-3, every component executes its own behaviour, independently from the others. The other main semantical difference between TDL and TTCN-3 is that in TDL a 'TestDescription' can call another 'TestDescription' by 'TestDescriptionReference', while in TTCN-3 a testcase cannot be called by another testcase.
The overview of the mapping of the behavioural concepts of TDL is the following.
A 'TestDescription' is mapped to:
A testcase that runs on the MTC_CT and System_CT.
Each 'ComponentInstance' will have its own function called f_startOf' that consists of two parts. It performs the necessary initializations (activate defaults, starting the timer that is used to measure the time in the component, etc.) and calls the behaviour function (called f_behaviourOf') of that component instance that describes the behaviour of that component. The function f_startOf will be started by the testcase.
If a 'TestDescription' is called by another 'TestDescription' then the behaviour functions related to the called 'TestDescription's will be called from the behaviour functions related to the calling 'TestDescription'.
The 'CombinedBehaviour's will be mapped to their TTCN-3 counterparts in each participating component's behaviour function.
The 'Interaction's will be mapped to send and/or receive instructions in the behaviour functions of the related 'Tester' 'ComponentInstance's.
[bookmark: _Toc49264898]9.2	Mapping of Test Description Elements
[bookmark: _Toc49264899]9.2.1	TestDescription
A 'TestDescription' shall be mapped to a testcase and to two functions running on each 'ComponentInstance'. The first function is called f_startOfComponentInstanceName and the second function is called f_behaviourOfComponentInstanceNameInTestDescriptionName.
The testcase:
testcase <<self.TTCNname()>> (<< self.formalParameter.collect(fp | fp.dataType.TTCNname() + " "+ fp.TTCNname()).concat(", ")>>) runs on MTC_CT system System_CT {
If there is a 'testObjective':
<< self.testObjective.collect(t | t).concat("\n")>>
Call the function establishes the configuration:
f_setupTestConfiguration<<self.testConfiguration.TTCNname()>>();
If there is a 'behaviourDescription' defined:
<<self.testConfiguration.componentInstance.select(c | c.role = Tester).collect(c | " vc_" + c.TTCNname() + ".start(f_startOf" + c.TTCNname() +" (" + self.formalParameter.collect(fp |fp.TTCNname()).concat(", ") + "))").concat(";\n")>>
If there is a port(s) in the Tester component that is connected to more than one other Tester component ("multiple connection"), then the f_startOf function - after the "testcase parameters" specified above - shall have as many additional actual parameters, as the number of Tester components which are used in 'multiple connection's. These additional actual parameters shall be the names of the corresponding component reference variables that are defined in the component type of the MTC (see clause 8.2.11).
all component.done;
}
Apart from the testcase definition above, the following specifications shall also be made:
If there is 'behaviourDescription' defined, an altstep to handle the deviations from specification:
altstep to_handle_deviations_from_TDL_description_AS (){
[] any port.receive {
setverdict(fail);
}
[] any port.getcall {
setverdict(fail);
}
}
NOTE 1:	Component type for MTC (MTC_CT) and system (System_CT) has to be created as well, see clauses 8.2.11 and 8.2.12, respectively.
If there is a 'behaviourDescription' defined, then for each 'Tester' 'componentInstance' of the 'testConfiguration' a function to be started on that component shall be generated. This function will perform the initializations (default, timer) and call the behaviour function that describes the behaviour of that 'ComponentInstance':
<<self.testConfiguration.componentInstance.select(c | c.role = Tester).collect(c | "f_startOf" + c.TTCNname() +"(" + self.formalParameter.collect(fp | fp.dataType.TTCNname() + " " + fp.TTCNname()).concat(", ") + ") runs on " + c.type.equivalent().TTCNname() + "{
activate (to_handle_deviations_from_TDL_description_AS ());
T_elapsedTimeOfComponent.start;
f_behaviourOf" + c.TTCNname() + "In" +self.TTCNname() + "(" + self.formalParameter.collect(fp | fp.TTCNname()).concat(", ") + ");"
}").concat("\n")>>
NOTE 2:	The name of the behaviour function contains the name of the component instance and the name of the test description.
If there is a port(s) in the 'Tester' component that is connected to more than one other 'Tester' component ("multiple connection"), then:
The f_startOf function above - after the "testcase parameters" - shall have as many additional formal parameters, as the number of Tester components which are used in 'multiple connection's. The type name of these additional formal parameters shall be the TTCN-3 type name of the corresponding Tester component, while the name of that formal parameter shall be the same as the name of the corresponding component reference variable (defined in the component type of the MTC (see clause 8.2.11)) but the recommended naming convention is pl_ instead of vc_.
The f_behaviourOf function above - after the "testcase parameters" - shall have as many additional actual parameters, as the number of Tester components which are used in 'multiple connection's. These additional actual parameters shall be the names of the corresponding formal parameters of the startOf function.
If there is a 'behaviourDescription' defined, then for each 'Tester' 'componentInstance' of the 'testConfiguration' a behaviour function shall be generated. The body of this function will contain the 'Behaviour's to be executed by that 'ComponentInstance' as described in clauses 9.3 and 9.4 and activates 'ExceptionalBehaviour's for that 'ComponentInstance' as described in clause 9.3.14:
<<self.testConfiguration.componentInstance.select(c | c.role = Tester).collect(c | "f_behaviourOf" + c.TTCNname() + "In" +self.TTCNname() + "(" + self.formalParameter.collect(fp | fp.dataType.TTCNname() + " " + fp.TTCNname()).concat(", ") + ") runs on " + c.type.equivalent().TTCNname() + " {
Here comes the behaviour of that 'componentInstance'
}").concat("\n")>>
If there are port(s) in the Tester component that are connected to more than one other Tester component ("multiple connection"), then the f_behaviourOf function above - after the "testcase parameters" - shall have as many additional formal parameters, as the number of Tester components which are used in 'multiple connection's. The type name of these additional formal parameters shall be the TTCN-3 type name of the corresponding Tester component, while the name of the formal parameter shall be the same as the name of the corresponding component reference variable (defined in the component type of the MTC (see clause 8.2.11)), but the recommended naming convention is pl_ instead of vc_.
If 'ExceptionalBehaviour'(s) whose target-of-exceptional is a Tester component with "multiple connections" , then these additional parameters shall be passed to every altstep and default activation that are related to this behaviour function (see clause 9.3.14).
Constraints
Only 'TestDescription's with the property 'isLocallyOrdered' set to 'true' can be mapped.
[bookmark: _Toc49264900]9.2.2	BehaviourDescription
This metaclass has no dedicated mapping, it is used solely in mapping of other metaclasses (see clause 9.2.1).
[bookmark: _Toc49264901]9.3	Mapping of Combined Behaviour elements
[bookmark: _Toc49264902]9.3.1	Behaviour
This is an abstract metaclass, therefore no mapping is defined. Mapping of 'Behaviour' depends on its sub-class.
If self.testObjective is not empty:
/*
Test Objective Satisfied: << testObjective.collect(t | t.name).concat(",")>>
*/
[bookmark: _Toc49264903]9.3.2	Block
'Block' cannot be mapped in general, mapping depends on in which 'combinedBehaviour' it is used.
[bookmark: _Toc49264904]9.3.3	LocalExpression
This metaclass has no dedicated mapping, it is used solely in mapping of other metaclasses.
[bookmark: _Toc49264905]9.3.4	CombinedBehaviour
This is an abstract metaclass, therefore no mapping is defined. A 'CombinedBehaviour' shall be mapped to its TTCN3 counterparts depending on its sub-class. The corresponding TTCN-3 counterpart shall be generated into the behaviour function(s) of the participating component(s).
[bookmark: _Toc49264906]9.3.5	SingleCombinedBehaviour
This is an abstract metaclass, therefore no mapping is defined.
[bookmark: _Toc49264907]9.3.6	CompoundBehaviour
A 'CompoundBehaviour' shall be mapped to a TTCN-3 instruction group (if it has no guard) or to an if instruction (if it has a guard):
If self.block has no guard:
{
self.block.behaviour
}
If self.block has a 'guard' then the 'guard' specified for the corresponding 'ComponentInstance' shall be used:
if (<<self.block.guard.expression>>) {
self.block.behaviour
}
[bookmark: _Toc49264908]9.3.7	BoundedLoopBehaviour
A 'BoundedLoopBehaviour' shall be mapped to a TTCN-3 for cycle. In the cycle the 'numIteration' specified for the corresponding 'ComponentInstance' shall be used:
The cycle variable (cv in the example below) shall be unique.
for(var integer cv :=0; cv < <<self.numIteration.expression>>; cv:=cv+1) {
self.block.behaviour
}
Constraints
Only 'BoundedLoopBehaviour's with an integer numIteration.expression can be mapped.
[bookmark: _Toc49264909]9.3.8	UnboundedLoopBehaviour
An 'UnboundedLoopBehaviour' shall be mapped to a TTCN-3 while cycle.
If self.block has a guard then the 'guard' specified for the corresponding 'ComponentInstance' shall be used:
while (<<self.block.guard.expression>>) {
self.block.behaviour
}
If self.block has no guard:
while (true) {
self.block.behaviour
}
[bookmark: _Toc49264910]9.3.9	OptionalBehaviour
The 'OptionalBehaviour' shall be mapped as the followings:
At the source side:
In the behaviour function of the source component an if instruction, in which the condition is determined by the <<self.block.guard.expression>>.
if (<<self.block.guard.expression>>) {self.block.behaviour}
At the target(s) side:
An altstep shall be defined. This altstep shall have a unique name, it shall have a runs on clause with the (equivalent()) component type of the target component and it shall contain one alternative branch with the behaviour of the 'OptionalBehaviour' at the target side. As the last instruction of that alternative a TTCN-3 repeat instruction shall be generated.
In the behaviour function of the target 'ComponentInstance'(s), the corresponding altstep has to be activated as the mapped code of the given 'OptionalBehaviour' and shall be deactivated when the next 'Instruction' whose source is the same tester as the source of the 'OptionalBehaviour' (will be called as 'next input from the same Tester'). For the default activation a unique default type variable (vd_dv in the example below) shall be used.
Since the TTCN-3 standard does not specify in details how the deactivation of a default shall be implemented and the possible solutions for mapping the 'OptionalBehaviour' may have performance and/or memory consumption side-effects in certain cases, there is no standardized mapping provided how the 'OptionalBehaviour' shall be mapped at the target side, though some possible solutions are listed below.
NOTE:	This may cause that the TTCN-3 code generated by different tools using different approaches may be incompatible and may require the re-generation of the TTCN-3 code from the TDL descriptions by the same tool.
The possible solutions:
1. The altstep (as_for_optional_id_AS, where the id part is different for each 'OptionalBehaviour') containing the code of the 'Optional'Behaviour' at the target side is not deactivated when it is activated and executed, only when the next input from the same tester arrives:
altstep as_for_optional_id_AS () runs on <<target.type.equivalent().TTCNname()>>{
[] receiving the first tester-to-tester interaction{
rest of the behaviour of the 'OptionalBehaviour'
repeat;
}
}
Into the behaviour function of the target component:
var default vd_dv := activate (as_for_optional_id_AS());
code following 'OptionalBehaviour' up to the input from the same Tester
deactivate(vd_dv);
In each 'ComponentType' a Boolean array is defined, that controls if the altstep containing the code of the 'Optional'Behaviour' at the target side is executed or not. When the corresponding altstep is activated a new element is added to the end of the array with a 'true' value indicating that the altstep can be executed. If the altstep is activated, the corresponding element of the array is set to false that will cause to disable further execution of that altstep. The disadvantage of this solution is the potentially infinite size of the controlling array, and the fact that the defaults will not be deactivated, but the size of the elements of the controlling array is small:
type record of boolean BoolArray;

type component CompType_CT {
var BoolArray optionalEnabled := {};
var integer optionalCount := 0;
//other definitions
}

altstep as_for_optional_id_AS(integer index) runs on CompType_CT {
[optionalEnabled[index]] receiving the first tester-to-tester interaction {
rest of the behaviour of the 'OptionalBehaviour'
optionalEnabled[index] := false;
repeat;
}
}
function behaviourOfCompType_CTInTestDescriptionTD () runs on CompType_CT {
//...
//when 'OptionalBehaviour' occurs:
optionalCount := lengthof(optionalEnabled);
optionalEnabled[optionalCount] := true;
activate(as_for_optional_id_AS (optionalCount));
//...
}
It is similar to the previous solution. The main difference is that instead of a Boolean array the elements of the controlling array are records with two fields: the first field is Boolean with the same purpose as in the previous case, while the second element can store a default reference that can be used for deactivation of the corresponding default from the altstep. But since according to the TTCN-3 standard, if a deactivated default is deactivated again, it causes a test case error, to prevent the situation when a default is deactivated from the altstep and at the place where the next input from the same tester arrives a local variable shall be defined for each 'OptionalBehaviour' to store the index of the last element of the controlling array at the activation.
The disadvantage of this solution is the potentially infinite size of the controlling array, and the size of the elements is larger than in the previous solution, but the defaults will be deactivated:
type record DefEn {
boolean optEn,
default def
}

type record of DefEn DefEnArray;

type component CompType_CT {
var DefEnArray optDefaultEnabler := {};
// other definitions
}
altstep as_for_optional_id(integer index) runs on C {
[optDefaultEnabler[index].optEn] receiving the first tester-to-tester interaction {
rest of the behaviour of the 'OptionalBehaviour'
optDefaultEnabler[index].optEn := false;
deactivate (optDefaultEnabler[index].def);
repeat;
}
}
function behaviourOfCompType_CTInTestDescriptionTD() runs on CompType_CT {
var integer optionalCountAtActivationOfas_for_optional_id_AS := lengthof(optDefaultEnabler);

//...
//when 'OptionalBehaviour' occurs:
optDefaultEnabler[optionalCountAtActivationOfas_for_optional_id_AS].optEn := true;
optDefaultEnabler[optionalCountAtActivationOfas_for_optional_id_AS].def := activate(Optional_1_AS(optionalCountAtActivationOfas_for_optional_id_AS));

//...
//when the next input from same Tester arrives
if (optDefaultEnabler[optionalCountAtActivationOfas_for_optional_id_AS].optEn == true) {
// The default was not deactivated in the body of optional
deactivate (optDefaultEnabler[optionalCountAtActivationOfas_for_optional_id_AS].def);
}
}

[bookmark: _Toc49264911]9.3.10	MultipleCombinedBehaviour
This is an abstract metaclass, therefore no mapping is defined.
[bookmark: _Toc49264912]9.3.11	AlternativeBehaviour
An 'AlternativeBehaviour' shall be mapped to a TTCN-3 alt instruction into the behaviour function of the target-of-alt component. In the alt instruction each 'Block' shall represent one alternative in the order of their definition:
alt{
If self.block has a guard
[<<self.block.guard.expression>>] first tester-input event of self.block {
rest of self.block.behaviour
}
If self.block has no guard:
[] first tester-input event of self.block {
rest of self.block.behaviour
}
}
If a 'Quiescence' occurs as the first tester-input event of a 'Block' of an 'AlternativeBehaviour' then:
the timer (Tl_quiescence_id - see clause 7.2.8) associated to the corresponding 'Quiescence' shall be started before the alt instruction;
the first tester-input event in the corresponding alt branch shall be Tl_quiescence_id.timeout;
the body of the corresponding alt branch shall start with setverdict(pass); followed by the rest of self.block.behaviour.
[bookmark: _Toc49264913]9.3.12	ConditionalBehaviour
A 'ConditionalBehaviour' shall be mapped to a TTCN-3 if instruction. For the condition of the if instruction the 'guard' specified for the corresponding 'ComponentInstance' shall be used.
If the 'ConditionalBehaviour' contains more than one 'Block' then the following block(s) shall be added as else if instruction(s) or, if the last 'Block' has no 'guard' then by an else instruction:
if (<<self.block.guard.expression>>) {self.block.behaviour}
For the additional 'Block'(s):
else if …
If the last 'Block' has no guard:
else …
[bookmark: _Toc49264914]9.3.13	ParallelBehaviour
This metaclass is not to be mapped.
[bookmark: _Toc49264915]9.3.14	ExceptionalBehaviour
For each 'CombinedBehaviour' to which an 'ExceptionalBehaviour' is attached, for each target-of-exceptional tester component an altstep shall be defined. (A tester component is called as target-of-exceptional if the target of the first tester-input event of an 'ExceptionalBehaviour is that component.)
This altstep:
shall have a unique name;
shall have a runs on clause with the (equivalent()) component type of that target-of-exceptional component;
shall contain - as alternatives - all the 'ExceptionalBehaviour's that are targeted to that 'ComponentInstance' in their definition order.
In the behaviour function of the target-of-exceptional 'ComponentInstance'(s), the corresponding altstep has to be activated in front of the mapped code of the given 'CombinedBehaviour' and shall be deactivated right after the mapped code of the given 'CombinedBehaviour.
If the 'ExceptionalBehaviour' is attached to a 'TestDescription', then the corresponding altstep(s) shall be activated at the beginning of the behaviour functions of the targeted 'ComponentInstances' of that 'TestDescription' and shall be deactivated at the end of them.
For each default activation a unique default type variable (vd_dv in the example below) shall be used. The recommended naming convention for these default variables is vd_.
In case of an 'InterruptBehaviour', a TTCN-3 repeat instruction shall be generated as the last instruction of its block.
[bookmark: EDM_temp_]NOTE 1:	If the behaviour function of the target-of-exceptional component has additional parameters related to "multiple connections" (as is specified in clause 9.2.1) then these parameters have to be added to the parameter list of the altstep.
altstep as_AS() runs on <<target-of-exceptional.type.equivalent().TTCNname()>>{
[] ….
[] ….
}
Into the behaviour function of the target-of-exceptional component:
var default vd_dv := activate (as_AS());
code of combinedBehaviour
deactivate(vd_dv);
NOTE 2:	If the behaviour function of the target-of-exceptional component has additional parameters related to "multiple connections" (as is specified in clause 9.2.1) then these parameters have to be added to the parameter list of the altstep at the activation.
Constraints
There is no standardized mapping defined for 'ExceptionalBehaviour's with 'Quiescence' as the first tester-input event.
EXAMPLE:
TDL:

TTCN-3:
altstep t1_AS() runs on T1CT_CT {
[] gt1.receive(Message1){
//Additional behaviour of default1
}
[] gt1.receive(Message3){
//Additional behaviour of interrupt
repeat;
}
}
altstep t2_AS() runs on T2CT_CT {
[] gt2.receive(Message2){
//Additional behaviour of default1
}
}
Into the behaviour function of tester T1:
f_behaviourOfT1InTestDescription1 () runs on T1CT_CT{
var default vd_1;
//. . .
vd_1 := activate(t1_AS());
//Behaviour of compound
deactivate(vd_1);
//. . .
}
Into the behaviour function of tester T2:
f_behaviourOfT2InTestDescription1 () runs on T2CT_CT{
var default vd_2;
//. . .
vd_2 := activate(t2_AS());
//Behaviour of compound
deactivate(vd_2);
//. . .
}
[bookmark: _Toc49264916]9.3.15	DefaultBehaviour
Mapping of this metaclass is specified in clause 9.3.14.
[bookmark: _Toc49264917]9.3.16	InterruptBehaviour
Mapping of this metaclass is specified in clause 9.3.14.
[bookmark: _Toc49264918]9.3.17	PeriodicBehaviour
This metaclass is not to be mapped.
[bookmark: _Toc49264919]9.4	Mapping of Atomic Behaviour Elements
[bookmark: _Toc49264920]9.4.1	AtomicBehaviour
This is an abstract metaclass, therefore no mapping is defined.
[bookmark: _Toc49264921]9.4.2	Break
The 'CombinedBehaviour' containing the 'ConditionalBehaviour' in which the 'Break' occurs is called as enclosing 'CombinedBehaviour'. If the enclosing 'CombinedBehaviour' is a 'BoundedLoopBehaviour', an 'UnboundedLoopBehaviour' or an 'AlternativeBehaviour' then the 'Break' shall be mapped to a break instruction, otherwise to a label at the end of the enclosing 'CombinedBehaviour' and a goto jumping to that label. If 'ExceptionalBehaviour's are defined for the containing 'ConditionalBehaviour' and/or for the enclosing 'CombinedBehaviour', then the corresponding defaults shall be deactivated before the break or after the label, respectively in reverse order of their activation. The TTCN-3 code shall be inserted to the behaviour function of all the participating components.
If the enclosing 'CombinedBehaviour' of a 'Break' is a 'BoundedLoopBehaviour', an 'UnboundedLoopBehaviour' or an 'AlternativeBehaviour':
	here comes the deactivation of all defaults defined in the containing 'ConditionalBehaviour' and/or the enclosing 'CombinedBehaviour' and/or- -if there were any - in reverse order of their activation.
break;
If the enclosing 'CombinedBehaviour' of a 'Break' is other than 'BoundedLoopBehaviour', 'UnboundedLoopBehaviour' or 'AlternativeBehaviour'.
At the place where 'Break' occurs:
goto Label_id;
At the end of the enclosing 'CombinedBehaviour':
label Label_id;
	here comes the deactivation of all defaults defined in that 'CombinedBehaviour' - -if there were any - in reverse order of their activation.
The '_id' part of the label name shall be a unique identifier (each label shall be different).
[bookmark: _Toc49264922]9.4.3	Stop
A 'Stop' shall be mapped to:
mtc.stop;
The TTCN-3 code shall be inserted to the behaviour function of all components.
[bookmark: _Toc49264923]9.4.4	VerdictAssignment
The 'VerdictAssignment' shall be mapped to a setverdict operation in the behaviour function of all the participating components.
setverdict (<<self.verdict>>);
Constraints
Only predefined 'SimpleDataInstance's ('pass', 'fail' and 'inconclusive') of the predefined 'SimpleDataType' 'Verdict' shall be mapped.
[bookmark: _Toc49264924]9.4.5	Assertion
Into the behaviour function determined by self.componentInstance:
If 'otherwise' is specified:
if (<<self.condition>>) {setverdict(pass)}
else {setverdict(<<self.otherwise>>)};
If 'otherwise' is not specified:
if (<<self.condition>>) {setverdict(pass)}
else {setverdict(fail)};
Constraints
Only predefined 'SimpleDataInstance's ('pass', 'fail' and 'inconclusive') of the predefined 'SimpleDataType' 'Verdict' shall be mapped.
[bookmark: _Toc49264925]9.4.6	Interaction
This is an abstract metaclass, therefore no mapping is defined.
[bookmark: _Toc49264926]9.4.7	Message
A 'Message' shall be mapped to TTCN-3 send and/or receive/trigger instructions in the behaviour function(s) of the tester component(s) involved in the 'Message'.
If the sender of the 'Message' is a 'Tester' (self.sourceGate.componentInstance.role = ComponentInstanceRole::Tester), then into the behaviour function of that 'ComponentInstance' the following TTCN-3 code shall be inserted:
<<self.sourceGate.gate.equivalent().TTCNname()>>.send(<<self.argument>>);
If the sending gate is connected to more than one gate, then the TTCN-3 to clause shall be used to determine the target(s) of the interaction.
If only one target is specified:
	<<self.sourceGate.gate.equivalent().TTCNname()>>.send(<<self.argument>>) to <<self.target.targetGate.component.TTCNname()>>;
If more than one targets are specified (multi-cast message):
	<<self.sourceGate.gate.equivalent().TTCNname()>>.send(<<self.argument>>) to (<<self.target.collect(t | t.targetGate.component.TTCNname()).concat(",")>>);
NOTE:	In situations described in clause 8.3, if the original gate is 'split' to multiple ports, then in case of a multi-cast message sending instructions may be generated on several 'splitted' ports.
If a target of the 'Message' is a 'Tester' (any of self.target.componentInstance.role = ComponentInstanceRole::Tester), then into the behaviour function of that/those 'ComponentInstance'(s) the following TTCN-3 code shall be inserted:
	<<self.target.targetGate.gate.equivalent().TTCNname()>>.receive(<<self.argument>>);
If a target gate is connected to more than one gate, then the TTCN-3 from clause shall be used to determine the sender of the interaction:
	<<self.target.targetGate.gate.equivalent().TTCNname()>>.receive(<<self.argument>>) from <<self.sourceGate.component.equivalent().TTCNname()>>;
If a variable is specified at a target, then the TTCN-3 value redirection shall be used:
	<<self.target.targetGate.gate.equivalent().TTCNname()>>.receive(<<self.argument>>) -> value <<self.target.valueAssignment.variable.TTCNname()>> ;
If the type of the argument extends the type of the variable then an additional variable (argVariable) of argument’s type is used and the value shall be assigned to the actual variable using field assignment:
	<<self.target.valueAssignment.variable.TTCNname()>> := { <<self.target.valueAssignment.variable.allMembers().collect(m | <<m.TTCNname()>> + " := " + argVariable + "." + <<m.TTCNname()>>).concat(",")>> }
If the 'isTrigger' property is set, then instead of a receive, a trigger instruction shall be used.
[bookmark: _Toc49264927]9.4.8	ProcedureCall
A ProcedureCall' shall be mapped to TTCN-3 Procedure-based communication instructions.
A procedure call consists of one calling and one or more reply 'ProcedureCall's. The lifeline of the called component instance of a procedure call if notation (b) defined in 6.5.1 is used or the lifeline of the corresponding gate instance of that component instance if notation (a) defined in 6.5.1 is used shall be modified between the calling and the last reply ProcedureCalls: instead of a line a narrow rectangle, a so called 'ExecutionSymbol' shall be used.
If 'the caller of the procedure call is a 'Tester', and there is only one reply, which is not in a 'Block' of an 'AlternativeBehaviour', then into the behaviour function of the caller 'ComponentInstance' the following TTCN-3 code shall be inserted:
	<<self.sourceGate.gate.equivalent().TTCNname()>>.call(<<self.signature.TTCNname()>> : { <<self.argument.collect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }) {
If the reply contains OUT parameters:
[] <<self.target.targetGate.gate.equivalent().TTCNname()>>.getreply(<<self.signature.TTCNname()>> : { <<self.argument.collect(a | a.parameter.TTCNname() + " := " a.dataUse).concat(",")>> }) { }
}
or if the reply contains an EXCEPTION parameter:
[] <<self.target.targetGate.gate.equivalent().TTCNname()>>.catch(<<self.signature.TTCNname()>> , <<self.argument.dataUse>>) { }
}
If 'valueAssignment'(s) are specified in the reply, then:
if the reply contains OUT parameters:
[] <<self.target.targetGate.gate.equivalent().TTCNname()>>.getreply(<<self.signature.TTCNname()>> : { <<self.argumentcollect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }) -> param (<<self.target.valueAssignment.collect(v | v.variable.TTCNname() + " := " + v.parameter.TTCNname()>>){ };
}
or if the reply contains an EXCEPTION parameter:
[] <<self.target.targetGate.gate.equivalent().TTCNname()>>.catch(<<self.signature.TTCNname()>> , <<self.argument.dataUse>>) -> value <<self.target.valueAssignment.variable.TTCNname()>> { }
}
If the reply (replies) is (are) in 'Block's of an 'AlternativeBehaviour' then for the calling 'ComponentInstance':
	<<self.sourceGate.gate.equivalent().TTCNname()>>.call(<<self.signature.TTCNname()>> : { <<self.argument.collect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }, nowait);
Each reply shall be in a 'Block' of an 'AlternativeBehaviour':
If the reply contains OUT parameters without 'valueAssignment':
[] <<self.target.targetGate.gate.equivalent().TTCNname()>>.getreply(<<self.signature.TTCNname()>> : { <<self.argumentcollect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }){additional behaviour of that alternative }
If the reply contains OUT parameters with 'valueAssignment':
[] <<self.target.targetGate.gate.equivalent().TTCNname()>>.getreply(<<self.signature.TTCNname()>> : { <<self.argumentcollect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }) -> param (<<self.target.valueAssignment.collect(v | v.variable.TTCNname() + " := " + v.parameter.TTCNname()>>){additional behaviour of that alternative }
If the reply contains an EXCEPTION parameter without 'valueAssignment:
[] <<self.target.targetGate.gate.equivalent().TTCNname()>>.catch(<<self.signature.TTCNname()>> , <<self.argument.dataUse>>) { additional behaviour of that alternative }
}
or if the reply contains an EXCEPTION parameter with 'valueAssignment:
[] <<self.target.targetGate.gate.equivalent().TTCNname()>>.catch(<<self.signature.TTCNname()>> , <<self.argument.dataUse>>) -> value <<self.target.valueAssignment.variable.TTCNname()>> { additional behaviour of that alternative }
}
If 'the called party of the procedure call is a 'Tester' then into the behaviour function of the called 'ComponentInstance' the following TTCN-3 code shall be inserted:
For receiving the call without 'valueAssignment':
	<<self.target.targetGate.gate.equivalent().TTCNname()>>.getcall(<<self.signature.TTCNname()>> : { <<self.argumentcollect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> });
For receiving the call with 'valueAssignment':
	<<self.target.targetGate.gate.equivalent().TTCNname()>>.getcall(<<self.signature.TTCNname()>> : { <<self.argumentcollect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> }) -> param (<<self.target.valueAssignment.collect(v | v.variable.TTCNname() + " := " + v.parameter.TTCNname()>>);
For sending a reply with OUT parameters:
	<<self.target.targetGate.gate.equivalent().TTCNname()>>.reply(<<self.signature.TTCNname()>> : { <<self.argumentcollect(a | a.parameter.TTCNname() + " := " + a.dataUse).concat(",")>> });
For sending a reply with an EXCEPTION parameter:
	<<self.target.targetGate.gate.equivalent().TTCNname()>>.raise(<<self.signature.TTCNname()>> , <<self.argument.dataUse>>);
Constraints
Procedure calls for which the reply is not in a 'Block' of an 'AlternativeBehaviour' can only be mapped, if either its 'signature' has no EXCEPTION parameters, and the reply contains arguments only with OUT parameters, or if its 'signature' has no OUT parameters but it has only one EXCEPTION parameter, and the reply contains one argument with that EXCEPTION parameter.
If a reply in a 'Block' of an 'AlternativeBehaviour' carries an exception, then it shall have only one argument.
[bookmark: _Toc49264928]9.4.9	Target
This metaclass has no dedicated mapping, it is used solely in mapping of other metaclasses.
[bookmark: _Toc49264929]9.4.10	ValueAssignment
This metaclass has no dedicated mapping, it is used solely in mapping of other metaclasses.
[bookmark: _Toc49264930]9.4.11	TestDescriptionReference
A 'TestDescriptionReference' shall be mapped to calling the behaviour functions of the 'ComponentInstance's of the called 'TestDescription' from the behaviour functions of the corresponding 'ComponentInstance's of the called 'TestDescription'.
Into the behaviour function of each tester component the following code shall be generated:
<<behaviourFunctionInReferencedTD() +"(" + self.argument.collect(a | a.dataUse).concat(", ") + ");">>
	If there is a port(s) in the Tester component that is connected to more than one other Tester component ("multiple connection"), then the called behaviour function above - after the "testcase parameters" - shall have as many additional actual parameters, as the number of Tester components which are used in 'multiple connection's. The values of these additional actual parameters shall be the corresponding formal parameters of the calling behaviour function.
NOTE:	The behaviourFunctionInReferencedTD() returns by the name of the behaviour function of the corresponding tester component in the referenced 'TestDescription'.
Constraints
A 'TestDescriptionReference' can only be mapped if no 'componentInstanceBinding' is defined (that is when the configurations of the calling and called 'TestDescription's are the same).
[bookmark: _Toc49264931]9.4.12	ComponentInstanceBinding
This metaclass is not to be mapped.
[bookmark: _Toc49264932]9.4.13	ActionBehaviour
This is an abstract metaclass, therefore no mapping is defined. Mapping of 'ActionBehaviour' depends on its sub-class.
[bookmark: _Toc49264933]9.4.14	ActionReference
An 'ActionReference' shall be mapped to a TTCN-3 function call. The TTCN-3 code shall be inserted to the behaviour function of that 'ComponentInstance' which is referred to by the 'componentInstance' property:
<<self.action.TTCNname()>> (<< argument.collect(a | a.dataUse).concat(",")>>);
[bookmark: _Toc49264934]9.4.15	InlineAction
If the predefined annotation TTCN3Code is used then an 'InlineAction' shall be mapped to its body (that is a TTCN-3 code itself), otherwise it shall be mapped to a comment.
The TTCN-3 code or the comment, respectively shall be inserted to the behaviour function of that 'ComponentInstance' which is referred to by the 'componentInstance' property if it is set, otherwise to the behaviour function of all the participating components.
If the predefined annotation TTCN3Code is used:
//INLINE ACTION
<<self.body>>
If the predefined annotation TTCN3Code is not used:
/* INLINE ACTION
<<self.body>>
*/
[bookmark: _Toc49264935]9.4.16	Assignment
An 'Assignment' shall be mapped to a TTCN-3 assignment. The TTCN-3 code shall be inserted to the behaviour function of that 'ComponentInstance' which is referred to by the self.variable.componentInstance:
<<self.variable.variable.TTCNname()>> := <<self.expression>> ;
[bookmark: _Toc49264936]10	Predefined TDL Model Instances
[bookmark: _Toc49264937]10.1	Overview
[bookmark: _Toc49264938]10.2	Mapping of Predefined Instances of the 'SimpleDataType' Element
[bookmark: _Toc49264939]10.2.1	Boolean
The predefined 'SimpleDataType' 'Boolean' shall be mapped to TTCN-3 data type boolean.
[bookmark: _Toc49264940]10.2.2	Integer
The predefined 'SimpleDataType' 'Integer' shall be mapped to TTCN-3 data type integer.
[bookmark: _Toc49264941]10.2.3	String
The predefined 'SimpleDataType' 'String' shall be mapped to TTCN-3 data type charstring or to universal charstring.
[bookmark: _Toc49264942]10.2.4	Verdict
The predefined 'SimpleDataType' 'Verdict' shall be mapped to TTCN-3 data type verdicttype.
[bookmark: _Toc49264943]10.3	Mapping of Predefined Instances of 'SimpleDataInstance' Element
[bookmark: _Toc49264944]10.3.1	true
The predefined 'SimpleDataInstance' 'true' shall be mapped to true value of the TTCN-3 data type boolean.
[bookmark: _Toc49264945]10.3.2	false
The predefined 'SimpleDataInstance' 'false' shall be mapped to false value of the TTCN-3 data type boolean.
[bookmark: _Toc49264946]10.3.3	pass
The predefined 'SimpleDataInstance' 'pass' shall be mapped to pass value of the TTCN-3 data type verdicttype.
[bookmark: _Toc49264947]10.3.4	fail
The predefined 'SimpleDataInstance' 'fail' shall be mapped to fail value of the TTCN-3 data type verdicttype.
[bookmark: _Toc49264948]10.3.5	inconclusive
The predefined 'SimpleDataInstance' 'inconclusive' shall be mapped to inconc value of the TTCN-3 data type verdicttype.
[bookmark: _Toc49264949]10.4	Mapping of Predefined Instances of 'Time' Element
[bookmark: _Toc49264950]10.4.1	Second
The predefined instance 'Second' of the 'Time' element shall be mapped to TTCN-3 data type float.
[bookmark: _Toc49264951]10.5	Mapping of Predefined Instances of the 'Function' Element
[bookmark: _Toc49264952]10.5.1	Overview
[bookmark: _Toc49264953]10.5.2	Functions of Return Type 'Boolean'
==: instanceOf(DataUse), instanceOf(DataUse) Boolean
Denotes equality of the results from the evaluation of the 'DataUse's supplied as arguments. The 'DataUse's, shall refer to the same 'DataType'. Equality shall be determined based on content and not on identity.
This predefined function shall be mapped to the TTCN-3 == operator.
!=: instanceOf(DataUse), instanceOf(DataUse) Boolean
Denotes inequality of the results from the evaluation of the 'DataUse's supplied as arguments. The 'DataUse's, shall refer to the same 'DataType'. Inequality shall be determined based on content and not on identity.
This predefined function shall be mapped to the TTCN-3 != operator.
and: Boolean, Boolean Boolean
Denotes the standard logical AND operation.
This predefined function shall be mapped to the TTCN-3 and operator.
or: Boolean, Boolean Boolean
Denotes the standard logical OR operation.
This predefined function shall be mapped to the TTCN-3 or operator.
xor: Boolean, Boolean
Denotes the standard logical exclusive OR operation.
This predefined function shall be mapped to the TTCN-3 xor operator.
not: Boolean Boolean
Denotes the standard logical NOT operation.
This predefined function shall be mapped to the TTCN-3 not operator.
<: Integer, Integer Boolean
Denotes the standard mathematical less-than operation.
This predefined function shall be mapped to the TTCN-3 < operator, where the arguments shall be integer.
>: Integer, Integer Boolean
Denotes the standard mathematical greater-than operation.
This predefined function shall be mapped to the TTCN-3 > operator, where the arguments shall be integer.
<=: Integer, Integer Boolean
Denotes the standard mathematical less-or-equal operation.
This predefined function shall be mapped to the TTCN-3 <= operator, where the arguments shall be integer.
>=: Integer, Integer Boolean
Denotes the standard mathematical greater-or-equal operation.
This predefined function shall be mapped to the TTCN-3 >= operator, where the arguments shall be integer.
<: InstanceOf(Time), InstanceOf(Time) Boolean
Denotes the standard mathematical less-than operation.
This predefined function shall be mapped to the TTCN-3 < operator, where the arguments shall be float.
>: InstanceOf(Time), InstanceOf(Time) Boolean
Denotes the standard mathematical greater-than operation.
This predefined function shall be mapped to the TTCN-3 > operator, where the arguments shall be float.
<=: InstanceOf(Time), InstanceOf(Time) Boolean
Denotes the standard mathematical less-or-equal operation.
This predefined function shall be mapped to the TTCN-3 <= operator, where the arguments shall be float.
>=: InstanceOf(Time), InstanceOf(Time) Boolean
Denotes the standard mathematical greater-or-equal operation.
This predefined function shall be mapped to the TTCN-3 >= operator, where the arguments shall be float.
[bookmark: _Toc49264954]10.5.3	Functions of Return Type 'Integer'
The following functions of return type 'Integer' shall be predefined:
 +: Integer, Integer Integer
Denotes the standard arithmetic addition operation.
This predefined function shall be mapped to the TTCN-3 + operator, where the arguments shall be integer.
-: Integer, Integer Integer
Denotes the standard arithmetic subtraction operation.
This predefined function shall be mapped to the TTCN-3 - operator, where the arguments shall be integer.
*: Integer, Integer Integer
Denotes the standard arithmetic multiplication operation.
This predefined function shall be mapped to the TTCN-3 * operator, where the arguments shall be integer.
/: Integer, Integer Integer
Denotes the standard arithmetic integer division operation.
This predefined function shall be mapped to the TTCN-3 / operator, where the arguments shall be integer.
mod: Integer, Integer Integer
Denotes the standard arithmetic modulo operation.
This predefined function shall be mapped to the TTCN-3 mod operator, where the arguments shall be integer.
size: instanceOf(CollectionDataInstance) Integer
Returns the number of members in the 'CollectionDataInstance'.
This predefined function shall be mapped to the TTCN-3 lengthof predefined function.
[bookmark: _Toc49264955]10.5.4	Functions of Return Type of Instance of 'Time'
The following functions of return type of instance of the 'Time' meta-model element shall be predefined:
 +: instanceOf(Time), instanceOf(Time) instanceOf(Time)
Returns the sum of two time values of the same time data type, i.e. all parameters of the function definition shall refer to the same instance of the 'Time' element as data type.
This predefined function shall be mapped to the TTCN-3 + operator, where the arguments shall be float.
-: instanceOf(Time), instanceOf(Time) instanceOf(Time)
Returns the difference of two time values of the same time data type, i.e. all parameters of the function definition shall refer to the same instance of the 'Time' element as data type.
This predefined function shall be mapped to the TTCN-3 - operator, where the arguments shall be float.
[bookmark: _Toc49264956]
Annex A (informative):
Examples of mapping TDL to TTCN-3
[bookmark: _Toc49264957]A.1	Introduction
This annex provides the mappings of the same examples that were used in Annex B in ETSI ES 203 119-1 [1] and in Annex A of ETSI ES 203 119-3 [3].
[bookmark: _Toc49264958]A.2	A 3GPP Conformance Example in Textual Syntax
This example describes one possible way to translate clause 7.1.3.1 from ETSI TS 136 523-1 [i.1] into the proposed TDL textual syntax, by mapping the concepts from the representation in the source document to the corresponding concepts in the TDL meta-model by means of the proposed textual syntax. The example has been enriched with additional information, such as explicit data definitions and test configuration details for completeness where applicable.
TDL:
TDLan Specification Layer_2_DL_SCH_Data_Transfer {
 //Procedures carried out by a component of a test configuration
 //or an actor during test execution
 Action preCondition : "Pre-test Conditions:
 RRC Connection Reconfiguration" ;
 Action preamble : "Preamble:
 The generic procedure to get UE in test state Loopback
 Activated (State 4) according to ETSI TS 136 508 clause 4.5
 is executed, with all the parameters as specified in the
 procedure except that the RLC SDU size is set to return no
 data in uplink.
 (reference corresponding behavior once implemented" ;

 //User-defined verdicts
 //Alternatively the predefined verdicts may be used as well
 Type Verdict ;
 Verdict PASS;
 Verdict FAIL;

 //User-defined annotation types
 Annotation TITLE ; //Test description title
 Annotation STEP ; //Step identifiers in source documents
 Annotation PROCEDURE ; //Informal textual description of a test step
 Annotation PRECONDITION ; //Identify pre-condition behaviour
 Annotation PREAMBLE ; //Identify preamble behaviour.

 //Test objectives (copied verbatim from source document)
 Test Objective TP1 {
 from : "36523-1-a20_s07_01.doc::7.1.3.1.1 (1)" ;
 description : "with { UE in E-UTRA RRC_CONNECTED state }
 ensure that {
 when { UE receives downlink assignment on the PDCCH
 for the UE's C-RNTI and receives data in the
 associated subframe and UE performs HARQ
 operation }
 then { UE sends a HARQ feedback on the HARQ
 process }
 }" ;
 }
 Test Objective TP2 {
 from : "36523-1-a20_s07_01.doc::7.1.3.1.1 (2)" ;
 description : "with { UE in E-UTRA RRC_CONNECTED state }
 ensure that {
 when { UE receives downlink assignment on the PDCCH
 with a C-RNTI unknown by the UE and data is
 available in the associated subframe }
 then { UE does not send any HARQ feedback on the
 HARQ process }
 }" ;
 }

 //Relevant data definitions
 Type PDU;
 PDU mac_pdu ;

 Type ACK ;
 ACK harq_ack ;

 Type C_RNTI;
 C_RNTI ue;
 C_RNTI unknown;

 Type PDCCH (optional c_rnti of type C_RNTI);
 PDCCH;

 Type CONFIGURATION;
 CONFIGURATION RRCConnectionReconfiguration ;

 //User-defined time units
 Time Second;
 Second five;

 //Gate type definitions
 Gate Type defaultGT accepts ACK, PDU, PDCCH, C_RNTI, CONFIGURATION ;

 //Component type definitions
 Component Type defaultCT having {
 gate g of type defaultGT;
 }

 //Test configuration definition
 Test Configuration defaultTC {
 create Tester SS of type defaultCT;
 create SUT UE of type defaultCT ;
 connect UE.g to SS.g ;
 }

 //Test description definition
 Test Description TD_7_1_3_1 uses configuration defaultTC {
 //Pre-conditions and preamble from the source document
 perform action preCondition with { PRECONDITION ; } ;
 perform action preamble with { PREAMBLE ; } ;

 //Test sequence
 SS.g sends pdcch (c_rnti=ue) to UE.g with {
 STEP : "1" ;
 PROCEDURE : "SS transmits a downlink assignment
 including the C-RNTI assigned to
 the UE" ;
 } ;
 SS.g sends mac_pdu to UE.g with {
 STEP : "2" ;
 PROCEDURE : "SS transmits in the indicated
 downlink assignment a RLC PDU in
 a MAC PDU" ;
 } ;
 UE.g sends harq_ack to SS.g with {
 STEP : "3" ;
 PROCEDURE : "Check: Does the UE transmit an
 HARQ ACK on PUCCH?" ;
 test objectives : TP1 ;
 } ;
 set verdict to PASS ;
 SS.g sends pdcch (c_rnti=unknown) to UE.g with {
 STEP : "4" ;
 PROCEDURE : "SS transmits a downlink assignment
 to including a C-RNTI different from
 the assigned to the UE" ;
 } ;
 SS.g sends mac_pdu to UE.g with {
 STEP : "5" ;
 PROCEDURE : "SS transmits in the indicated
 downlink assignment a RLC PDU in
 a MAC PDU" ;
 } ;

 //Interpolated original step 6 into an alternative behaviour,
 //covering both the incorrect and the correct behaviours of the UE
 alternatively {
 UE.g sends harq_ack to SS.g ;
 set verdict to FAIL ;
 } or {
 gate SS.g is quiet for five ;
 set verdict to PASS ;
 } with {
 STEP : "6" ;
 PROCEDURE : "Check: Does the UE send any HARQ ACK
 on PUCCH?" ;
 test objectives : TP2 ;
 }
 } with {
 Note : "Note 1: For TDD, the timing of ACK/NACK is not
 constant as FDD, see Table 10.1-1 of TS 36.213." ;
 }
} with {
 Note : "Taken from 3GPP TS 36.523-1 V10.2.0 (2012-09)" ;
 TITLE : "Correct handling of DL assignment / Dynamic case" ;
}

TTCN-3 equivalent:
module Layer_2_DL_SCH_Data_Transfer { //Example in MM Annex B.2

	/*
	ANNOTATION TYPE TITLE
	*/
	/*
	ANNOTATION TYPE STEP
	*/
	/*
	ANNOTATION TYPE PROCEDURE
	*/
	/*
	ANNOTATION TYPE PRECONDITION
	*/
	/*
	ANNOTATION TYPE PREAMBLE
	*/
	/*
	Test Objective TP1
		Description:
			with { UE in E-UTRA RRC_CONNECTED state }
 	 ensure that {
 	 when { UE receives downlink assignment on the PDCCH
 	 for the UE's C-RNTI and receives data in the
 	 associated subframe and UE performs HARQ
 	 operation }
 	 then { UE sends a HARQ feedback on the HARQ
 	 process }
		Objective URI: 36523-1-a20_s07_01.doc::7.1.3.1.1 (1)
	*/

	/*
	Test Objective TP2
		Description:
			with { UE in E-UTRA RRC_CONNECTED state }
 	 ensure that {
 	 when { UE receives downlink assignment on the PDCCH
 	 with a C-RNTI unknown by the UE and data is
 	 available in the associated subframe }
 	 then { UE does not send any HARQ feedback on the
 	 HARQ process }
		Objective URI: 36523-1-a20_s07_01.doc::7.1.3.1.1 (2)
	*/
	
//===
// Module Parameters
//===
	
	modulepar Second mp_componentElapsedTimerMaxDuration;

//===
// Data Types
//===

	type charstring SimpleDataType;
	type float Second;

	type SimpleDataType PDU;
	type SimpleDataType ACK;
	type SimpleDataType C_RNTI;

	type record PDCCH {
 		C_RNTI optional
	}

	type SimpleDataType CONFIGURATION;

//===
//Port Types
//===

	type port defaultGT_PT message {
 		inout charstring, PDCCH, ACK, PDU, C_RNTI, CONFIGURATION ;
	}

//===
//Component Types
//===

	type component MTC_CT { // component type for MTC
	 	var defaultCT_CT vc_SS;
	}

	type component System_CT {
	 	port defaultGT_PT	g;
	}

	type component defaultCT_CT {
	 	timer T_elapsedTimeOfComponent:=mp_componentElapsedTimerMaxDuration;
 	 	port defaultGT_PT	g;
	}

//===
// Constants
//===

	const Second five := 5.0;

//===
// Templates
//===

	template PDU mac_pdu := "mac_pdu";
	template ACK harq_ack := "harq_ack";
	template C_RNTI ue := "ue";
	template C_RNTI unknown := "unknown";
	template PDCCH := {};
	template CONFIGURATION RRCConnectionReconfiguration := "RRCConnectionReconfiguration";

//===
// Altsteps
//===
	
	altstep to_handle_deviations_from_TDL_description_AS() {
 		[] any port.receive {
 	 	 		setverdict(fail);
 			}
 		[] any port.getcall {
 		 		setverdict(fail);
 			}
	}

//===
// Functions
//===

	function preCondition (){
 		/*
 	Pre-test Conditions:
 		RRC Connection Reconfiguration
 	*/
	}

 function preamble (){
 /*
 	Preamble:
 The generic procedure to get UE in test state Loopback
 Activated (State 4) according to ETSI TS 136 508 clause 4.5
 is executed, with all the parameters as specified in the
 procedure except that the RLC SDU size is set to return no
 data in uplink.
 (reference corresponding behavior once implemented)
 */
 }
	
	function f_setupTestConfigurationdefaultTC () runs on MTC_CT {
		vc_SS := defaultCT_CT.create;
 	 	map (vc_SS:g,system:g);
 	}

	function f_startOfSS() runs on defaultCT_CT{
	 	activate (to_handle_deviations_from_TDL_description_AS ());
	 	T_elapsedTimeOfComponent.start;
	 	f_behaviourOfSSInTD_7_1_3_1();	 	
	}

	function f_behaviourOfSSInTD_7_1_3_1() runs on defaultCT_CT {
	 preCondition();	/*Annotation: PRECONDITION */
 preamble()		/*Annotation: PREAMBLE */
 g.send(modifies pdcch := {c_rnti := ue})
 /*Annotation STEP "1" */
 /*Annotation PROCEDURE
					 "SS transmits a downlink assignment including the C-RNTI assigned to the UE"
		 	 */

 g.send(mac_pdu);
 /*Annotation STEP "2" */
 /*Annotation PROCEDURE
					 "SS transmits in the indicated downlink assignment a RLC PDU in a MAC PDU"
		 	 */

 g.receive(harq_ack);
 /*Annotation STEP "3" */
 /*Annotation PROCEDURE
					 "Check: Does the UE transmit an HARQ ACK on PUCCH?"
		 	 */
 /*
				Test Objective Statisfied: TP1
		 	 */
 setverdict(pass);

 g.send(modifies pdcch := {c_rnti := unknown});
 /*Annotation STEP "4" */
 /*Annotation PROCEDURE
					 "SS transmits a downlink assignment to including a C-RNTI different from the assigned to the UE"
		 	 */

 g.send(mac_pdu);
 /*Annotation STEP "5" */
 /*Annotation PROCEDURE
					 "SS transmits in the indicated downlink assignment a RLC PDU in a MAC PDU"
		 	 */

 timer Tl_quiescence_1;
 Tl_quiescence_1.start(five);
 alt{
 [] g.receive(harq_ack){
 setverdict(fail);
 	 }
 [] Tl_quiescence_1.timeout{
 	setverdict(pass);
 		/*Annotation STEP "6" */
 		/*Annotation PROCEDURE
							 "Check: Does the UE send any HARQ ACK on PUCCH?"
				 	*/
 	 	/*
						Test Objective Statisfied: TP2
					*/
 	 }
 [] any port.receive{
 			setverdict(fail);
 			}
 }
 /*
			Note : "Note 1: For TDD, the timing of ACK/NACK is not constant as FDD, see Table 10.11 of TS 36.213."
 */
	}

//===
// Testcases
//===

 testcase TD_7_1_3_1() runs on MTC_CT system System_CT {
 activate (to_handle_deviations_from_TDL_description_AS ());
 f_setupTestConfigurationdefaultTC ();
 vc_SS.start(f_startOfSS());
 	 all component.done;
 }

	/*
		Note : "Taken from 3GPP TS 36.523-1 V10.2.0 (2012-09)" ;
 */
 /*
		ANNOTATION TITLE
			 "Correct handling of DL assignment / Dynamic case"
	*/
}

[bookmark: _Toc49264959]A.3	An IMS Interoperability Example in Textual Syntax
This example describes one possible way to translate clause 4.5.1 from ETSI TS 186 011-2 [i.2] into the proposed TDL textual syntax, by mapping the concepts from the representation in the source document to the corresponding concepts in the TDL meta-model by means of the proposed textual syntax. The example has been enriched with additional information, such as explicit data definitions and test configuration details for completeness where applicable.
TDL:
TDLan Specification IMS_NNI_General_Capabilities {
 //Procedures carried out by a component of a test configuration
 //or an actor during test execution
 Action preConditions : "Pre-test conditions:
 - HSS of IMS_A and of IMS B is configured according to table 1
 - UE_A and UE_B have IP bearers established to their respective
 IMS networks as per clause 4.2.1
 - UE_A and IMS_A configured to use TCP for transport
 - UE_A is registered in IMS_A using any user identity
 - UE_B is registered user of IMS_B using any user identity
 - MESSAGE request and response has to be supported at II-NNI
 (ETSI TS 129 165 [16] see tables 6.1 and 6.3)" ;

 //User-defined verdicts
 //Alternatively the predefined verdicts may be used as well
 Type Verdict ;
 Verdict PASS ;
 Verdict FAIL ;

 //User-defined annotation types
 Annotation TITLE ; //Test description title
 Annotation STEP ; //Step identifiers in source documents
 Annotation PROCEDURE ; //Informal textual description of a test step
 Annotation PRECONDITION ; //Identify pre-condition behaviour
 Annotation PREAMBLE ; //Identify preamble behaviour.
 Annotation SUMMARY ; //Informal textual description of test sequence

 //Test objectives (copied verbatim from source document)
 Test Objective TP_IMS_4002_1 {
 //Location in source document
 from : "ts_18601102v030101p.pdf::4.5.1.1 (CC 1)" ;
 //Further reference to another document
 from : "ETSI TS 124 229 [1], clause 4.2A, paragraph 1" ;
 description : "ensure that {
 when { UE_A sends a MESSAGE to UE_B
 containing a Message_Body greater than 1 300
 bytes }
 then { IMS_B receives the MESSAGE containing the
 Message_Body greater than 1 300 bytes }
 }" ;
 }
 Test Objective UC_05_I {
 //Only a reference to corresponding section in the source document
 from : "ts_18601102v030101p.pdf::4.4.4.2" ;
 }

 //Relevant data definitions
 Type MSG (optional TCP of type CONTENT);
 MSG MESSAGE ;
 MSG DING ;
 MSG DELIVERY_REPORT ;
 MSG M_200_OK

 Type CONTENT ;
 CONTENT tcp;

 Time Second;
 Second default_timeout;

 //Gate type definitions.
 Gate Type defaultGT accepts MSG, CONTENT ;

 //Component type definitions
 //In this case they may also be reduced to a single component type
 Component Type USER having {
 gate g of type defaultGT ;
 }
 Component Type UE having {
 gate g of type defaultGT ;
 }
 Component Type IMS having {
 gate g of type defaultGT ;
 }
 Component Type IBCF having {
 gate g of type defaultGT ;
 }

 //Test configuration definition
 Test Configuration CF_INT_CALL {
 create Tester USER_A of type USER;
 create Tester UE_A of type UE;
 create Tester IMS_A of type IMS;
 create Tester IBCF_A of type IBCF;
 create Tester IBCF_B of type IBCF;
 create SUT IMS_B of type IMS;
 create Tester UE_B of type UE;
 create Tester USER_B of type USER;
 connect USER_A.g to UE_A.g ;
 connect UE_A.g to IMS_A.g ;
 connect IMS_A.g to IBCF_A.g ;
 connect IBCF_A.g to IBCF_B.g ;
 connect IBCF_B.g to IMS_B.g ;
 connect IMS_B.g to UE_B.g ;
 connect UE_B.g to USER_B.g ;
 }

 //Test description definition
 Test Description TD_IMS_MESS_0001 uses configuration CF_INT_CALL {
 //Pre-conditions from the source document
 perform action preConditions with { PRECONDITION ; };

 //Test sequence
 USER_A.g sends MESSAGE to UE_A.g with { STEP : "1" ; } ;
 UE_A.g sends MESSAGE to IMS_A.g with { STEP : "2" ; } ;
 IMS_A.g sends MESSAGE to IBCF_A.g with { STEP : "3" ; } ;
 IBCF_A.g sends MESSAGE to IBCF_B.g with { STEP : "4" ; } ;
 IBCF_B.g sends MESSAGE (TCP = tcp) to IMS_B.g with { STEP : "5" ; } ;
 IMS_B.g sends MESSAGE to UE_B.g with { STEP : "6" ; } ;
 UE_B.g sends DING to USER_B.g with { STEP : "7" ; } ;
 UE_B.g sends M_200_OK to IMS_B.g with { STEP : "8" ; } ;
 IMS_B.g sends M_200_OK to IBCF_B.g with { STEP : "9" ; } ;
 IBCF_B.g sends M_200_OK to IBCF_A.g with { STEP : "10" ; } ;
 IBCF_A.g sends M_200_OK to IMS_A.g with { STEP : "11" ; } ;
 IMS_A.g sends M_200_OK to UE_A.g with { STEP : "12" ; } ;
 alternatively {
 UE_A.g sends DELIVERY_REPORT to USER_A.g with { STEP : "13" ; } ;
 } or {
 gate USER_A.g is quiet for default_timeout;
 }
 } with {
 SUMMARY : "IMS network shall support SIP messages greater than
 1 500 bytes" ;
 }
} with {
 Note : "Taken from ETSI TS 186 011-2 [i.2] V3.1.1 (2011-06)" ;
 TITLE : "SIP messages longer than 1 500 bytes" ;
}
TTCN-3 equivalent:
module IMS_NNI_General_Capabilities //Example in MM Annex B.3
{
	/*
	ANNOTATION TYPE TITLE
	*/
	/*
	ANNOTATION TYPE STEP
	*/
	/*
	ANNOTATION TYPE PROCEDURE
	*/
	/*
	ANNOTATION TYPE PRECONDITION
	*/
	/*
	ANNOTATION TYPE PREAMBLE
	*/
	/*
	ANNOTATION TYPE SUMMARY
	*/
 	/*
	Test Objective TP_IMS_4002_1
 Description:
			 "ensure that {
 when { UE_A sends a MESSAGE to UE_B
 containing a Message_Body greater than 1 300
 bytes }
 then { IMS_B receives the MESSAGE containing the
 Message_Body greater than 1 300 bytes }
 }" ;
		Objective URI: ts_18601102v030101p.pdf::4.5.1.1 (CC 1)
					 ETSI TS 124 229 [1], clause 4.2A, paragraph 1
 */

 	/*
	Test Objective UC_05_I
		Description:
 //Only a reference to corresponding section in the source document
 Objective URI: from : "ts_18601102v030101p.pdf::4.4.4.2" ;
	*/

 //===
 // Module Parameters
 //===
	
 modulepar Second mp_componentElapsedTimerMaxDuration;

 //===
 // Data Types
 //===

 type charstring SimpleDataType;
 type float Second;

 type record MSG {
 CONTENT TCP optional
 }

 type SimpleDataType CONTENT;

 //===
 //Port Types
 //===

 // Insert port type definitions here if applicable!
 // You can use the port_type skeleton!

 type port defaultGT_to_connect_PT message {
 inout MSG, CONTENT;
 }

 type port defaultGT_to_map_PT message {
 inout MSG, CONTENT;
 }

 //===
 //Component Types
 //===

 type component MTC_CT {
 var USER 	vc_USER_A;
 var UE 		vc_UE_A;
 var IMS 	vc_IMS_A;
 var IBCF 	vc_IBCF_A;
 var IBCF 	vc_IBCF_B;
 var UE 		vc_UE_B;
 var USER 	vc_USER_B;
 }

 type component USER {
 timer T_elapsedTimeOfComponent:=mp_componentElapsedTimerMaxDuration;
 port defaultGT_to_connect_PT g_to_connect;
 port defaultGT_to_map_PT 	g_to_map;
 }

 type component UE {
 timer T_elapsedTimeOfComponent:=mp_componentElapsedTimerMaxDuration;
 port defaultGT_to_connect_PT g_to_connect;
 port defaultGT_to_map_PT	g_to_map;
 }

 type component IMS {
 timer T_elapsedTimeOfComponent:=mp_componentElapsedTimerMaxDuration;
 port defaultGT_to_connect_PT g_to_connect;
 port defaultGT_to_map_PT 	g_to_map;
 }

 type component IBCF {
 timer T_elapsedTimeOfComponent:=mp_componentElapsedTimerMaxDuration;
 port defaultGT_to_connect_PT g_to_connect;
 port defaultGT_to_map_PT 	g_to_map;
 }

 type component System_CT {
 port defaultGT_to_map_PT 	g_to_map;
 }

 //===
 // Constants
 //===

 const Second c_default_timeout := 5.0;

 //===
 // Templates
 //===

 template MSG MESSAGE := {}; 		
 template MSG DING := {}; 			
 template MSG DELIVERY_REPORT := {};
 template MSG M_200_OK := {}; 		

 template CONTENT tcp := "tcp";

 //===
 // Altsteps
 //===

 altstep to_handle_deviations_from_TDL_description_AS() {
 		[] any port.receive {
 	 	 		setverdict(fail);
 			}
 		[] any port.getcall {
 		 		setverdict(fail);
 			}
	}

 //===
 // Functions
 //===

 function preConditions (){
 /*
	Pre-test conditions:
 - HSS of IMS_A and of IMS B is configured according to table 1
 - UE_A and UE_B have IP bearers established to their respective
 IMS networks as per clause 4.2.1
 - UE_A and IMS_A configured to use TCP for transport
 - UE_A is registered in IMS_A using any user identity
 - UE_B is registered user of IMS_B using any user identity
 - MESSAGE request and response has to be supported at II-NNI
 (ETSI TS 129 165 [16] see tables 6.1 and 6.3)
 */
 }

 function f_setupTestConfigurationCF_INT_CALL () runs on MTC_CT {

 vc_USER_A := USER.create;
 vc_UE_A := UE.create;
 vc_IMS_A := IMS.create;
 vc_IBCF_A := IBCF.create;
 vc_IBCF_B := IBCF.create;
 vc_UE_B := UE.create;
 vc_USER_B := USER.create;

 connect(vc_USER_A:g_to_connect, vc_UE_A:g_to_connect);
 connect(vc_UE_A:g_to_connect, vc_IMS_A:g_to_connect);
 connect(vc_IMS_A:g_to_connect, vc_IBCF_A:g_to_connect);
 connect(vc_IBCF_A:g_to_connect, vc_IBCF_B:g_to_connect);
 map(vc_IBCF_B:g_to_map,system:g_to_map);
 map(system:g_to_map, vc_UE_B:g_to_map);
 connect(vc_UE_B:g_to_connect, vc_USER_B:g_to_connect);
 }

 function f_startOfUSER_A () runs on USER {

 activate (to_handle_deviations_from_TDL_description_AS ());
	T_elapsedTimeOfComponent.start;
	f_behaviourOfUSER_AInTD_IMS_MESS_001();
 }

 function f_behaviourOfUSER_AInTD_IMS_MESS_001 () runs on USER {

 g_to_connect.send(MESSAGE);
 /*Annotation STEP "1" */

 timer T_quiescence_1;
 T_quiescence_1.start(c_default_timeout);
 alt{
 [] g_to_connect.receive(DELIVERY_REPORT){
 }
 [] T_quiescence_1.timeout{
 setverdict(pass);
 }
 }
 }

 function f_startOfUE_A (USER pl_USER_A, IMS pl_IMS_A) runs on UE {

 activate (to_handle_deviations_from_TDL_description_AS ());
	T_elapsedTimeOfComponent.start;
	f_behaviourOfUE_AInTD_IMS_MESS_001(pl_USER_A, pl_IMS_A);
 }

 function f_behaviourOfUE_AInTD_IMS_MESS_001 (USER pl_USER_A, IMS pl_IMS_A) runs on UE {
 							/*if a port is connected to multiple components
 								these components shall be passed as parameters
 								to be able refer to them in send/receive to/from*/
 g_to_connect.receive(MESSAGE) from pl_USER_A;
 g_to_connect.send(MESSAGE) to pl_IMS_A;
 /*Annotation STEP "2" */

 g_to_connect.receive(M_200_OK) from pl_IMS_A;
 g_to_connect.send(DELIVERY_REPORT) to pl_USER_A;
 /*Annotation STEP "13" */
 }

 function f_startOfIMS_A (UE pl_UE_A, IBCF pl_IBCF_A) runs on IMS {

 activate (to_handle_deviations_from_TDL_description_AS ());
	T_elapsedTimeOfComponent.start;
	f_behaviourOfIMS_AInTD_IMS_MESS_001(pl_UE_A, pl_IBCF_A);
 }

 function f_behaviourOfIMS_AInTD_IMS_MESS_001 (UE pl_UE_A, IBCF pl_IBCF_A) runs on IMS {

 g_to_connect.receive(MESSAGE) from pl_UE_A;
 g_to_connect.send(MESSAGE) to pl_IBCF_A;
 /*Annotation STEP "3" */

 g_to_connect.receive(M_200_OK) from pl_IBCF_A;
 g_to_connect.send(M_200_OK) to pl_UE_A;
 /*Annotation STEP "12" */
 }

 function f_startOfIBCF_A (IMS pl_IMS_A, IBCF pl_IBCF_B) runs on IBCF {

 activate (to_handle_deviations_from_TDL_description_AS ());
	T_elapsedTimeOfComponent.start;
	f_behaviourOfIBCF_AInTD_IMS_MESS_001(pl_IMS_A, pl_IBCF_B);
 }

 function f_behaviourOfIBCF_AInTD_IMS_MESS_001 (IMS pl_IMS_A, IBCF pl_IBCF_B) runs on IBCF {

 g_to_connect.receive(MESSAGE) from pl_IMS_A;
 g_to_connect.send(MESSAGE) to pl_IBCF_B;
 /*Annotation STEP "4" */

 g_to_connect.receive(M_200_OK) from pl_IBCF_B;
 g_to_connect.send(M_200_OK) to pl_IMS_A;
 /*Annotation STEP "11" */
 }

 function f_startOfIBCF_B () runs on IBCF {

 activate (to_handle_deviations_from_TDL_description_AS ());
	T_elapsedTimeOfComponent.start;
	f_behaviourOfIBCF_BInTD_IMS_MESS_001();
 }

 function f_behaviourOfIBCF_BInTD_IMS_MESS_001 () runs on IBCF {

 g_to_connect.receive(MESSAGE);
 g_to_map.send(modifies MESSAGE := {TCP := tcp});
 /*Annotation STEP "5" */

 g_to_map.receive(M_200_OK);
 /*Annotation STEP "9" */

 g_to_connect.send(M_200_OK);
 /*Annotation STEP "10" */

 }

 function f_startOfUE_B () runs on UE {

 activate (to_handle_deviations_from_TDL_description_AS ());
	T_elapsedTimeOfComponent.start;
	f_behaviourOfUE_BInTD_IMS_MESS_001();
 }

 function f_behaviourOfUE_BInTD_IMS_MESS_001 () runs on UE {

 g_to_map.receive(MESSAGE);
 /*Annotation STEP "6" */
 g_to_connect.send(DING);
 /*Annotation STEP "7" */
 g_to_map.send(M_200_OK);
 /*Annotation STEP "8" */
 }

 function f_startOfUSER_B () runs on USER {

 activate (to_handle_deviations_from_TDL_description_AS ());
	T_elapsedTimeOfComponent.start;
	f_behaviourOfUSER_BInTD_IMS_MESS_001();
 }

 function f_behaviourOfUSER_BInTD_IMS_MESS_001 () runs on USER {

 g_to_connect.receive(DING);
 }

 //===
 // Testcases
 //===

 testcase TD_IMS_MESS_001 () runs on MTC_CT system System_CT {
 	
 activate (to_handle_deviations_from_TDL_description_AS ());

 f_setupTestConfigurationCF_INT_CALL();
 vc_USER_A.start(f_startOfUSER_A ());
 vc_UE_A.start(f_startOfUE_A (vc_USER_A, vc_IMS_A));
 vc_IMS_A.start(f_startOfIMS_A (vc_UE_A, vc_IBCF_A));
 vc_IBCF_A.start(f_startOfIBCF_A (vc_IMS_A, vc_IBCF_B));
 vc_IBCF_B.start(f_startOfIBCF_B ());
 vc_UE_B.start(f_startOfUE_B ());
 vc_USER_B.start(f_startOfUSER_B ());

 preConditions();	
 /*Annotation PRECONDITION*/
 all component.done;

 /*Annotation SUMMARY
				 "IMS network shall support SIP messages greater than 1 500 bytes"
	*/
 }
}

[bookmark: _Toc49264960]
History
	Document history

	V1.1.1
	June 2018
	Publication

	V1.2.1
	June 2020
	Membership Approval Procedure	MV 20200823:	2020-06-24 to 2020-08-24

	V1.2.1
	August 2020
	Publication

	
	
	

	
	
	

ETSI
image2.emf
GT1Data Type: DT1, DT2

Microsoft_Visio_Drawing.vsdx

GT1
Data Type: DT1, DT2

image3.emf
COMPTYPETimerT1, T2VariableV1:DT1, V2:DT2G: GT

Microsoft_Visio_Drawing1.vsdx

CompType
Timer T1, T2

Variable
V1:DT1, V2:DT2
G: GT

image4.emf
GT1Data Type: DT1, DT2

Microsoft_Visio_Drawing2.vsdx

GT1
Data Type: DT1, DT2

image5.emf
TESTERTASUTSATESTERTBTg:GT SAg:GT SBg:GT

Microsoft_Visio_Drawing3.vsdx
TESTER TA
SUT SA
TESTER TB
Tg:GT SAg:GT
SBg:GT

image6.emf
TESTERTASUTSATESTERTBTg_to_map:GT_to_map_PT SAg:GT_to_map_PTTg_to_connect:GT_to_connect_PT SBg:GT_to_connect_PT

Microsoft_Visio_Drawing4.vsdx
TESTER TA
SUT SA
TESTER TB
Tg_to_map:GT_to_map_PT
 SAg:GT_to_map_PT
Tg_to_connect:GT_to_connect_PT

 SBg:GT_to_connect_PT

image7.emf
TESTERTATESTERTBSUTSASUTSBTAg:GT1 SAg:GT1TBg:GT2 SBg:GT2

Microsoft_Visio_Drawing5.vsdx
TESTER TA
TESTER TB
SUT SA
SUT SB
TAg:GT1 SAg:GT1
TBg:GT2 SBg:GT2

image8.emf
TESTERTATESTERTBsystem TAg:GT1_PT SAg_from_TA:GT1_PT TBg:GT2_PT SBg_from_TB:GT2_PT

Microsoft_Visio_Drawing6.vsdx
TESTER TA
TESTER TB
system
TAg:GT1_PT
 SAg_from_TA:GT1_PT
TBg:GT2_PT
 SBg_from_TB:GT2_PT

image9.emf
TESTERTATESTERTBSUTSASUTSBTg:GT SAg:GT SBg:GTTg:GT

Microsoft_Visio_Drawing7.vsdx
TESTER TA
TESTER TB
SUT SA
SUT SB
Tg:GT SAg:GT
SBg:GT
Tg:GT

image10.emf
TESTERTATESTERTBsystem Tg_to_SA:GT_PT SAg:GT_PTTg:GT_PT Tg_to_SB:GT_PT SBg:GT_PT

Microsoft_Visio_Drawing8.vsdx
TESTER TA
TESTER TB
system
Tg_to_SA:GT_PT	
 SAg:GT_PT
Tg:GT_PT
Tg_to_SB:GT_PT
		 			SBg:GT_PT

image11.emf
TESTERTSUTCorTESTER CTg:GT CAg:GT CBg:GT

Microsoft_Visio_Drawing9.vsdx
TESTER T
SUT
C
or
TESTER
C
Tg:GT CAg:GT
CBg:GT

image12.emf
TESTERTsystemorTESTER C Tg_to_CAg:GT_PT CAg:GT_PT Tg_to_CBg:GT_PT CBg:GT_PT

Microsoft_Visio_Drawing10.vsdx
TESTER T
system
or
TESTER C
Tg_to_CAg:GT_PT
 	 CAg:GT_PT
Tg_to_CBg:GT_PT
 			 	 CBg:GT_PT

image13.emf
TESTERT1:T1CTSUTS:SCTTESTERT2:T2CTdefaultdefaultinterruptcompound.........Message1Message2Message3gt1gsgt2Additional behaviour of default1Additional behaviour of default2Additional behaviour of interruptBehaviour of compound

Microsoft_Visio_Drawing11.vsdx
TESTER
T1:T1CT

SUT
S:SCT

TESTER
T2:T2CT

default

default

interrupt

compound
...
...
...
Message1
Message2
Message3
gt1
gs
gt2
Additional behaviour of default1
Additional behaviour of default2
Additional behaviour of interrupt
Behaviour of compound

image1.jpeg

