Proposal for a Common Classification of AI Systems based on Methods and Capabilities

DIN/DKE NA043-01-42 GA: Contribution for CEN-CENELEC JTC 21 ,Artificial Intelligence

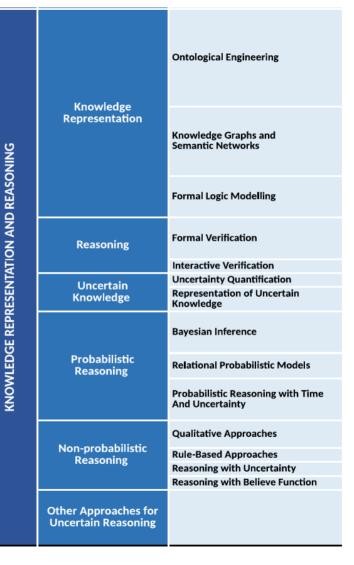
Taras Holoyad Bundesnetzagentur (Mainz) taras.holoyad@bnetza.de

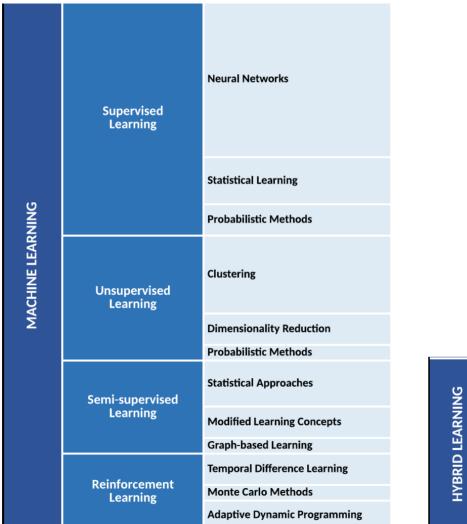
Content

- Main Focus
- Methods of Artificial Intelligence
- Capabilities of Artificial Intelligence
- Example of use
- Benefits

Main Focus

- → Basis for European Al Regulation:
 - > Europe-wide homogeneity in describing AI applications
 - > Trustworthiness by ensuring explainability and transparency
 - > Unambiguity in **requirements** for **testing** and **certification**
- → Facilitated use of AI by Public Authorities, SMEs and Large Enterprises
 - Identification of quality criteria for rule-based as well as data driven AI
 - Clear basis for assessment of impacts and criticality
- → Common ground for ecosystem participants in Europe
 - Accelerated boost of AI-based business models
 - Consistent enforcement of ethical values

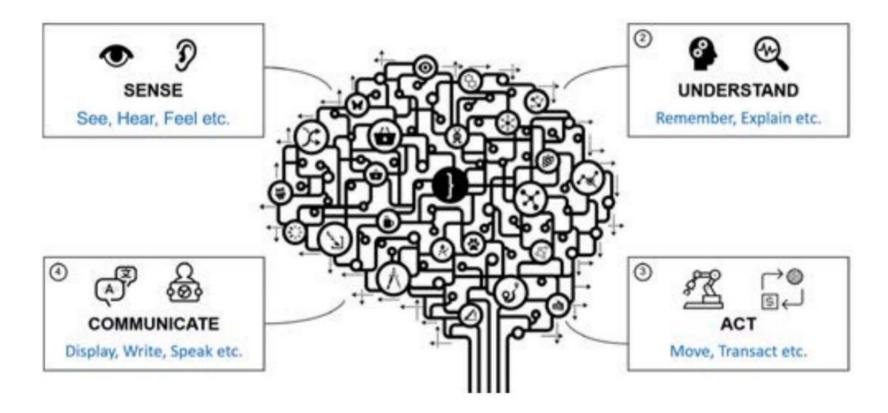

Methods


→ Methods:

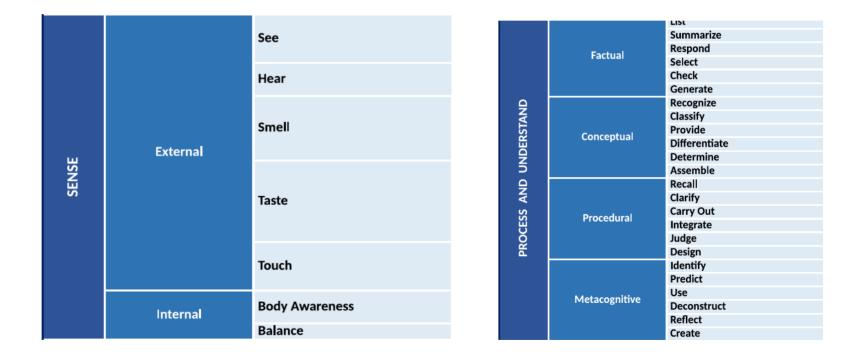
Representation from the perspective of mathematics, physics and computer science

→ Conceptualised on the basis of: Stuart J. Russell and Peter Norvig -Artificial Intelligence: A Modern Approach (2020), 4th Ed., Prentice Hall.

	Problem Solving	Problem Solving Agents & Searching Strategies
PROBLEM SOLVING, OPTIMAZATION, PLANNING AND DECISION MAKING	Optimization	Statistical Optimization
		Bio-inspired Optimization
	Planning and Plan Recognition	Autonomous and Semi-autonomous Planning
		Plan Recognition Methods
	Decision Making	Approaches for Decision Making


	t to de stal	Unified Neural Architectures
		Transformation Architectures
N N		Hybrid Modular Architectures
z		Learning by Logic and Deduction
LEARNING	Learning with	Inductive Logical Programming
HYBRID	Knowledge	Explainable Artificial Intelligence
ž		Relevance-based Learning
-	Conversational Learning	Active Dialog Learning

→ Capabilities:


Representation from the perspective of psychology, biology and cognitive science

Capabilities

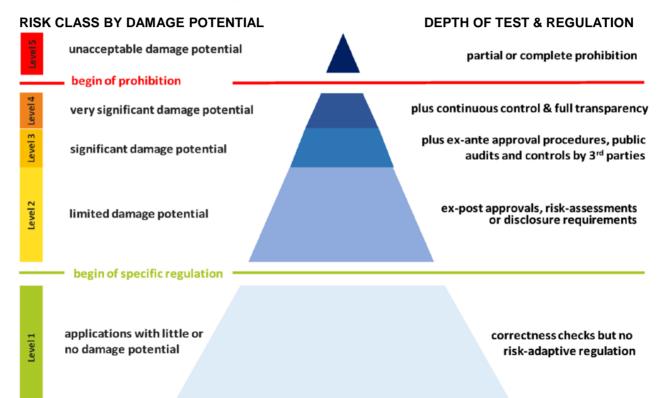
Schmid et al.: Managing and Understanding Artificial Intelligence Solutions (2020), Beuth Verlag

Sense / Process and Understand

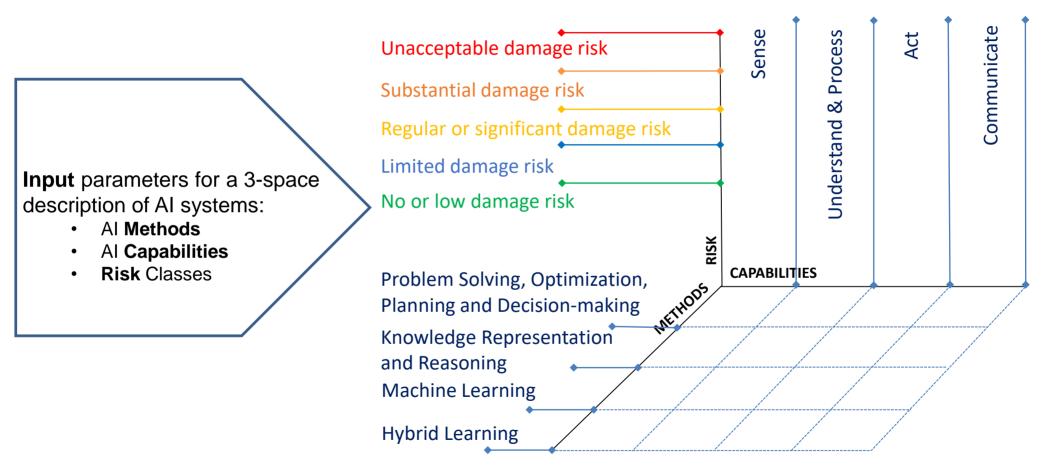
Act / Communicate

АСТ	Physical	Motion Planning Sensors and Manipulators Kinematics and Dynamics Human-robot Interaction
	Non-physical	Software Agents
COMMUNICATE	Natural Language Processing	Text Generation Machine Translation Text Analysis Information and Knowledge Extraction Information Retrieval Document Analysis Spoken Dialog Systems
	Human-Machine Interaction	Cognitive Systems Interaction Paradigms and Modalities

Example of Use: Risk description for using AI


Description of AI system by involving externally identified risk classes: Representation of the damage potential for, e.g., physical as well as mental well-being, finance, data and fairness

➔ The classification approach targets Al systems that were not created to harm humans, e.g. by monitoring, sorting and killing

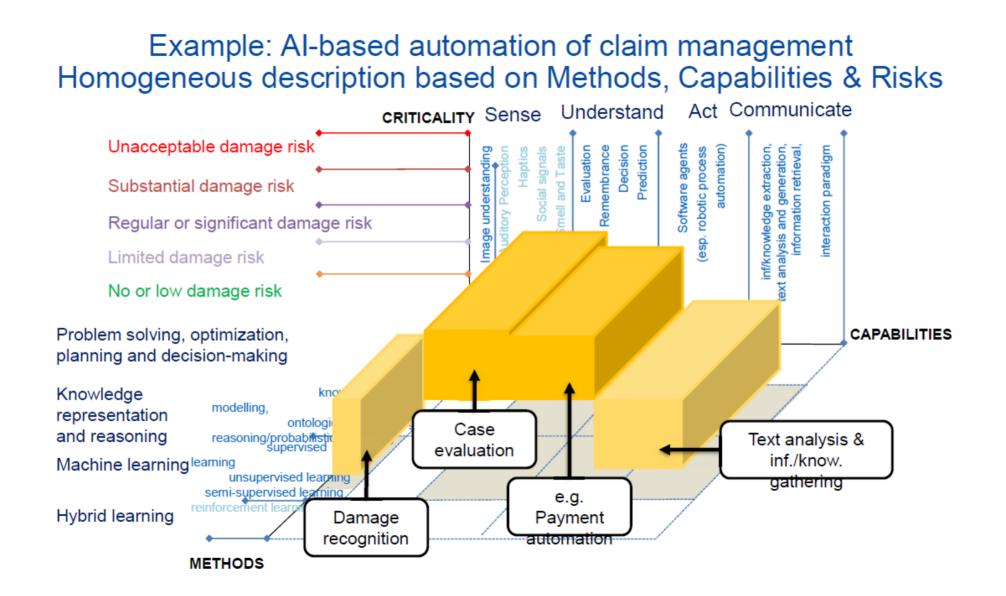

Example of Use: Risk description for using AI

German Data Ethics Commission:

Criticality pyramid and risk-adapted regulatory system for describing externally identified risk

Example of Use: Risk description for using AI

Benefits


- → Business and politics:
 - > **Classification** of AI applications to describe AI systems

→ Of importance for European Al Regulation:

- Homogeneity to describe AI applications (Annex 1)
- > The European Al database (Art. 60)
- Technical Documentation (Art. 11)
- Transparency (Art. 13)
- → The classification may serve as a basis for:
 - Harmonized labeling of AI applications
 - > More detailed description of requirements for all criticality levels in the European legislative proposal
 - Conformity assessment procedures at manufacturers as well as third party bodies (including laboratories and notified bodies)
- → Building on **Europe-wide harmonized taxonomy** for AI applications:
 - Identification of quality criteria
- → **Requirements** for AI applications regarding:
 - Conformity assessment procedures
 - > Market surveillance

Example: Al-based automation of claim management "Take a photo & get directly the reimbursement from the insurance"

Durchs		e Nährwerte	1
	le 100 ml	1 Gizs (250 ml)** (% 250 m)*
ennwert	198 kJ 43 kcal	49513 1184cal	6%
t avon qesättligt	1,5g	3,8g	5%
ettsäuren	1,1g	2,89	14%
hlenbydrate avon Zucker	5,0 g 5,0 g	13g 13g	5% 14%
veß	1,4g	8,59	17%
z	0119	0,289	5%
cium (1	12% mg (5 %****)	300 mg (38%****)	
****N98	/ = Kährsto	liberugsvert	-
Erwachser	ners (8,400 las (250 mil	n darchschnit kJ /2.000 kra 1 Bin-H-Fettar t 4 Portienen	

ckaging by

25 % pflanzenbasierte Hunststoffe mit Nençenausgleich'

Verzicht auf Alu bei gleichbleibender Produktgsalität

Im Rahmen der Verpackungsbersteilung kommen Kunststoffe zum Einsatz, bei deren Produktion im Bahmen von zehlflichten Massenbilunzverfahren fossile Ressou ven durchgfritzachiche Rahtstoffe ersetzt wurden. Biese Maßkahme trägt maßgebieh zu einer verbeszerten Üholikara (CB-100726 vom 3.10.2031) bei, Hehr unter www.isgaatungaak.de

Proposal for a Common Classification of Al Systems based on Methods and Capabilities

DIN/DKE NA043-01-42 GA: Contribution for CEN-CENELEC JTC 21 ,Artificial Intelligence

