Draft ETSI ES 203 119-8 V1.1.1 (2021-12)
22

Draft ETSI ES 203 119-8 V1.1.1 (2021-12)
Methods for Testing and Specification (MTS);
The Test Description Language (TDL);
Part 8: Textual Syntax

ETSI STANDARD
[image: ETSI_BG_final_new]

Reference
RES/MTS-TDL8v111
Keywords
language, MBT, methodology, testing, TSS&TP, TTCN-3, UML

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2021.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	6
Foreword	6
Modal verbs terminology	6
1	Scope	7
2	References	7
2.1	Normative references	7
2.2	Informative references	7
3	Definition of terms, symbols and abbreviations	8
3.1	Terms	8
3.2	Symbols	8
3.3	Abbreviations	8
4	Basic principles	8
4.1	Introduction	8
4.2	Document Structure	9
4.3	Grammar Language	9
4.3.1	Overview	9
4.3.2	Operators	9
4.3.3	Terminal rules and keywords	10
4.3.4	Production rules	10
4.4	Conformance	11
5	General rules	11
5.1	Identities and references	11
5.2	Models and importing	11
5.3	Linking	11
5.4	Alternative syntaxes	11
5.5	Terminals	12
5.6	File format	13
6	Production Rules	14
6.1	Foundation	14
6.1.1	Element	14
6.1.2	NamedElement	15
6.1.3	ElementImport	15
6.1.4	Package	15
6.1.5	PackageableElement	16
6.1.6	Comment	16
6.1.7	Annotation	17
6.1.8	AnnotationType	17
6.1.9	TestObjective	17
6.1.10	Extension	18
6.1.11	ConstraintType	18
6.1.12	Constraint	19
6.2	Data	19
6.2.1	DataResourceMapping	19
6.2.2	DataElementMapping	19
6.2.3	ParameterMapping	20
6.2.4	DataType	20
6.2.5	SimpleDataType	20
6.2.6	SimpleDataInstance	21
6.2.7	StructuredDataType	21
6.2.8	Member	22
6.2.9	StructuredDataInstance	22
6.2.10	MemberAssignment	22
6.2.11	CollectionDataType	23
6.2.12	CollectionDataInstance	23
6.2.13	ProcedureSignature	24
6.2.14	ProcedureParameter	24
6.2.15	ParameterKind	24
6.2.16	Parameter	25
6.2.17	FormalParameter	25
6.2.18	Variable	25
6.2.19	Action	26
6.2.20	Function	26
6.2.21	UnassignedMemberTreatment	26
6.2.22	PredefinedFunction	27
6.2.23	EnumDataType	27
6.2.24	DataUse	28
6.2.25	ParameterBinding	28
6.2.26	MemberReference	28
6.2.27	StaticDataUse	29
6.2.28	DataInstanceUse	29
6.2.29	SpecialValueUse	30
6.2.30	AnyValue	30
6.2.31	AnyValueOrOmit	31
6.2.32	OmitValue	31
6.2.33	LiteralValueUse	31
6.2.34	DynamicDataUse	32
6.2.35	FunctionCall	32
6.2.36	FormalParameterUse	32
6.2.37	VariableUse	33
6.2.38	PredefinedFunctionCall	33
6.2.39	DataElementUse	33
6.3	Time	34
6.3.1	Time	34
6.3.2	TimeLabel	35
6.3.3	TimeLabelUse	35
6.3.4	TimeLabelUseKind	35
6.3.5	TimeConstraint	36
6.3.6	Timer	36
6.3.7	TimeOperation	36
6.3.8	Wait	36
6.3.9	Quiescence	37
6.3.10	TimerOperation	37
6.3.11	TimerStart	37
6.3.12	TimerStop	38
6.3.13	TimeOut	38
6.4	Test Configuration	38
6.4.1	GateType	38
6.4.2	GateTypeKind	39
6.4.3	GateInstance	39
6.4.4	ComponentType	40
6.4.5	ComponentInstance	40
6.4.6	ComponentInstanceRole	40
6.4.7	GateReference	41
6.4.8	Connection	41
6.4.9	TestConfiguration	41
6.5	Test Behaviour	42
6.5.1	TestDescription	42
6.5.2	BehaviourDescription	43
6.5.3	Behaviour	43
6.5.4	Block	43
6.5.5	LocalExpression	44
6.5.6	CombinedBehaviour	44
6.5.7	SingleCombinedBehaviour	45
6.5.8	CompoundBehaviour	45
6.5.9	BoundedLoopBehaviour	45
6.5.10	UnboundedLoopBehaviour	46
6.5.11	OptionalBehaviour	46
6.5.12	MultipleCombinedBehaviour	47
6.5.13	ConditionalBehaviour	47
6.5.14	AlternativeBehaviour	47
6.5.15	ParallelBehaviour	48
6.5.16	ExceptionalBehaviour	49
6.5.17	DefaultBehaviour	49
6.5.18	InterruptBehaviour	50
6.5.19	PeriodicBehaviour	50
6.5.20	AtomicBehaviour	50
6.5.21	Break	51
6.5.22	Stop	52
6.5.23	VerdictAssignment	52
6.5.24	Assertion	52
6.5.25	Interaction	53
6.5.26	Message	53
6.5.27	Target	54
6.5.28	ValueAssignment	54
6.5.29	ProcedureCall	55
6.5.30	TestDescriptionReference	55
6.5.31	ComponentInstanceBinding	56
6.5.32	ActionBehaviour	56
6.5.33	ActionReference	57
6.5.34	InlineAction	57
6.5.35	Assignment	57
Annex A (informative): Technical Representation of the Complete Textual Syntax	58
Annex B (informative): Examples	58
B.0	Overview	58
B.1	Illustration of Data Use	58
B.2	Interface Testing	60
B.3	Interoperability Testing	64
History	66

[bookmark: _Toc93315856]
Intellectual Property Rights
Essential patents
[bookmark: IPR_3GPP]IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc93315857]Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
The present document is part 8 of a multi-part deliverable. Full details of the entire series can be found in part 1 [1].
[bookmark: _Toc93315858]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc93315859]
1	Scope
The present document specifies the concrete textual syntax of the Test Description Language (TDL). The intended use of the present document is to serve as the basis for the development of textual TDL tools and TDL specifications. The meta-model of TDL and the meanings of the meta-classes are described in ETSI ES 203 119-1 [1].
NOTE:	OMG®, UML®, OCL™ and UTP™ are the trademarks of OMG (Object Management Group). This information is given for the convenience of users of the present document and does not constitute an endorsement by ETSI of the products named.
[bookmark: _Toc93315860]2	References
[bookmark: _Toc93315861]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ES203119_1][1]	ETSI ES 203 119-1 (V1.6.1): "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Part 1: Abstract Syntax and Associated Semantics".
[bookmark: _Toc93315862]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_ES202553][bookmark: REF_XTEXT_DOCUMENTATION][i.1]	Eclipse Foundation: Xtext – The Grammar Language Website (last visited 20.12.2021).
NOTE:	Available at https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html.
[bookmark: REF_TS136523_1][i.2]	ETSI TS 136 523-1 (V10.2.0): "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification (3GPP TS 36.523-1 version 10.2.0 Release 10)".
[bookmark: REF_TS186011_2][i.3]	ETSI TS 186 011-2: "Core Network and Interoperability Testing (INT); IMS NNI Interoperability Test Specifications (3GPP Release 10); Part 2: Test descriptions for IMS NNI Interoperability".
[bookmark: REF_TOP][i.4]	ETSI: The TDL Open Source Project Website (last visited 20.12.2021).
NOTE:	Available at https://tdl.etsi.org/index.php/open-source.
[i.5]	ETSI ES 203 119-4 (V1.5.1): "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Part 4: Structured Test Objective Specification (Extension)".
[i.6]	ETSI ES 203 119-7 (V1.3.1): "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Part 7: Extended Test Configurations".

[bookmark: _Toc93315863]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc93315864]3.1	Terms
For the purposes of the present document, the terms given in ETSI ES 203 119-1 [1] and the following apply:
(formal) grammar: set of structural rules that define how to form valid strings from a language's alphabet that obey the syntax of the language
derivation: construction of an abstract syntactical structure, such as a model instance conforming to a meta-model, from a textual representation by applying the structural rules of a grammar, and potential mappings to the underlying meta-model
non-terminal symbol: a placeholder for (gropus of) other symbols that describe elements in a specified language
(production) rule: definition of a structured rule for the derivation of a non-terminal symbol based on other non-terminal symbols and terminal symbols
terminal symbol: a symbols that appears explicitly in a specified language, such as a keyword, an identifier, or other tokens
[bookmark: _Toc93315865]3.2	Symbols
Void.
[bookmark: _Toc93315866]3.3	Abbreviations
For the purposes of the present document, the following abbreviations apply:
BNF	Backus-Naur Form
EBNF	Extended Backus-Naur Form
IMS	IP Multimedia Subsystem
IUT	Implementation Under Test
OCL	Object Constraint Language
SUT	System Under Test
TDL	Test Description Language
[bookmark: _Toc93315867]4	Basic principles
[bookmark: _Toc93315868]4.1	Introduction
The meta-model of the Test Description Language (TDL) is specified in ETSI ES 203 119-1 [1]. The presentation format of the meta-model can be different according to the needs of the users or the requirements of the domain, where the TDL is applied. These presentation formats can either be text-oriented or graphic-oriented and may cover all the functionalities of the TDL meta-model or just a part of it, which is relevant to satisfy the needs of a specific application domain.
The present document specifies a concrete textual syntax that provides a textual representation for the commonly used functionality of the TDL meta-model. In the current version of the present document, certain parts, such as 'Comment's and 'Annotation's in 'DataUse' elements, are syntactically excluded. Syntactic specifications for these may be added in future versions of the present document as needed.
The document specifies the TDL textual file format, where the textual representations of the instances of the TDL meta-classes may be placed. A textual representation may contain keywords, delimiters, and textual labels within a defined structure. The rules, how these strucutres shall be interpreted, are described by means of Extended Backus-Naur Form (EBNF)-like expressions. In particular, in addition to the syntactical structure, the EBNF-like expressions also indicate how the textual labels and structures are mapped to the TDL meta-model.
[bookmark: _Toc93315869]4.2	Document Structure
The present document specifies the concrete textual syntax of the Test Description Language (TDL).
Clause 5 specifies general rules for the specification and use of the TDL textual file format.
Clause 6 specifies the concrete production rules defined for the TDL meta-classes. (The meta-model of TDL and the meanings of the meta-classes are described in ETSI ES 203 119-1 [1].)
Foundation (clause 6.1)
Data (clause 6.2)
Time (clause 6.3)
Test Configuration (clause 6.4)
Test Behaviour (clause 6.5)
At the end of the document several examples illustrating the features of the TDL Textual Syntax can be found.
[bookmark: _Toc93315870]4.3	Grammar Language
[bookmark: _Toc49244492][bookmark: _Toc93315871]4.3.1	Overview
The rules that define the textual syntax of the TDL are described in present document using the grammar language of the Xtext framework. In addition to defining the lexical structure of the TDL syntax the grammar language also provides means for mapping those textual constructs to the TDL meta-model. Additional rules such as identity resolution and linking are described where applicable to provide complete mapping of textual TDL to the TDL model.
The grammar of textual TDL is composed of a number of grammar rules organized in a tree. The grammar structure follows the logical structure of the TDL meta-model and the root of the grammar is the 'Package' production rule. Production rules are used to construct model objects and assign values to the properties of those objects. Production rules consist of keywords (character literals) and calls to production rules, data type rules and terminal rules (which correspond to tokens of text).
The following clauses describe the syntax of the grammar language. See Xtext documentation for further details [i.1].
[bookmark: _Toc93315872]4.3.2	Operators
Various operators are used in grammar rule definitions to specify the order and cardinality of keywords and rule calls. Terminal rule specific operators are used to express various textual constructs. Production rule specific operators are used to define assignments and cross-references.
Following operators are used in all rule definitions:
'?' indicates that preceding construct shall occur 0 or 1 times;
'*' indicates that preceding construct shall occur 0 or more times;
'+' indicates that preceding construct shall occur 1 or more times;
'|' is used between alternative constructs and
'(' and ')' are used to group constructs defined in between.
[bookmark: _Hlk83218617]Following operators are used in terminal rule definitions:
'!' is used to negate a construct;
'->' is used to indicate that everything is ignored until the following construct is detected;
'..' is used between characters to define a range and
'.' denotes any character.
Following operators are used in production rule definitions:
'=' is used to define a simple assignment of a right hand construct to a property on the left;
'+=' is used for assigning (adding to) multi-valued property;
'?=' is used for assigning the value 'true' to a Boolean property on the condition that the right hand side construct is present and
'[', '|' and ']' are used to define a cross-reference.
Various special symbols are included in the grammar definitions of production rules that are included solely as implementation detail (to help the generation of a parser for textual TDL) and do not alter the definition of the syntax. Such symbols include '->' and '=>'.
[bookmark: _Toc93315873]4.3.3	Terminal rules and keywords
Lexical tokens in the TDL grammar are either keywords of character sequences that are matched and consumed by terminal rules during parsing. In the grammar definition, keywords are placed between apostrophes (').
Terminal rule declarations start with the keyword 'terminal' followed by the rule name (in upper-case letters by convention). The rule name is followed by 'returns' keyword and the reference to a data type that is used for creating a value using the consumed token.
The definition of the rule starts with a colon (':') and ends with a semi-colon (';'). Terminal rule definitions consist of terminal rule calls (indicated by rule name), characters and operators.
EXAMPLE:	terminal INT returns EInt: ('0'..'9')+;
Some terminal rules (such as comments and whitespace) are defined as hidden in TDL grammar and corresponding text shall be allowed anywhere in textual TDL (outside of tokens).
[bookmark: _Toc93315875]4.3.4	Production rules
Production rules are used to create model objects or data values. The rules that return a data type instead of a meta-class are known as data type rules.
Production rule declarations start with the rule name followed by 'returns' keyword and the reference to the meta-class that defines the object that is produced by the rule. The definition of the rule starts with a colon (':') and ends with a semi-colon (';'). Production rule definitions consist of rule calls, keywords, and operators.
EXAMPLE:	Comment returns tdl::Comment:
 'Note:' body=EString
;
An assignment is defined as a property name followed by an assignment operator (see clause 4.3.2) followed by a rule call (name of production or data type rule) or a cross-reference. A cross-reference is defined as a meta-class reference followed by '|' and a terminal rule call that defines the format for the identifier. The cross-reference definition is placed between square brackets ('[' and ']').
EXAMPLE:	Annotation returns tdl::Annotation:
 '@' key=[tdl::AnnotationType|Identifier]
 (':' value=EString)?
;
Production rule calls may also be used without assignment. In that case the model object that is returned from the calling rule is the one that is created in the called rule.
Production rules may be created as fragments by prefixing the declaration with the 'fragment' keyword. In that case the rule does not produce an object by itself but rather assigns to properties of the object that is created in the calling rule. Fragment rules are always unassigned.
[bookmark: _Toc93315876]4.4	Conformance
For an implementation claiming to conform to this version of the TDL Concrete Textual Syntax, all features specified in the present document and in ETSI ES 203 119-1 [1] shall be implemented consistently with the requirements given in the present document and ETSI ES 203 119-1 [1].
[bookmark: _Toc93315877]5	General rules
[bookmark: _Toc93315878]5.1	Identities and references
In TDL models, references between objects are based on unique identifiers that are generated by the modelling framework and stored in model files. Such identifiers are generally hidden from the user. In textual TDL, all attributes shall be part of the text document and the use of such identifiers is not feasible.
In textual TDL, objects are identified by 'name' or 'qualifiedName' property. The allowed values for the 'name' property are restricted by the terminal rule 'ID' (see clause 5.5). The exception to this rule is made for objects that are predefined in TDL and are mapped to special symbols in textual TDL (such as AnyValue).
If the 'name' property shall have a value that is equal to a keyword in textual TDL then that value shall be prefixed with '^' in the text.
[bookmark: _Toc93315879]5.2	Models and importing
TDL objects stored in a single file are collectively referred to as model. Both the TDL model and textual TDL allow single 'Package' object as the root of the model. Thus, logically the root package of a TDL file is a TDL model.
Naming of textual TDL files and the location of those files is out of the scope of the present document. Implementations of the textual TDL shall provide means to make TDL models available for importing.
Imported 'Package's shall be referred to by the value of the 'qualifiedName' property.
[bookmark: _Toc93315880]5.3	Linking
Linking refers to the phase in the compilation process of textual TDL where name-based cross-references are resolved to actual objects that they represent. By default, linking utilizes object identities as described in clause 5.1.
In some cases where explicit cross-references are not required by the grammar rules, the linking may apply context specific logic to assign references to object properties. Such cases are described in the relevant clauses.
[bookmark: _Toc93315881]5.4	Alternative syntaxes
Although the keywords are specified with certain case (lower-case or title-case) in the present document, the case itself is not prescribed. Therefore, an implementation can be case-insensitive as well. It is recommended that users apply a consistent case nonetheless.
The delimiters for 'Block's and other constructs are specified in an abstract manner with the 'BEGIN' and 'END' terminal symbols. While the default assumption is that these terminal symbols are mapped to left and right braces ('{' and '}'), referred to as 'brace-based' syntax, an alternative implementation using white space indentation is also possible, where synthetic delimiters for the beginning and end of indented parts shall be used instead, referred to as 'indentation-based' syntax. Besides the replacement of the 'BEGIN' and 'END' symbols, no other differences shall be present between implementations of the 'brace-based' and 'indentation-based' syntax. Left and right braces ('{' and '}') shall be used in certain contexts even within the 'indentation-based' syntax, e.g. for 'TimeConstraint's and data-related 'Constraint's.
The examples in this document conform to the default assumption. Additional examples illustrating the indentation-based syntax are included in Annex B.
[bookmark: _Toc93315882]5.5	Terminals
The base terminal symbol definitions include the following:
terminal ID: '^'?('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*;
terminal INT returns EInt: ('0'..'9')+;
terminal STRING:
			'"' ('\\' . /* 'b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\' */ | !('\\'|'"'))* '"' |
			"'" ('\\' . /* 'b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\' */ | !('\\'|"'"))* "'"
		;
terminal ML_COMMENT : '/*' -> '*/';
terminal SL_COMMENT : '//' !('\n'|'\r')* ('\r'? '\n')?;

terminal WS : (' '|'\t'|'\r'|'\n')+;

terminal ANY_OTHER: .;

terminal TRUE : 'true';
terminal FALSE : 'false';

terminal BEGIN: '{';
terminal END: '}';

The 'WS', 'ML_COMMENT', and 'SL_COMMENT' tokens shall be hidden.
For the indentation-based syntax variant, the the 'BEGIN' and 'END' terminal symbols are redefined to the following (with 'synthetic:BEGIN' and 'synthetic:END' representing an increase and a decrease in the indentation, respectively):
@Override
terminal BEGIN: 'synthetic:BEGIN'; // increase indentation

@Override
terminal END: 'synthetic:END'; // decrease indentation

In addition to the terminal symbols, data type parser rules for context-sensitive 'pseudo-terminals' include the following:
EString:
 STRING
;

Identifier:
 ID
;

GRIdentifier:
 ID ('::' ID)?
;

QIdentifier:
 ID ('.' ID)*
;

NIdentifier:
	('-'? INT ('.' INT)?)
;

LBrace:
 BEGIN
;

RBrace:
 END
;

LParen:
 '('
;

RParen:
 ')'
;

BIGINTEGER returns ecore::EBigInteger:
	INT
;

BOOLEAN returns EBoolean:
	TRUE | FALSE
;
The 'LBrace' and 'RBrace' rules differentiate the use of left '{' and right '}' braces in certain contexts (e.g. 'Constraint's and 'TimeConstraint's) from their use as delimiters in the brace-based variant of the syntax. For the indentation-based variant of the syntax, these rules shall be overridden as follows:
//Retain Braces even in indentation-based
@Override
LBrace:
 '{'
;

@Override
RBrace:
 '}'
;

//for both indented and un-indented blocks within parentheses
@Override
LParen:
 '(' BEGIN?
;

@Override
RParen:
 END? ')'
;
The redefinition of the 'LParen' and 'RParen' with optional 'BEGIN' and 'END' tokens enables the use of indentation in blocks within parentheses in the indentation-based variant as all indentation is semantically relevant. In case indentation needs to be optionally allowed in other cases, a similar pattern can be applied for further tailoring of the indentation-based syntax variant.
[bookmark: _Toc93315883]5.6	File format
No assumptions are made about the file format at present. For practical purposes, certain conventions regarding the naming of files using the indetation-based and brace-based variants of the syntax are recommented, e.g. using different file endings or "extensions".
[bookmark: _Toc93315884]6	Production Rules
[bookmark: _Toc93315885]6.1	Foundation
[bookmark: _Toc93315886]6.1.1	Element
Concrete Textual Notation
fragment AnnotationFragment returns tdl::Element:
 (annotation+=Annotation)*
;

fragment AnnotationCommentFragment returns tdl::Element:
 (comment+=Comment)*
 (annotation+=Annotation)*
;

fragment NameFragment returns tdl::Element:
 'Name:' name=Identifier
;

fragment WithCommentFragment returns tdl::Element:
 'with'
 BEGIN
 (comment+=Comment)+
 END
;

fragment WithNameFragment returns tdl::Element:
 'with'
 BEGIN
 NameFragment
 END
;
Comments
This is an abstract metaclass, therefore no textual representation is defined for the element. The concrete textual notation represents reusable fragments that can be embedded in the concrete textual notation of metaclasses inheriting from this metaclass.
The different fragments are used in different contexts.
Examples
	Note: "Example test objective"
	@Example

	with {
		Note: "Comment on nested package"
	}

	with {
		Name: anOptionalNameForElementWithoutMandatoryName
	}

[bookmark: _Toc93315887]6.1.2	NamedElement
Concrete Textual Notation
Void.
Comments
This is an abstract metaclass, therefore no textual representation is defined for the element.
Examples
Void.
[bookmark: _Toc93315888]6.1.3	ElementImport
Concrete Textual Notation
ElementImport returns tdl::ElementImport:
 AnnotationCommentFragment
 'Import'
 ('all' |
 (importedElement+=[tdl::PackageableElement|Identifier]
 (',' importedElement+=[tdl::PackageableElement|Identifier])*
)
)
 'from' importedPackage=[tdl::Package|QIdentifier]
;
Comments
No comments.
Examples
	Import all from NestedPackage
	Import NestedAnnotation from NestedPackage

[bookmark: _Toc93315889]6.1.4	Package
Concrete Textual Notation
Package returns tdl::Package:
 AnnotationCommentFragment
 'Package' name=Identifier
 (BEGIN
 (^import+=ElementImport)*
 (packagedElement+=PackageableElement)*
 (nestedPackage+=Package)*
 END)?
;
Comments
'Annotation's applied to the 'Package' shall be defined within the 'Package' or imported in the 'Package' from other 'Package's even as the applicable 'Annotation's appear on the “outside” of the 'Package'.
Examples
@NestedAnnotation
Package Foundation {
	Note: "Example imports from nested (or other) package"
	Import all from NestedPackage
	Import NestedAnnotation from NestedPackage
	
	Note: "Annotate examples"
	Annotation Example
	
	Note: "Annotate standardised constructs"
	Annotation Standard

	Package NestedPackage {
		Annotation NestedAnnotation
	}
	with {
		Note: "Comment on nested package"
	}

} with {
	Note: "Comment on foundation"
}
[bookmark: _Toc93315890]6.1.5	PackageableElement
Concrete Textual Notation
PackageableElement returns tdl::PackageableElement:
 (AnnotationType | TestObjective
 | ConstraintType
 | DataResourceMapping | DataElementMapping
 | SimpleDataType | SimpleDataInstance
 | StructuredDataType | StructuredDataInstance
 | CollectionDataType | CollectionDataInstance
 | ProcedureSignature
 | Action | Function
 | PredefinedFunction
 | EnumDataType
 | Time
 | ComponentType | GateType
 | TestConfiguration
 | TestDescription
)
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315891]6.1.6	Comment
Concrete Textual Notation
Comment returns tdl::Comment:
 'Note' (name=NIdentifier)?
 ':' body=EString
;
Comments
In different contexts, depending on the fragments being used, a 'Comment' may be defined before the 'Element' or within a 'with' block.
'Comment's are syntactically excluded from certain constructs, e.g. 'DataUse'.
Examples
	Note: "Example test objective"
	Objective TO_Foundation

[bookmark: _Toc93315892]6.1.7	Annotation
Concrete Textual Notation
Annotation returns tdl::Annotation:
 '@' key=[tdl::AnnotationType|Identifier]
 (':' value=EString)?
;
Comments
'Annotation's are syntactically excluded from certain constructs, e.g. 'DataUse'.
Examples
	@Example
	Objective TO_Foundation

[bookmark: _Toc93315893]6.1.8	AnnotationType
Concrete Textual Notation
AnnotationType returns tdl::AnnotationType:
 AnnotationCommentFragment
 'Annotation' name=Identifier
 ('extends' extension=Extension)?
;
Comments
No comments.
Examples
	Note: "Annotate examples"
	Annotation Example
	
	Note: "Annotate standardised constructs"
	Annotation Standard

[bookmark: _Toc93315894]6.1.9	TestObjective
Concrete Textual Notation
TestObjective returns tdl::TestObjective:
 AnnotationCommentFragment
 'Objective' name=Identifier
 (BEGIN
 ('Description:' description=EString)?
 ('References:' objectiveURI+=EString (',' objectiveURI+=EString)*)?
 END)?
;
Comments
No comments.
Examples
	Objective TO_Foundation {
		Description: "Illustrate the definition of a test objectives"
		References: "This package.",
			"A base document",
			"Another source"
	}

[bookmark: _Toc93315895]6.1.10	Extension
Concrete Textual Notation
Extension returns tdl::Extension:
 extending=[tdl::PackageableElement|Identifier]
;
Comments
'Annotation's and 'Comment's are syntactically excluded.
Examples
	Structure Post (
		String title,
		String date
)

	Structure TaggedPost extends Post (
		Tags tags
)

[bookmark: _Toc93315896]6.1.11	ConstraintType
Concrete Textual Notation
ConstraintType returns tdl::ConstraintType:
 AnnotationCommentFragment
 'Constraint' name=Identifier
;
Comments
No comments.
Examples
	@Example
	Constraint HexString
	@Example
	Constraint DateString
	@Standard
	Constraint Length

[bookmark: _Toc93315897]6.1.12	Constraint
Concrete Textual Notation
Constraint returns tdl::Constraint:
 type=[tdl::ConstraintType|Identifier]
 (':' quantifier+=DataUse (',' quantifier+=DataUse)*)?
;
Comments
'Annotation's and 'Comment's are syntactically excluded.
Examples
	Collection Posts {Length: 10} of Post

[bookmark: _Toc93315898]6.2	Data
[bookmark: _Toc93315899]6.2.1	DataResourceMapping
Concrete Textual Notation
DataResourceMapping returns tdl::DataResourceMapping:
 AnnotationCommentFragment
 'Use' resourceURI=EString
 'as' name=Identifier
;
Comments
No comments.
Examples
	Note: "Use external resource for the mapping"
	Use "API.yaml" as API

[bookmark: _Toc93315900]6.2.2	DataElementMapping
Concrete Textual Notation
DataElementMapping returns tdl::DataElementMapping:
 AnnotationCommentFragment
 'Map' mappableDataElement=[tdl::MappableDataElement|Identifier]
 ('to' elementURI=EString)?
 'in' dataResourceMapping=[tdl::DataResourceMapping|Identifier]
 'as' name=Identifier
 (BEGIN
 parameterMapping+=ParameterMapping (',' parameterMapping+=ParameterMapping)*
 END)?
;
Comments
No comments.
Examples
	Note: "Map data elements to concrete data in external resource"
	Map Post to "api/post" in API as PostMapping {
		title -> "post::title",
		date -> "post::date"
	}

[bookmark: _Toc93315901]6.2.3	ParameterMapping
Concrete Textual Notation
ParameterMapping returns tdl::ParameterMapping:
 AnnotationCommentFragment
 parameter=[tdl::Parameter|Identifier]
 '->' parameterURI=EString
;
Comments
No comments.
Examples
	title -> "post::title"
	date -> "post::date"

[bookmark: _Toc93315902]6.2.4	DataType
Concrete Textual Notation
fragment ConstraintFragment returns tdl::DataType:
 (LBrace constraint+=Constraint RBrace)*
;
Comments
This is an abstract metaclass, therefore no textual representation is defined for the element. The concrete textual notation represents reusable fragments that can be embedded in the concrete textual notation of metaclasses inheriting from this metaclass.
Examples
Void.

[bookmark: _Toc93315903]6.2.5	SimpleDataType
Concrete Textual Notation
SimpleDataType returns tdl::SimpleDataType:
 AnnotationCommentFragment
 'Type' name=Identifier
 ConstraintFragment
 ('extends' extension=Extension)?
;
Comments
No comments.
Examples
	@Standard
	Type String
	@Standard
	Type Integer
	@Standard
	Type Verdict

[bookmark: _Toc93315904]6.2.6	SimpleDataInstance
Concrete Textual Notation
SimpleDataInstance returns tdl::SimpleDataInstance:
 AnnotationCommentFragment
 dataType=[tdl::DataType|Identifier]
 name=Identifier
;
Comments
No comments.
Examples
	@Standard
	Verdict fail
	String authToken
	Integer sessionId

[bookmark: _Toc93315905]6.2.7	StructuredDataType
Concrete Textual Notation
StructuredDataType returns tdl::StructuredDataType:
 AnnotationCommentFragment
 'Structure' name=Identifier
 ConstraintFragment
 ('extends' extension+=Extension (',' extension+=Extension)*)?
 LParen (member+=Member (',' member+=Member)*)? RParen
;
Comments
No comments.
Examples
	Structure Post (
		String title,
		String date
)

[bookmark: _Toc93315906]6.2.8	Member
Concrete Textual Notation
Member returns tdl::Member:
 AnnotationCommentFragment
 (isOptional?='optional')?
 dataType=[tdl::DataType|Identifier]
 name=Identifier
 (LBrace constraint+=Constraint RBrace)*
;
Comments
No comments.
Examples
		String title

		Note: "Constraint for members"
		String date {DateString}

		Note: "Optional members"
		optional Tags tags

[bookmark: _Toc93315907]6.2.9	StructuredDataInstance
Concrete Textual Notation
StructuredDataInstance returns tdl::StructuredDataInstance:
 AnnotationCommentFragment
 dataType=[tdl::DataType|Identifier]
 name=Identifier
 ('<' unassignedMember=UnassignedMemberTreatment '>')?
 LParen (memberAssignment+=MemberAssignment (',' memberAssignment+=MemberAssignment)*)? RParen
;
Comments
No comments.
Examples
	Post firstReport <?> (
		title = "first report",
		date = "today"
)

[bookmark: _Toc93315908]6.2.10	MemberAssignment
Concrete Textual Notation
MemberAssignment returns tdl::MemberAssignment:
 AnnotationCommentFragment
 member=[tdl::Member|Identifier]
 '=' memberSpec=DataUse
;
Comments
No comments.
Examples
	title = "first report"
	date = firstReport.date
	tags = ?

[bookmark: _Toc93315909]6.2.11	CollectionDataType
Concrete Textual Notation
CollectionDataType returns tdl::CollectionDataType:
 AnnotationCommentFragment
 'Collection' name=Identifier
 ConstraintFragment
 'of' itemType=[tdl::DataType|Identifier]
;
Comments
No comments.
Examples
	Collection Posts of Post
	Collection Tags of Tag

[bookmark: _Toc93315910]6.2.12	CollectionDataInstance
Concrete Textual Notation
CollectionDataInstance returns tdl::CollectionDataInstance:
 AnnotationCommentFragment
 dataType=[tdl::DataType|Identifier]
 name=Identifier
 (unassignedMember=UnassignedMemberTreatment)?
 '[' item+=DataUse (',' item+=DataUse)* ']'
;
Comments
No comments.
Examples
	Tags usefulReportsFilter [useful, report]
	Posts allPosts [
		new Post(title="first post", date="yesterday"),
		new Post(title="second post", date="today"),
		firstReport,
		secondReport
]	

[bookmark: _Toc93315911]6.2.13	ProcedureSignature
Concrete Textual Notation
ProcedureSignature returns tdl::ProcedureSignature:
 AnnotationCommentFragment
 'Signature' name=Identifier
 LParen parameter+=ProcedureParameter (',' parameter+=ProcedureParameter)* RParen
;
Comments
No comments.
Examples
 Signature publish (in Post post, out Integer postId)

[bookmark: _Toc93315912]6.2.14	ProcedureParameter
Concrete Textual Notation
ProcedureParameter returns tdl::ProcedureParameter:
 AnnotationFragment
 kind=ParameterKind
 dataType=[tdl::DataType|Identifier]
 name=Identifier
 WithCommentFragment?
;
Comments
No comments.
Examples
 in Post post
 out Integer postId

[bookmark: _Toc93315913]6.2.15	ParameterKind
Concrete Textual Notation
enum ParameterKind returns tdl::ParameterKind:
 In = 'in' | Out = 'out' | Exception = 'exception'
;
Comments
No comments.
Examples
Void.
[bookmark: _Toc93315914]6.2.16	Parameter
Concrete Textual Notation
Void.
Comments
This is an abstract metaclass, therefore no textual representation is defined for the element.
Examples
Void.
[bookmark: _Toc93315915]6.2.17	FormalParameter
Concrete Textual Notation
FormalParameter returns tdl::FormalParameter:
 AnnotationFragment
 dataType=[tdl::DataType|Identifier]
 name=Identifier
 WithCommentFragment?
;
Comments
No comments.
Examples
 @Encrypted
 Post post
 @Unique
 Integer postId

[bookmark: _Toc93315916]6.2.18	Variable
Concrete Textual Notation
Variable returns tdl::Variable:
 AnnotationCommentFragment
 'variable' dataType=[tdl::DataType|Identifier]
 name=Identifier
 WithCommentFragment?
;
Comments
No comments.
Examples
	variable Binary authToken

[bookmark: _Toc93315917]6.2.19	Action
Concrete Textual Notation
Action returns tdl::Action:
 AnnotationCommentFragment
 'Action' name=Identifier
 (LParen formalParameter+=FormalParameter (',' formalParameter+=FormalParameter)* RParen)?
 (':' body=EString)?
;
Comments
No comments.
Examples
 Action reset
 Action clean: "Cleaning procedure: Wash hands, wear mask and gloves, open windows."
 Action reload(Posts posts): "Reloading procedure: Clear all posts, reset, reload posts."

[bookmark: _Toc93315918]6.2.20	Function
Concrete Textual Notation
Function returns tdl::Function:
 AnnotationCommentFragment
 'Function' name=Identifier
 (LParen formalParameter+=FormalParameter (',' formalParameter+=FormalParameter)* RParen)?
 'returns' returnType=[tdl::DataType|Identifier]
 (':' body=EString)?
;
Comments
No comments.
Examples
 Function categoriseReport(Post post, Tags tags) returns Post: "Categorise with text mining"

[bookmark: _Toc93315919]6.2.21	UnassignedMemberTreatment
Concrete Textual Notation
enum UnassignedMemberTreatment returns tdl::UnassignedMemberTreatment:
 AnyValue = '?' | AnyValueOrOmit = '*'
;
Comments
No comments.
Examples
	Post firstReport <?> (
		title = "first report",
		date = "today"
)

[bookmark: _Toc93315920]6.2.22	PredefinedFunction
Concrete Textual Notation
PredefinedFunction returns tdl::PredefinedFunction:
 AnnotationCommentFragment
 'Predefined'
 (name=PredefinedIdentifierBinary
 | name=PredefinedIdentifierNot
 | name=PredefinedIdentifierSize
)
 ('returns' returnType=[tdl::DataType|Identifier])?
;

PredefinedIdentifierBinary returns ecore::EString:
 '+' | '-' | '*' | '/' | 'mod'
 | '>' | '<' | '>=' | '<='
 | '==' | '!=' | 'and' | 'or' | 'xor'
;

PredefinedIdentifierNot returns ecore::EString:
 'not'
;

PredefinedIdentifierSize returns ecore::EString:
 'size'
;
Comments
The 'PredefinedFunction's shall be provided as a standard library.
Examples
	Predefined ==
	Predefined !=
	Predefined +

[bookmark: _Toc93315921]6.2.23	EnumDataType
Concrete Textual Notation
EnumDataType returns tdl::EnumDataType:
 AnnotationCommentFragment
 'Enumerated' name=Identifier
 BEGIN
 value+=SimpleDataInstance (',' value+=SimpleDataInstance)*
 END
;
Comments
No comments.
Examples
	Enumerated Tag {
		Tag useful,
		Tag interesting,
		Tag report
	}

[bookmark: _Toc93315922]6.2.24	DataUse
Concrete Textual Notation
DataUse returns tdl::DataUse:
 DataElementUse
 | StaticDataUse
 | DynamicDataUse
;

fragment ReductionFragment returns tdl::DataUse:
 (->reduction+=CollectionReference)?
 ('.' reduction+=MemberReference)*
;

fragment ParameterBindingFragment returns tdl::DataUse:
 LParen (argument+=ParameterBinding (',' argument+=ParameterBinding)*)? RParen
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations. The reusable fragments can be embedded in the concrete textual notation of metaclasses inheriting from this metaclass.
 'Annotation's and 'Comment's, as well as the 'name' property, are syntactically excluded from all concrete types.
Examples
Void.
[bookmark: _Toc93315923]6.2.25	ParameterBinding
Concrete Textual Notation
ParameterBinding returns tdl::ParameterBinding:
 parameter=[tdl::Parameter|Identifier]
 '=' dataUse=DataUse
;
Comments
No comments.
Examples
Void.
[bookmark: _Toc93315924]6.2.26	MemberReference
Concrete Textual Notation
MemberReference returns tdl::MemberReference:
 member=[tdl::Member|Identifier]
 (->'[' collectionIndex=DataUse ']')?
;

CollectionReference returns tdl::MemberReference:
 '[' collectionIndex=DataUse ']'
;
Comments
The 'CollectionReference' derivation is applicable in case only a collection reference is needed, for example, immediately after a 'DataUse' with a type resolving to a 'CollectionDataType'.
Examples
 Post memberPost (
 	 title = randomPosts[1].title
)

[bookmark: _Toc93315925]6.2.27	StaticDataUse
Concrete Textual Notation
StaticDataUse returns tdl::StaticDataUse:
 DataInstanceUse
 | SpecialValueUse
 | LiteralValueUse
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315926]6.2.28	DataInstanceUse
Concrete Textual Notation
DataInstanceUse returns tdl::DataInstanceUse:
 (
 	'instance' dataInstance=[tdl::DataInstance|Identifier]
 	UnassignedFragment?
 	ParameterBindingFragment?
 	ReductionFragment
)
 |
 (
 	'an' 'instance' 'of' dataType=[tdl::StructuredDataType|Identifier]
 	UnassignedFragment?
 	(ParameterBindingFragment | CollectionItemFragmentDataInstanceUse)
)
 |
 (
	 'an' 'instance'
	 UnassignedFragment?
	 (ParameterBindingFragment | CollectionItemFragmentDataInstanceUse) 	
)
;

fragment UnassignedFragment returns tdl::DataInstanceUse:
 '<' unassignedMember=UnassignedMemberTreatment '>'
;

fragment CollectionItemFragmentDataInstanceUse returns tdl::DataInstanceUse:
 '[' (item+=DataUse (',' item+=DataUse)*)? ']'
;
Comments
No comments.
Examples
 Test illustrateDataInstanceUse(Post parameterPost) uses base {
 //anonymous instance
 client::http sends an instance of Post(title = "anonymous post") to server::http
 //defined instance
 client::http sends instance examplePost(title = "overridden title") to server::http
 //defined parameter
 client::http sends parameter parameterPost(title = "overridden title") to server::http
 //value returned from function
 client::http sends instance returned from fetchPost(id = 1) to server::http
 //anonymous collection including all of the above and truly anonymous instances
 client::http sends new Posts[
 an instance of Post(title = "anonymous post"),
 instance examplePost(title = "overridden title"),
 parameter parameterPost(title = "overridden title"),
 instance returned from fetchPost(id = 1),
 an instance (title = "truly anonymous without type specification!")
] to server::http
 }

[bookmark: _Toc93315927]6.2.29	SpecialValueUse
Concrete Textual Notation
SpecialValueUse returns tdl::SpecialValueUse:
 OmitValue | AnyValue | AnyValueOrOmit
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315928]6.2.30	AnyValue
Concrete Textual Notation
AnyValue returns tdl::AnyValue:
 name='?'
 (LBrace dataType=[tdl::DataType|Identifier] RBrace)?
;
Comments
No comments.
Examples
Void.
[bookmark: _Toc93315929]6.2.31	AnyValueOrOmit
Concrete Textual Notation
AnyValueOrOmit returns tdl::AnyValueOrOmit:
 name='*'
;
Comments
No comments.
Examples
Void.
[bookmark: _Toc93315930]6.2.32	OmitValue
Concrete Textual Notation
OmitValue returns tdl::OmitValue:
 name='omit'
;
Comments
No comments.
Examples
Void.
[bookmark: _Toc93315931]6.2.33	LiteralValueUse
Concrete Textual Notation
LiteralValueUse returns tdl::LiteralValueUse:
 (value=STRING | intValue=BIGINTEGER | boolValue=BOOLEAN)
	(
		LBrace dataType=[tdl::DataType|Identifier] RBrace
		(ParameterBindingFragment | ReductionFragment)
)?
;
Comments
No comments.
Examples
			client::authToken = "101010"
			client::authToken = 1234
			client::loggedIn = true
			client::failAfter = 5 {sec}
			client::decodedPostWithOverriddenTitle = "E242A4D4'H" {Post}(title = "new title")
			client::decodedTitle = "E242A4D4'H" {Post}.title
			client::decodedPost = "[E242A4D4'H,F2A2A2D3'H]" {Posts}[1]
[bookmark: _Toc93315932]6.2.34	DynamicDataUse
Concrete Textual Notation
DynamicDataUse returns tdl::DynamicDataUse:
 FunctionCall
 | FormalParameterUse
 | VariableUse
 | PredefinedFunctionCall
 | TimeLabelUse
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315933]6.2.35	FunctionCall
Concrete Textual Notation
FunctionCall returns tdl::FunctionCall:
 'instance' 'returned' 'from' function=[tdl::Function|Identifier]
 ParameterBindingFragment
 ReductionFragment
;
Comments
No comments.
Examples
			client::authToken = instance returned from generateToken(seed = 12)

[bookmark: _Toc93315934]6.2.36	FormalParameterUse
Concrete Textual Notation
FormalParameterUse returns tdl::FormalParameterUse:
 'parameter' parameter=[tdl::FormalParameter|Identifier]
 (ParameterBindingFragment | ReductionFragment)
;
Comments
No comments.
Examples
			client::encodedToken = retrieveToken(parameter tokenId)
[bookmark: _Toc93315935]6.2.37	VariableUse
Concrete Textual Notation
VariableUse returns tdl::VariableUse:
 componentInstance=[tdl::ComponentInstance|Identifier]
 '::' variable=[tdl::Variable|Identifier]
 (ParameterBindingFragment | ReductionFragment)
;
Comments
No comments.
Examples
			client::authToken = "101010"
			client::encodedToken = encodeToken(client::authToken)
[bookmark: _Toc93315936]6.2.38	PredefinedFunctionCall
Concrete Textual Notation
PredefinedFunctionCall returns tdl::PredefinedFunctionCall:
 PredefinedFunctionCallSize
 | PredefinedFunctionCallNot
 | PredefinedFunctionCallBinary
;

PredefinedFunctionCallSize returns tdl::PredefinedFunctionCall:
 function=[tdl::PredefinedFunction|PredefinedIdentifierSize]
 LParen actualParameters+=DataUse RParen
;

PredefinedFunctionCallNot returns tdl::PredefinedFunctionCall:
 function=[tdl::PredefinedFunction|PredefinedIdentifierNot]
 LParen actualParameters+=DataUse RParen
;

PredefinedFunctionCallBinary returns tdl::PredefinedFunctionCall:
 LParen
 actualParameters+=DataUse
 function=[tdl::PredefinedFunction|PredefinedIdentifierBinary]
 actualParameters+=DataUse
 RParen
;
Comments
No comments.
Examples
 assert (size(allPosts)==4)
	assert not(client::authenticated)

[bookmark: _Toc93315937]6.2.39	DataElementUse
Concrete Textual Notation
DataElementUse returns tdl::DataElementUse:
 (
 dataElement=[tdl::NamedElement|Identifier]
 UnassignedFragmentNamedElement?
 ParameterBindingFragment?
 ReductionFragment
) | (
 ('new' dataElement=[tdl::DataType|Identifier])?
 UnassignedFragmentNamedElement?
 (ParameterBindingFragment | CollectionItemFragment)
)
;

fragment UnassignedFragmentNamedElement returns tdl::DataElementUse:
 '<' unassignedMember=UnassignedMemberTreatment '>'
;

fragment CollectionItemFragment returns tdl::DataElementUse:
 '[' (item+=DataUse (',' item+=DataUse)*)? ']'
;
Comments
If no 'dataElement' is specified, or if the specified 'dataElement' is a 'DataType', 'ParameterBinding's or 'Collection' items shall be specified. Otherwise, 'ParameterBinding's and/or 'MemberReference's may be specified.
Examples
 Test illustrateDataElementUse(Post parameterPost) uses base {
 //anonymous instance
 client::http sends new Post(title = "anonymous post") to server::http
 //defined instance
 client::http sends examplePost(title = "overridden title") to server::http
 //defined parameter
 client::http sends parameterPost(title = "overridden title") to server::http
 //value returned from function
 client::http sends fetchPost(id = 1) to server::http
 //anonymous collection including all of the above and truly anonymous instances
 client::http sends new Posts[
 new Post(title = "anonymous post"),
 examplePost(title = "overridden title"),
 parameterPost(title = "overridden title"),
 fetchPost(id = 1),
 (title = "truly anonymous without type specification!")
] to server::http
 }

[bookmark: _Toc93315938]6.3	Time
[bookmark: _Toc93315939]6.3.1	Time
Concrete Textual Notation
Time returns tdl::Time:
 AnnotationCommentFragment
 'Time' name=Identifier
;
Comments
No comments.
Examples
	Time seconds
	Time milliseconds

[bookmark: _Toc93315940]6.3.2	TimeLabel
Concrete Textual Notation
TimeLabel returns tdl::TimeLabel:
 name=Identifier '=' 'now'
;
Comments
'Annotation's and 'Comment's are syntactically excluded.
Examples
 publicationTime=now

[bookmark: _Toc93315941]6.3.3	TimeLabelUse
Concrete Textual Notation
TimeLabelUse returns tdl::TimeLabelUse:
 '@' timeLabel=[tdl::TimeLabel|Identifier]
 ('.' kind=TimeLabelUseKind)?
;
Comments
Assignment of the 'reduction' and 'argument' properties is syntactically excluded.
Examples
 @publicationTime
 @publicationTime.last

[bookmark: _Toc93315942]6.3.4	TimeLabelUseKind
Concrete Textual Notation
enum TimeLabelUseKind returns tdl::TimeLabelUseKind:
 Last = 'last' | Previous = 'previous' | First = 'first'
;
Comments
No comments.
Examples
Void.

[bookmark: _Toc93315943]6.3.5	TimeConstraint
Concrete Textual Notation
TimeConstraint returns tdl::TimeConstraint:
 timeConstraintExpression=DataUse
;
Comments
'Annotation's and 'Comment's are syntactically excluded.
Examples
Void.
[bookmark: _Toc93315944]6.3.6	Timer
Concrete Textual Notation
Timer returns tdl::Timer:
 AnnotationCommentFragment
 'timer' name=Identifier
;
Comments
No comments.
Examples
	timer global

[bookmark: _Toc93315945]6.3.7	TimeOperation
Concrete Textual Notation
TimeOperation returns tdl::TimeOperation:
 Wait | Quiescence
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315946]6.3.8	Wait
Concrete Textual Notation
Wait returns tdl::Wait:
 AtomicPrefixFragment
 'wait' 'for' period=DataUse
 ('on' componentInstance=[tdl::ComponentInstance|Identifier])
;
Comments
No comments.
Examples
 wait for 10
 wait for 10 on client

[bookmark: _Toc93315947]6.3.9	Quiescence
Concrete Textual Notation
Quiescence returns tdl::Quiescence:
 AtomicPrefixFragment
 'quiet' 'for' period=DataUse
 ('on' (
 componentInstance=[tdl::ComponentInstance|Identifier]
 | ('gate' gateReference=[tdl::GateReference|GRIdentifier])
)
)?
;
Comments
No comments.
Examples
 quiet for 5
 quiet for 5 on server
 quiet for 5 on gate server::http

[bookmark: _Toc93315948]6.3.10	TimerOperation
Concrete Textual Notation
TimerOperation returns tdl::TimerOperation:
 TimerStart | TimerStop | TimeOut
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315949]6.3.11	TimerStart
Concrete Textual Notation
TimerStart returns tdl::TimerStart:
 AtomicPrefixFragment
 'start' componentInstance=[tdl::ComponentInstance|Identifier]
 '::' timer=[tdl::Timer|Identifier]
 'for' period=DataUse
;
Comments
No comments.
Examples
 start client::global for 10

[bookmark: _Toc93315950]6.3.12	TimerStop
Concrete Textual Notation
TimerStop returns tdl::TimerStop:
 AtomicPrefixFragment
 'stop' componentInstance=[tdl::ComponentInstance|Identifier]
 '::' timer=[tdl::Timer|Identifier]
;
Comments
No comments.
Examples
 stop client::global

[bookmark: _Toc93315951]6.3.13	TimeOut
Concrete Textual Notation
TimeOut returns tdl::TimeOut:
 AtomicPrefixFragment
 'timeout' 'on' componentInstance=[tdl::ComponentInstance|Identifier]
 '::' timer=[tdl::Timer|Identifier]
;
Comments
No comments.
Examples
 timeout on client::global

[bookmark: _Toc93315952]6.4	Test Configuration
[bookmark: _Toc93315953]6.4.1	GateType
Concrete Textual Notation
GateType returns tdl::GateType:
 AnnotationCommentFragment
 kind=GateTypeKind
 'Gate' name=Identifier
 ('extends' extension=Extension)?
 'accepts' dataType+=[tdl::DataType|Identifier] (',' dataType+=[tdl::DataType|Identifier])*
;
Comments
No comments.
Examples
	Message Gate HTTP accepts Post, Posts
	
	Message Gate HTTPS extends HTTP accepts Binary
	
	Procedure Gate RPC accepts publish

[bookmark: _Toc93315954]6.4.2	GateTypeKind
Concrete Textual Notation
enum GateTypeKind returns tdl::GateTypeKind:
 Message = 'Message' | Procedure = 'Procedure'
;
Comments
No comments.
Examples
Void.
[bookmark: _Toc93315955]6.4.3	GateInstance
Concrete Textual Notation
GateInstance returns tdl::GateInstance:
 AnnotationCommentFragment
 'gate' type=[tdl::GateType|Identifier]
 name=Identifier
 WithCommentFragment?
;
Comments
No comments.
Examples
		gate HTTP http
		gate RPC rpc

[bookmark: _Toc93315956]6.4.4	ComponentType
Concrete Textual Notation
ComponentType returns tdl::ComponentType:
 AnnotationCommentFragment
 'Component' name=Identifier
 ('extends' extension=Extension)?
 BEGIN
 (timer+=Timer | variable+=Variable | gateInstance+=GateInstance)*
 END
;
Comments
No comments.
Examples
	Component Node {
		timer global
		variable Binary authToken
		variable Integer lastPostId
		gate HTTP http
		gate RPC rpc
	}
	
	Component SecureNode extends Node {
		gate HTTPS https
	}

[bookmark: _Toc93315957]6.4.5	ComponentInstance
Concrete Textual Notation
ComponentInstance returns tdl::ComponentInstance:
 AnnotationCommentFragment
 type=[tdl::ComponentType|Identifier]
 name=Identifier
 'as' role=ComponentInstanceRole
;
Comments
No comments.
Examples
		Node server as SUT
		Node client as Tester

[bookmark: _Toc93315958]6.4.6	ComponentInstanceRole
Concrete Textual Notation
enum ComponentInstanceRole returns tdl::ComponentInstanceRole:
 SUT = 'SUT' | Tester = 'Tester'
;
Comments
No comments.
Examples
Void.
[bookmark: _Toc93315959]6.4.7	GateReference
Concrete Textual Notation
GateReference returns tdl::GateReference:
 (name=GRIdentifier '=')?
 component=[tdl::ComponentInstance|Identifier]
 '::'
 gate=[tdl::GateInstance|Identifier]
;
Comments
No comments.
Examples
Void.
[bookmark: _Toc93315960]6.4.8	Connection
Concrete Textual Notation
Connection returns tdl::Connection:
 AnnotationCommentFragment
 'connect' endPoint+=GateReference
 'to' endPoint+=GateReference
 WithNameFragment?
;
Comments
No comments.
Examples
		connect client::http to server::http
		connect cRPC=client::rpc to sRPC=server::rpc

[bookmark: _Toc93315961]6.4.9	TestConfiguration
Concrete Textual Notation
TestConfiguration returns tdl::TestConfiguration:
 AnnotationCommentFragment
 'Configuration' name=Identifier
 BEGIN
 componentInstance+=ComponentInstance (',' componentInstance+=ComponentInstance)*
 (',' connection+=Connection)*
 END
;
Comments
No comments.
Examples
	Configuration base {
		Node server as SUT,
		Node client as Tester,
		connect client::http to server::http,
		connect cRPC=client::rpc to sRPC=server::rpc
	}

[bookmark: _Toc93315962]6.5	Test Behaviour
[bookmark: _Toc93315963]6.5.1	TestDescription
Concrete Textual Notation
TestDescription returns tdl::TestDescription:
 TDPrefixFragment
 ('Test' 'Description' | isLocallyOrdered?='Test')
 name=Identifier
 (LParen formalParameter+=FormalParameter (',' formalParameter+=FormalParameter)* RParen)?
 'uses' testConfiguration=[tdl::TestConfiguration|Identifier]
 (behaviourDescription=BehaviourDescription)?
;

fragment TDPrefixFragment returns tdl::TestDescription:
 TDObjectiveFragment?
 AnnotationCommentFragment
;

fragment TDObjectiveFragment returns tdl::TestDescription:
 'Objective:' testObjective+=[tdl::TestObjective|Identifier]
 	(',' testObjective+=[tdl::TestObjective|Identifier])*
;
Comments
No comments.
Examples
	 @Example
 Test Description publishNewRreport(Post cleanPost, Binary authRequest) uses base

	 @Example
 Test publishNewRreport(Post cleanPost, Binary authRequest) uses base

 Objective: CheckAuthToken
 	 Test Description publishNewRreport(Post cleanPost, Binary authRequest)
 uses base {
 		perform action : "Call administrator" on client
 }

[bookmark: _Toc93315964]6.5.2	BehaviourDescription
Concrete Textual Notation
BehaviourDescription returns tdl::BehaviourDescription:
 behaviour=Behaviour
;
Comments
'Annotation's and 'Comment's, as well as the 'name' property, are syntactically excluded from 'BehaviourDescription'.
Examples
Void.
[bookmark: _Toc93315965]6.5.3	Behaviour
Concrete Textual Notation
Behaviour returns tdl::Behaviour:
 CombinedBehaviour | AtomicBehaviour
;

fragment WithBehaviourFragment returns tdl::Behaviour:
 'with'
 BEGIN
 NameFragment?
 ObjectiveFragment?
 (comment+=Comment)*
 END
;

fragment ObjectiveFragment returns tdl::Behaviour:
 'Objective:' testObjective+=[tdl::TestObjective|Identifier]
 (',' testObjective+=[tdl::TestObjective|Identifier])*
;
Comments
The reusable fragments can be embedded in the concrete textual notation of metaclasses inheriting from this metaclass.
Examples
Void.
[bookmark: _Toc93315966]6.5.4	Block
Concrete Textual Notation
Block returns tdl::Block:
 ('[' guard+=LocalExpression (',' guard+=LocalExpression)* ']')?
 BEGIN
 behaviour+=Behaviour+
 END
;
Comments
'Annotation's and 'Comment's, as well as the 'name' property, are syntactically excluded from 'Block's. 'Annotation's and 'Comment's can be assigned to the containing 'CombinedBehaviour's.
Examples
Void.
[bookmark: _Toc93315967]6.5.5	LocalExpression
Concrete Textual Notation
LocalExpression returns tdl::LocalExpression:
 expression=DataUse
 ('on' scope=[tdl::ComponentInstance|Identifier])?
;

LocalLoopExpression returns tdl::LocalExpression:
 expression=DataUse 'times'
 ('on' scope=[tdl::ComponentInstance|Identifier])?
;
Comments
The 'LocalLoopExpression' derivation is only used within 'BoundedLoopBehaviour's. 'Annotation's and 'Comment's, as well as the 'name' property, are syntactically excluded from 'LocalExpression's.
Examples
Void.

[bookmark: _Toc93315968]6.5.6	CombinedBehaviour
Concrete Textual Notation
CombinedBehaviour returns tdl::CombinedBehaviour:
 (SingleCombinedBehaviour | MultipleCombinedBehaviour)
 =>WithCombinedFragment?
;

fragment WithCombinedFragment returns tdl::CombinedBehaviour:
 'with'
 BEGIN
 NameFragment?
 ObjectiveFragment?
 (comment+=Comment)*
 (periodic+=PeriodicBehaviour)*
 (exceptional+=ExceptionalBehaviour)*
 END
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations. The 'WithCombinedFragment' is always assigned to the innermost 'CombinedBehaviour'.
Examples
Void.
[bookmark: _Toc93315969]6.5.7	SingleCombinedBehaviour
Concrete Textual Notation
SingleCombinedBehaviour returns tdl::SingleCombinedBehaviour:
 CompoundBehaviour
 | BoundedLoopBehaviour
 | UnboundedLoopBehaviour
 | OptionalBehaviour
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315970]6.5.8	CompoundBehaviour
Concrete Textual Notation
CompoundBehaviour returns tdl::CompoundBehaviour:
 AnnotationFragment
 block=Block
;
Comments
No comments.
Examples
 @Example
 ["some expression"] {
 perform action: "reload"
 }

 @Example
 {
 perform action: "reload"
 }

[bookmark: _Toc93315971]6.5.9	BoundedLoopBehaviour
Concrete Textual Notation
BoundedLoopBehaviour returns tdl::BoundedLoopBehaviour:
 AnnotationFragment
 'repeat' numIteration+=LocalLoopExpression (',' numIteration+=LocalLoopExpression)*
 block=Block
;
Comments
No comments.
Examples
 repeat 5 times {
 perform action: "reload"
 }

 repeat 5 times on client, 3 times on server {
 perform action: "reload"
 }

[bookmark: _Toc93315972]6.5.10	UnboundedLoopBehaviour
Concrete Textual Notation
UnboundedLoopBehaviour returns tdl::UnboundedLoopBehaviour:
 AnnotationFragment
 'while' block=Block
;
Comments
No comments.
Examples
 while ["some expression"] {
 perform action: "reload"
 }

 while ["some expression" on client, "other expression" on server] {
 perform action: "reload"
 }

[bookmark: _Toc93315973]6.5.11	OptionalBehaviour
Concrete Textual Notation
OptionalBehaviour returns tdl::OptionalBehaviour:
 AnnotationFragment
 'optionally' block=Block
;
Comments
No comments.
Examples
 optionally {
 perform action: "reload"
 }

[bookmark: _Toc93315974]6.5.12	MultipleCombinedBehaviour
Concrete Textual Notation
MultipleCombinedBehaviour returns tdl::MultipleCombinedBehaviour:
 ConditionalBehaviour
 | AlternativeBehaviour
 | ParallelBehaviour
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315975]6.5.13	ConditionalBehaviour
Concrete Textual Notation
ConditionalBehaviour returns tdl::ConditionalBehaviour:
 AnnotationFragment
 'if' block+=Block
 (=>('else' block+=Block)
 | (('else' 'if' block+=Block)*
 ('else' block+=Block)))?
;
Comments
The 'Block's are identifed to by the preceding keywords, where the first 'Block' is referred to as an 'if' 'Block' and the following 'Block's are referred to as 'else' or 'else if' 'Blocks', respectively. An 'else' 'Block' shall always be attached to the innermost 'if' 'Block'.
Examples
 if ["some expression"] {
 perform action: "reload"
 }

 if ["some expression" on client, "other expression" on server] {
 perform action: "reload"
 } else if ["some expression" on client, "other expression" on server] {
 perform action: "backup"
 } else {
 perform action: "query"
 }

[bookmark: _Toc93315976]6.5.14	AlternativeBehaviour
Concrete Textual Notation
AlternativeBehaviour returns tdl::AlternativeBehaviour:
 AnnotationFragment
 'alternatively' block+=Block
 ('or' block+=Block)+
;
Comments
No comments.
Examples
 alternatively {
		 	server::http sends "error" to client::http
			perform action: "reload"
 } or {
 timeout on client::global
 perform action: "reload conditionally"
 }

 alternatively ["some expression"] {
		 	server::http sends "error" to client::http
			perform action: "reload"
 } or ["some other expression"] {
 timeout on client::global
 perform action: "reload conditionally"
 }

 alternatively ["some expression" on client, "other expression" on server] {
		 	server::http sends "error" to client::http
			perform action: "reload"
 } or {
 timeout on client::global
 perform action: "reload conditionally"
 }

[bookmark: _Toc93315977]6.5.15	ParallelBehaviour
Concrete Textual Notation
ParallelBehaviour returns tdl::ParallelBehaviour:
 AnnotationFragment
 'run' block+=Block
 ('in' 'parallel' 'to' block+=Block)
 ('and' block+=Block)*
;
Comments
No comments.
Examples
 run {
			perform action: "reload"
		} in parallel to {
			perform action: "backup"
 } and {
			perform action: "query"
 }

 run ["some expression" on client, "other expression" on server] {
			perform action: "reload"
		} in parallel to {
			perform action: "backup"
 } and ["some expression" on client, "other expression" on server] {
			perform action: "query"
 }

[bookmark: _Toc93315978]6.5.16	ExceptionalBehaviour
Concrete Textual Notation
ExceptionalBehaviour returns tdl::ExceptionalBehaviour:
 DefaultBehaviour | InterruptBehaviour
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315979]6.5.17	DefaultBehaviour
Concrete Textual Notation
DefaultBehaviour returns tdl::DefaultBehaviour:
 AnnotationFragment
 'default'
 ('on' guardedComponent=[tdl::ComponentInstance|Identifier])?
 block=Block
 WithBehaviourFragment?
;
Comments
No comments.
Examples
 while ["some expression" on client, "other expression" on server] {
 perform action: "query"
 } with {
 		Note: "Applies to combined behaviour"
 default {
					server::http sends "error" to client::http
					perform action: "reload"
 } with {
 	Note: "Applies to default"
 }
 default on client {
 	timeout on client::global
					perform action: "reload"
 }
 }

[bookmark: _Toc93315980]6.5.18	InterruptBehaviour
Concrete Textual Notation
InterruptBehaviour returns tdl::InterruptBehaviour:
 AnnotationFragment
 'interrupt'
 ('on' guardedComponent=[tdl::ComponentInstance|Identifier])?
 block=Block
 WithBehaviourFragment?
;
Comments
No comments.
Examples
 while ["some expression" on client, "other expression" on server] {
 perform action: "query"
 } with {
 interrupt on client ["some condition"] {
 timeout on client::global
 perform action: "reload conditionally"
 }
 }

[bookmark: _Toc93315981]6.5.19	PeriodicBehaviour
Concrete Textual Notation
PeriodicBehaviour returns tdl::PeriodicBehaviour:
 AnnotationFragment
 'every'
 (period+=LocalExpression (',' period+=LocalExpression)*)
 block=Block
 WithBehaviourFragment?
;
Comments
No comments.
Examples
 while ["some expression" on client, "other expression" on server] {
 perform action: "query"
 } with {
 every 5 {sec} ["some expression" on client, "other expression" on server] {
					perform action: "reload"
 }
 }

[bookmark: _Toc93315982]6.5.20	AtomicBehaviour
Concrete Textual Notation
AtomicBehaviour returns tdl::AtomicBehaviour:
 (TimerOperation
 | TimeOperation
 | Break | Stop
 | VerdictAssignment | Assertion
 | Interaction
 | TestDescriptionReference
 | ActionBehaviour
 | Assignment)
 WithAtomicFragment?
;

fragment AtomicPrefixFragment returns tdl::AtomicBehaviour:
 ObjectiveFragment?
 AnnotationCommentFragment
;

fragment WithAtomicFragment returns tdl::AtomicBehaviour:
 'with'
 BEGIN
 TimeLabelFragment?
 TimeConstraintFragment?
 END
;

fragment TimeLabelFragment returns tdl::AtomicBehaviour:
 timeLabel=TimeLabel
;

fragment TimeConstraintFragment returns tdl::AtomicBehaviour:
 LBrace timeConstraint+=TimeConstraint (',' timeConstraint+=TimeConstraint)* RBrace
;
Comments
The reusable fragments can be embedded in the concrete textual notation of metaclasses inheriting from this metaclass.
Examples
 		Objective: CheckAuthToken

 	client::http sends new Post() to server::http
 	with {
 		publicationTime=now
 	}

 		Objective: CheckAuthToken
 	server::http sends authToken to client::http

 	client::http sends parameter cleanPost to server::http

 	server::http sends "OK" to client::http
 	with {
 cleanTime=now
 		{((@cleanTime-@publicationTime) <= 2 {sec})}
 	}

[bookmark: _Toc93315983]6.5.21	Break
Concrete Textual Notation
Break returns tdl::Break:
 {tdl::Break}
 AtomicPrefixFragment
 'break'
;
Comments
No comments.
Examples
 break

[bookmark: _Toc93315984]6.5.22	Stop
Concrete Textual Notation
Stop returns tdl::Stop:
 {tdl::Stop}
 AtomicPrefixFragment
 'terminate'
;
Comments
No comments.
Examples
 terminate

[bookmark: _Toc93315985]6.5.23	VerdictAssignment
Concrete Textual Notation
VerdictAssignment returns tdl::VerdictAssignment:
 AtomicPrefixFragment
 'set' 'verdict' 'to' verdict=DataUse
;
Comments
No comments.
Examples
 set verdict to fail

[bookmark: _Toc93315986]6.5.24	Assertion
Concrete Textual Notation
Assertion returns tdl::Assertion:
 {tdl::Assertion}
 AtomicPrefixFragment
 'assert' condition=DataUse
 ('on' componentInstance=[tdl::ComponentInstance|Identifier])?
 ('otherwise' otherwise=DataUse)?
;
Comments
No comments.
Examples
 assert (client::authToken==referenceToken)
 assert (client::authToken==referenceToken) on client
 assert (client::authToken=="101010") otherwise fail

[bookmark: _Toc93315987]6.5.25	Interaction
Concrete Textual Notation
Interaction returns tdl::Interaction:
 Message | ReceiveMessage | ProcedureCall | ProcedureCallResponse
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315988]6.5.26	Message
Concrete Textual Notation
Message returns tdl::Message:
 AtomicPrefixFragment
 sourceGate=[tdl::GateReference|GRIdentifier]
 ('sends' | (isTrigger?='triggers'))
 argument=DataUse
 'to' target+=TargetMessage (',' target+=TargetMessage)*
;

ReceiveMessage returns tdl::Message:
 AtomicPrefixFragment
 target+=ReceiveTargetMessage
 'receives' (isTrigger?='trigger')?
 argument=DataUse
 'from' sourceGate=[tdl::GateReference|GRIdentifier]
;
Comments
A 'ReceiveMessage' can be used as an alternative way to specify a 'Message' by switching the source and target gates. Only a single 'Target' can be specified when within a 'ReceiveMessage'. If multiple 'Target's need to be specified, the 'Message' derivation shall be used instead..
Examples
 Note: "Single target"
 server::http sends new Binary to client::http

 Note: "Multiple targets"
 server::http sends new Binary to client::http, bridge::http

 Note: "Single target assignment"
 server::http sends new Binary to
 	client::http where it is assigned to authToken

 Note: "Multiple targets with assignment"
 server::http sends new Binary to
 	client::http where it is assigned to authToken,
		bridge::http where it is assigned to authToken

 Note: "Alternative notation without assignment"
 client::http receives new Binary from server::http

 Note: "Alternative notation with assignment"
 authToken = client::http receives new Binary from server::http

[bookmark: _Toc93315989]6.5.27	Target
Concrete Textual Notation
TargetMessage returns tdl::Target:
 targetGate=[tdl::GateReference|GRIdentifier]
 (valueAssignment+=ValueAssignmentMessage)?
;

ReceiveTargetMessage returns tdl::Target:
 (valueAssignment+=ReceiveValueAssignmentMessage)?
 targetGate=[tdl::GateReference|GRIdentifier]
;

TargetProcedure returns tdl::Target:
 targetGate=[tdl::GateReference|GRIdentifier]
 (valueAssignment+=ValueAssignmentProcedure (',' valueAssignment+=ValueAssignmentProcedure)*)?
;
Comments
The alternative derivations are used in the respective contexts.
'Annotation's and 'Comment's, as well as the 'name' property, are syntactically excluded from all concrete types.
Examples
Void.

[bookmark: _Toc93315990]6.5.28	ValueAssignment
Concrete Textual Notation
ValueAssignmentMessage returns tdl::ValueAssignment:
 'where' 'it' 'is'
 'assigned' 'to' variable=[tdl::Variable|Identifier]
;

ReceiveValueAssignmentMessage returns tdl::ValueAssignment:
 variable=[tdl::Variable|Identifier] '='
;

ValueAssignmentProcedure returns tdl::ValueAssignment:
 'where' parameter=[tdl::Parameter|Identifier] 'is'
 'assigned' 'to' variable=[tdl::Variable|Identifier]
;
Comments
The alternative derivations are used in the respective contexts.
'Annotation's and 'Comment's, as well as the 'name' property, are syntactically excluded from all concrete types.
Examples
 where it is assigned to authToken
 where postId is assigned to lastPostId

[bookmark: _Toc93315991]6.5.29	ProcedureCall
Concrete Textual Notation
ProcedureCall returns tdl::ProcedureCall:
 AtomicPrefixFragment
 (name=Identifier ':')?
 sourceGate=[tdl::GateReference|GRIdentifier]
 'calls' signature=[tdl::ProcedureSignature|Identifier]
 LParen argument+=ParameterBinding (',' argument+=ParameterBinding)* RParen
 'on' target+=TargetProcedure
;

ProcedureCallResponse returns tdl::ProcedureCall:
 AtomicPrefixFragment
 (replyTo=[tdl::ProcedureCall|Identifier] ':')?
 sourceGate=[tdl::GateReference|GRIdentifier]
 'responds' 'with' signature=[tdl::ProcedureSignature|Identifier]
 LParen argument+=ParameterBinding (',' argument+=ParameterBinding)* RParen
 'to' target+=TargetProcedure
;
Comments
A 'ProcedureCallResponse' shall be used to specify a response after a 'ProcedureCall'. The 'ProcedureCall' shall be specified with an assigned 'name'-property within the 'WithCombinedFragment'.
Examples
 publishCall: client::rpc calls publish(post=firstReport) on server::rpc
 publishCall: server::rpc responds with publish(postId=1) to client::rpc
 publishCall: server::rpc responds with publish(postId=1) to client::rpc
 	where postId is assigned to lastPostId

[bookmark: _Toc93315992]6.5.30	TestDescriptionReference
Concrete Textual Notation
TestDescriptionReference returns tdl::TestDescriptionReference:
 AtomicPrefixFragment
 'execute' testDescription=[tdl::TestDescription|Identifier]
 (LParen argument+=ParameterBinding (',' argument+=ParameterBinding)* RParen)?
 (BEGIN
 componentInstanceBinding+=ComponentInstanceBinding
 (',' componentInstanceBinding+=ComponentInstanceBinding)*
 END)?
;
Comments
No comments.
Examples
 execute publishAll
 execute publishClean(
 	cleanPost = new Post<?>(title = "Cleaner post"),
 	authRequest = "00111001"
)
 execute publishClean(
 	cleanPost = new Post<?>(title = "Cleanest post"),
 	authRequest = parameter authRequest
) {
 	client -> client,
 	server -> server
 }

[bookmark: _Toc93315993]6.5.31	ComponentInstanceBinding
Concrete Textual Notation
ComponentInstanceBinding returns tdl::ComponentInstanceBinding:
 AnnotationCommentFragment
 formalComponent=[tdl::ComponentInstance|Identifier]
 '->' actualComponent=[tdl::ComponentInstance|Identifier]
;
Comments
No comments.
Examples
 client -> webClient
 server -> webServer

[bookmark: _Toc93315994]6.5.32	ActionBehaviour
Concrete Textual Notation
ActionBehaviour returns tdl::ActionBehaviour:
 ActionReference | InlineAction
;
Comments
This is an abstract metaclass, the textual representation depends on the concrete types indicated as alternative derivations.
Examples
Void.
[bookmark: _Toc93315995]6.5.33	ActionReference
Concrete Textual Notation
ActionReference returns tdl::ActionReference:
 AtomicPrefixFragment
 'perform' action=[tdl::Action|Identifier]
 (LParen argument+=ParameterBinding (',' argument+=ParameterBinding)* RParen)?
 ('on' componentInstance=[tdl::ComponentInstance|Identifier])?
;
Comments
No comments.
Examples
 perform reset
 perform reset on server
 perform reload(posts = allPosts) on server

[bookmark: _Toc93315996]6.5.34	InlineAction
Concrete Textual Notation
InlineAction returns tdl::InlineAction:
 AtomicPrefixFragment
 'perform' 'action' ':' body=EString
 ('on' componentInstance=[tdl::ComponentInstance|Identifier])?
;
Comments
No comments.
Examples
 perform action : "Call administrator"
 perform action : "Call administrator" on client

[bookmark: _Toc93315997]6.5.35	Assignment
Concrete Textual Notation
Assignment returns tdl::Assignment:
 AtomicPrefixFragment
 variable=VariableUse
 '=' expression=DataUse
;
Comments
No comments.
Examples
	client::authToken = "101010"
	client::authToken = instance returned from generateToken(seed = 12)
	client::authToken = generateToken(seed = 12)

[bookmark: _Toc93315998]Annex A (informative):
Technical Representation of the Complete Textual Syntax
The technical representation of the complete specification of the textual syntax is available in the TDL Open Source Project (TOP) [i.4]. The technical representation also includes the specification of the textual syntax for the Structured Test Objective [i.5] and Extended Test Configurations [i.6] TDL extensions.

[bookmark: _Toc93315999]Annex B (informative):
Examples

[bookmark: _Toc93316000]B.0	Overview
This annex provides several examples to illustrate how the different elements of the TDL Textual Syntax can be used and demonstrates the applicability of TDL in several different areas.
The first example in clause B.1 demonstrates the usage of data-related concepts. It showcases the indentation-based syntax variant.
The second example in clause B.2 shows a scenario when a 'Tester' performs a test scenario on one interface of the 'SUT'. The example is taken from ETSI TS 136 523-1 [i.1]. It showcases the brace-based syntax variant.
The third example in clause B.3 provides an example for interoperability testing in IMS. The example is taken from ETSI TS 186 011-2 [i.2]. It is illustrated by means of the indentation-based syntax.
The examples are also available online as part of the TDL Open-Source Project (TOP) [i.4], both using the brace-based and indentation-based variants of the syntax.
[bookmark: _Toc93316001]B.1	Illustration of Data Use
This example describes some of the concepts related to data and data mapping in TDL by means of the TDL Textual Syntax. It illustrates how data instances can be parameterized, mapped to concrete data entities specified in an external resource, e.g. a TTCN-3 file, or to a runtime URI where dynamic concrete data values might be stored by the execution environment during runtime in order to facilitate some basic data flow of dynamic values between different interactions. The example considers a scenario where the SUT is required to generate and maintain a session ID between subsequent interactions using an example test configuration, and an alternative realization where data flow is expressed with variables.
/*
Copyright (c) ETSI 2022.

This software is subject to copyrights owned by ETSI. Non-exclusive permission
is hereby granted, free of charge, to copy, reproduce and amend this file
under the following conditions: It is provided "as is", without warranty of any
kind, expressed or implied.

ETSI shall never be liable for any claim, damages, or other liability arising
from its use or inability of use.This permission does not apply to any documentation
associated with this file for which ETSI keeps all rights reserved. The present
copyright notice shall be included in all copies of whole or part of this
file and shall not imply any sub-license right.
*/

//A manually constructed example illustrating the data mapping concepts
Package DataExample
 //User-defined verdicts
 //Alternatively the predefined verdicts may be used as well
 Type Verdict
 Verdict PASS
 Verdict FAIL

 //Test objectives
 Objective CHECK_SESSION_ID_IS_MAINTAINED
 Description: "Check whether the session id is maintained after the first response."

 //Data definitions
 Type SESSION_ID
 SESSION_ID SESSION_ID_1
 SESSION_ID SESSION_ID_2

 Structure MSG (
 optional SESSION_ID session
)
 MSG REQUEST_SESSION_ID (
 session = omit
)
 MSG RESPONSE (
 session = ?
)
 MSG MESSAGE (
 session = ?
)

 //Data mappings
 //Load resource.ttcn3
 Use "resource.ttcn3" as TTCN_MAPPING
 Map MSG to "record_message" in TTCN_MAPPING as MSG_mapping
 session -> "session_id"
 Map REQUEST_SESSION_ID to "template_message_request" in TTCN_MAPPING as REQUEST_mapping
 Map RESPONSE to "template_response" in TTCN_MAPPING as RESPONSE_mapping
 Map MESSAGE to "template_message" in TTCN_MAPPING as MESSAGE_mapping

 //Map types and instances to TTCN-3 records and templates, respectively
 //(located in the used TTCN-3 file)
 Use "runtime://sessions/" as RUNTIME_MAPPING
 //Map session ID data instances to locations within the runtime URI
 Map SESSION_ID_1 to "id_1" in RUNTIME_MAPPING as SESSION_ID_1_mapping
 Map SESSION_ID_2 to "id_2" in RUNTIME_MAPPING as SESSION_ID_2_mapping

 //Gate type definitions
 Message Gate defaultGT accepts MSG

 //Component type definitions
 Component defaultCT
 gate defaultGT g

 //Test configuration definition
 Configuration defaultTC
 defaultCT UE as SUT,
 defaultCT SS as Tester,
 connect SS::g to UE::g

 //Test description definition
 Test Description exampleTD uses defaultTC
 Note : "Tester requests a session id"
 SS::g sends REQUEST_SESSION_ID to UE::g
 Note : "SUT responds with a session id that is assigned to the URI
 provided by the execution environment"
 UE::g sends RESPONSE (session = SESSION_ID_1) to SS::g
 Note : "Tester sends a message with the session id from the runtime URI"
 SS::g sends MESSAGE (session = SESSION_ID_1) to UE::g
 alternatively
 Note : "SUT responds with the same session id"
 UE::g sends RESPONSE (session = SESSION_ID_1) to SS::g
 set verdict to PASS
 or
 Note : "SUT responds with a new session id"
 UE::g sends RESPONSE (session = SESSION_ID_2) to SS::g
 set verdict to FAIL
 with
 Objective: CHECK_SESSION_ID_IS_MAINTAINED

 //Alternative approach with variables

 //Component type definitions
 Component defaultCTwithVariable
 variable MSG v
 gate defaultGT g

 //Test configuration definition
 Configuration defaultTCwithVariables
 defaultCT UE as SUT,
 defaultCTwithVariable SS as Tester,
 connect SS::g to UE::g

 Test Description exampleTD uses defaultTCwithVariables
 Note : "Tester requests a session id"
 SS::g sends REQUEST_SESSION_ID to UE::g
 Note : "SUT responds with a session id that is assigned to the URI
 provided by the execution environment"
 UE::g sends RESPONSE to SS::g where it is assigned to v
 Note : "Tester sends a message with the session id from the runtime URI"
 SS::g sends MESSAGE (session = SS::v.session) to UE::g
 alternatively
 Note : "SUT responds with the same session id"
 UE::g sends RESPONSE (session = SS::v.session) to SS::g
 set verdict to PASS
 or
 Note : "SUT responds with a new session id"
 UE::g sends RESPONSE to SS::g
 set verdict to FAIL
 with
 Objective: CHECK_SESSION_ID_IS_MAINTAINED

[bookmark: _Toc93316002]B.2	Interface Testing
This example describes one possible way to translate clause 7.1.3.1 from ETSI TS 136 523-1 [i.2] into the brace-based variant of the TDL Textual Syntax, by mapping the concepts from the representation in the source document to the corresponding concepts in the TDL meta-model. The example has been enriched with additional information, such as explicit data definitions and test configuration details for completeness where applicable.

/*
Copyright (c) ETSI 2022.

This software is subject to copyrights owned by ETSI. Non-exclusive permission
is hereby granted, free of charge, to copy, reproduce and amend this file
under the following conditions: It is provided "as is", without warranty of any
kind, expressed or implied.

ETSI shall never be liable for any claim, damages, or other liability arising
from its use or inability of use.This permission does not apply to any documentation
associated with this file for which ETSI keeps all rights reserved. The present
copyright notice shall be included in all copies of whole or part of this
file and shall not imply any sub-license right.
*/

//Translated from [i.5], Section 7.1.3.

Note : "Taken from 3GPP TS 36.523-1 V10.2.0 (2012-09)"
@TITLE : "Correct handling of DL assignment / Dynamic case"
Package Layer_2_DL_SCH_Data_Transfer {
 //Procedures carried out by a component of a test configuration
 //or an actor during test execution
 Action preCondition : "Pre-test Conditions:
 RRC Connection Reconfiguration"
 Action preamble : "Preamble:
 The generic procedure to get UE in test state Loopback
 Activated (State 4) according to TS 36.508 clause 4.5
 is executed, with all the parameters as specified in the
 procedure except that the RLC SDU size is set to return no
 data in uplink.
 (reference corresponding behavior once implemented)"

 //User-defined verdicts
 //Alternatively the predefined verdicts may be used as well
 Type Verdict
 Verdict PASS
 Verdict FAIL

 //User-defined annotation types
 Annotation TITLE //Test description title
 Annotation STEP //Step identifiers in source documents
 Annotation PROCEDURE //Informal textual description of a test step
 Annotation PRECONDITION //Identify pre-condition behaviour
 Annotation PREAMBLE //Identify preamble behaviour.

 //Test objectives (copied verbatim from source document)
 Objective TP1 {
 Description: "
 with {
 UE in E-UTRA RRC_CONNECTED state
 }
 ensure that {
 when {
 UE receives downlink assignment on the PDCCH
 for the UE's C-RNTI and receives data in the
 associated subframe and UE performs HARQ
 operation
 }
 then {
 UE sends a HARQ feedback on the HARQ process
 }
 }"
 References: "36523-1-a20_s07_01.doc::7.1.3.1.1 (1)"
 }
 Objective TP2 {
 Description: "
 with {
 UE in E-UTRA RRC_CONNECTED state
 }
 ensure that {
 when {
 UE receives downlink assignment on the PDCCH
 with a C-RNTI unknown by the UE and data is
 available in the associated subframe
 }
 then {
 UE does not send any HARQ feedback on the
 HARQ process
 }
 }"
 References: "36523-1-a20_s07_01.doc::7.1.3.1.1 (2)"
 }

 //Relevant data definitions
 Type PDU
 PDU mac_pdu
 Type ACK
 ACK harq_ack
 Type C_RNTI
 C_RNTI ue
 C_RNTI unknown
 Structure PDCCH (
 optional C_RNTI c_rnti
)
 PDCCH pdcch ()

 //User-defined time units
 Time sec

 //Gate type definitions
 Message Gate defaultGT accepts ACK,PDU,PDCCH,C_RNTI

 //Component type definitions
 Component defaultCT {
 gate defaultGT g
 }

 //Test configuration definition
 Configuration defaultTC {
 defaultCT SystemSimulator as Tester,
 defaultCT UserEquipment as SUT,
 connect UE=UserEquipment::g to SS=SystemSimulator::g
 }

 //Test description definition
 Test Description TD_7_1_3_1 uses defaultTC {
 //Pre-conditions and preamble from the source document
 @PRECONDITION
 perform preCondition
 @PREAMBLE
 perform preamble

 //Test sequence
 @STEP : "1"
 @PROCEDURE : "SS transmits a downlink assignment
 including the C-RNTI assigned to
 the UE"
 SS sends pdcch (c_rnti = ue) to UE
 @STEP : "2"
 @PROCEDURE : "SS transmits in the indicated
 downlink assignment a RLC PDU in
 a MAC PDU"
 SS sends mac_pdu to UE
 Objective: TP1
 @STEP : "3"
 @PROCEDURE : "Check: Does the UE transmit an
 HARQ ACK on PUCCH?"
 UE sends harq_ack to SS
 set verdict to PASS
 @STEP : "4"
 @PROCEDURE : "SS transmits a downlink assignment
 to including a C-RNTI different from
 the assigned to the UE"
 SS sends pdcch (c_rnti = unknown) to UE
 @STEP : "5"
 @PROCEDURE : "SS transmits in the indicated
 downlink assignment a RLC PDU in
 a MAC PDU"
 SS sends mac_pdu to UE

 //Interpolated original step 6 into an alternative behaviour,
 //covering both the incorrect and the correct behaviours of the UE
 @STEP : "6"
 @PROCEDURE : "Check: Does the UE send any HARQ ACK
 on PUCCH?"
 alternatively {
 UE sends harq_ack to SS
 set verdict to FAIL
 } or {
 quiet for 5 {sec} on gate SS
 set verdict to PASS
 } with {
 Objective: TP2
 }
 } with {
 Note : "Note 1: For TDD, the timing of ACK/NACK is not
 constant as FDD, see Table 10.1-1 of TS 36.213."
 }
}

[bookmark: _Toc93316003]B.3	Interoperability Testing
This example describes one possible way to translate clause 4.5.1 from ETSI TS 186 011-2 [i.3] into the TDL Textual Syntax, by mapping the concepts from the representation in the source document to the corresponding concepts in the TDL meta-model. The example has been enriched with additional information, such as explicit data definitions and test configuration details for completeness where applicable.
/*
Copyright (c) ETSI 2022.

This software is subject to copyrights owned by ETSI. Non-exclusive permission
is hereby granted, free of charge, to copy, reproduce and amend this file
under the following conditions: It is provided "as is", without warranty of any
kind, expressed or implied.

ETSI shall never be liable for any claim, damages, or other liability arising
from its use or inability of use.This permission does not apply to any documentation
associated with this file for which ETSI keeps all rights reserved. The present
copyright notice shall be included in all copies of whole or part of this
file and shall not imply any sub-license right.
*/

//Translated from [i.6], Section 4.5.1.
Note : "Taken from ETSI TS 186 011-2 [i.3] V3.1.1 (2011-06)"
@TITLE : "SIP messages longer than 1 500 bytes"
Package IMS_NNI_General_Capabilities
 //Procedures carried out by a component of a test configuration
 //or an actor during test execution
 Action preConditions : "Pre-test conditions:
 - HSS of IMS_A and of IMS B is configured according to table 1
 - UE_A and UE_B have IP bearers established to their respective
 IMS networks as per clause 4.2.1
 - UE_A and IMS_A configured to use TCP for transport
 - UE_A is registered in IMS_A using any user identity
 - UE_B is registered user of IMS_B using any user identity
 - MESSAGE request and response has to be supported at II-NNI
 (ETSI TS 129 165 [16]
 see tables 6.1 and 6.3)"
 //User-defined verdicts
 //Alternatively the predefined verdicts may be used as well
 Type Verdict
 Verdict PASS
 Verdict FAIL

 //User-defined annotation types
 Annotation TITLE //Test description title
 Annotation STEP //Step identifiers in source documents
 Annotation PROCEDURE //Informal textual description of a test step
 Annotation PRECONDITION //Identify pre-condition behaviour
 Annotation PREAMBLE //Identify preamble behaviour.
 Annotation SUMMARY //Informal textual description of test sequence

 //Test objectives (copied verbatim from source document)
 Objective TP_IMS_4002_1
 Description: "ensure that {
 when { UE_A sends a MESSAGE to UE_B
 containing a Message_Body greater than 1 300
 bytes }
 then { IMS_B receives the MESSAGE containing the
 Message_Body greater than 1 300 bytes }
 }"
 References: "ts_18601102v030101p.pdf::4.5.1.1 (CC 1)"
 ,"ETSI TS 124 229 [1], clause 4.2A, paragraph 1"
 Objective UC_05_I
 References: "ts_18601102v030101p.pdf::4.4.4.2"

 //Relevant data definitions
 Structure MSG (
 optional CONTENT TCP
)
 MSG MESSAGE ()
 MSG DING ()
 MSG DELIVERY_REPORT ()
 MSG M_200_OK ()
 Type CONTENT
 CONTENT tcp
 Time SECONDS
 SECONDS default_timeout

 //Gate type definitions.
 Message Gate defaultGT accepts MSG,CONTENT

 //Component type definitions
 //In this case they may also be reduced to a single component type
 Component USER
 gate defaultGT g
 Component UE
 gate defaultGT g
 Component IMS
 gate defaultGT g
 Component IBCF
 gate defaultGT g

 //Test configuration definition
 Configuration CF_INT_CALL
 USER USER_A as Tester,
 UE UE_A as Tester,
 IMS IMS_A as Tester,
 IBCF IBCF_A as Tester,
 IBCF IBCF_B as Tester,
 IMS IMS_B as SUT,
 UE UE_B as Tester,
 USER USER_B as Tester,
 connect USER_A::g to UE_A::g,
 connect UE_A::g to IMS_A::g,
 connect IMS_A::g to IBCF_A::g,
 connect IBCF_A::g to IBCF_B::g,
 connect IBCF_B::g to IMS_B::g,
 connect IMS_B::g to UE_B::g,
 connect UE_B::g to USER_B::g

 //Test description definition
 Test Description TD_IMS_MESS_0001 uses CF_INT_CALL
 @SUMMARY : "IMS network shall support SIP messages greater than
 1 500 bytes"
 //Pre-conditions from the source document
 @PRECONDITION
 perform preConditions

 //Test sequence
 @STEP : "1"
 USER_A::g sends MESSAGE to UE_A::g
 @STEP : "2"
 UE_A::g sends MESSAGE to IMS_A::g
 @STEP : "3"
 IMS_A::g sends MESSAGE to IBCF_A::g
 @STEP : "4"
 IBCF_A::g sends MESSAGE to IBCF_B::g
 @STEP : "5"
 IBCF_B::g sends MESSAGE (TCP = tcp) to IMS_B::g
 @STEP : "6"
 IMS_B::g sends MESSAGE to UE_B::g
 @STEP : "7"
 UE_B::g sends DING to USER_B::g
 @STEP : "8"
 UE_B::g sends M_200_OK to IMS_B::g
 @STEP : "9"
 IMS_B::g sends M_200_OK to IBCF_B::g
 @STEP : "10"
 IBCF_B::g sends M_200_OK to IBCF_A::g
 @STEP : "11"
 IBCF_A::g sends M_200_OK to IMS_A::g
 @STEP : "12"
 IMS_A::g sends M_200_OK to UE_A::g
 alternatively
 @STEP : "13"
 UE_A::g sends DELIVERY_REPORT to USER_A::g
 or
 quiet for default_timeout on gate USER_A::g

[bookmark: _Toc93316004]History
	Document history

	V1.1.1
	September 2021
	Early draft

	V1.1.1
	January 2022
	Final draft

ETSI
image1.jpeg

