
© ETSI 2022. All rights reserved

TTF 013: TDL and TOP Enhancement
Status Update

© ETSI 2022. All rights reserved

Document History

• 2021-09-24: Document submitted for MTS#84

• 2021-05-10: Document submitted for MTS#83

• 2021-03-09: Document submitted for TTF 013 Kick-Off Meeting

2

© ETSI 2022. All rights reserved

From the Terms of Reference…

© ETSI 2022. All rights reserved

TTF 013: Objectives (enhancement)

• Support for testing RESTful API services specified with OpenAPI

• data definition refinements

• workflow, TD generator, test execution engine

• Textual syntax standardisation

• clean-up and refinement of Annex B (also of Part 4)

• integration of Part 1 and Part 4 syntax (by extension also Part 7)

• Methodology for deriving TDs from TOs/TPs

• Initial work on testing of AI systems (requirements)
4

© ETSI 2022. All rights reserved

TTF 013: Objectives (maintenance)

• Adaptation and extension of TDL addressing CRs

• new features (parametrisable TOs, reusable events, OpenAPI-related)

• updates to relevant parts, mapping new features to TTCN-3

• Update of TOP tools

• resolve CRs, catch up with Eclipse updates, adaptations to TDL

• Update of technical report

• validation, user guidelines

5

© ETSI 2022. All rights reserved

TTF 013: Deliverables

6

Deliv. Work Item code
Standard number

Working title
Scope

D1* RES/ES 203 119-1 V1.6.1 Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 1: Abstract Syntax and Associated Semantics

D2* RES/ES 203 119-2 V1.5.1 Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 2: Graphical Syntax

D3* RES/ES 203 119-3 V1.5.1 Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 3: Exchange Format

D4* RES/ES 203 119-4 V1.5.1 Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 4: Structured Test Objective Specification
(Extension)

D5* RES/ES 203 119-6 V1.3.1 Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 6: Mapping to TTCN-3

D6* RES/ES 203 119-7 V1.3.1 Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 7: Extended Test Configurations

D7 DES/ES 203 119-8 V1.1.1 Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 8: Textual Syntax

D8 RTS/TR 103 119 V1.3.1 Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Reference Implementation and User Guidelines

* Work items of the TDL standard series which are not affected by CRs will not be updated.

© ETSI 2022. All rights reserved

Today

• Work plan

• Tasks and status

• Open questions

7

© ETSI 2022. All rights reserved

Planing Summary

© ETSI 2022. All rights reserved

Work Plan

• Timescale: Mar, 2021 — Apr, 2022

• work remotely, weekly online meetings, meeting in person not possible

• coordinated remote sessions scheduled as needed, based on availability

• Working sessions

• WK15: Apr 12–16 Focus Week @ Home (5 days)

• WK36–WK37: Sep 8–14 Focus Week @ Home (4/5 days)

• WK45: Nov 10-12: Focus Week @Home (3 days)

• WK49: Dec 8-10: Focus Week @Home (3 days)

9

© ETSI 2022. All rights reserved

Milestone Definitions

10

Task / Mil. Destination Description Cut-off Date

MA ETSI Early drafts of D1, D2, D4, D6 available

First progress report to be approved by TC MTS 15/05/2021

MB ETSI Stable drafts of D1 – D7 and early draft of D8 available

Second progress report be approved by TC MTS 15/09/2021

MC ETSI Final drafts of D1 – D8 submitted to TC MTS 21/12/2021

MD ETSI Deliverables D1-D8 approved by TC MTS

Final report to be approved by TC MTS 31/01/2022

ME ETSI Deliverables published, TTF closed 30/04/2022

* Final drafts delayed a bit due to vacation and illness.

© ETSI 2022. All rights reserved

Milestones (Current Planning)

11

N Task / Milestone / Deliverable ToR Targets PM / Current Targets

Start of work 01-Mar-2021 08-Mar-2021

T0 Project Management 01-Mar-2021–30-Apr-2022 08-Mar-2021–30-Apr-2022

T1 TDL Evolution 01-Mar-2021–31-Dec-2021 08-Mar-2021–31-Dec-2021

T2 TOP for RESTful API Services 15-May-2021–31-Dec-2021 15-May-2021–31-Dec-2021

T3 TDL Methodology 15-May-2021–31-Dec-2021 15-May-2021–31-Dec-2021

MA Early drafts/report (MTS#83) 15-May-2021 15-May-2021

MB Stable drafts/report (MTS#84) 15-Sep-2021 15-Sep-2021

MC Final drafts (before MTS#85) 20-Dec-2021 20-Dec-2021

MD Final report (MTS#85) 31-Jan-2022 31-Jan-2022

ME Deliverables published 30-Apr-2022 30-Apr-2022

* Preliminary work on T2 and T3 started informally before MA as it informs work on T1 as well.

© ETSI 2022. All rights reserved

Overall Timeline (Current)

12

Task /
Mil. Description M A M J J A S O N D J F M A M J

T0 Project Management

T1 TDL Evolution

T2 TOP for RESTful API Services

T3 TDL Methodology

MA Early drafts/report (MTS#83)

MB Stable drafts/report (MTS#84)

MC Final drafts (before MTS#85)

MD Final report (MTS#85)

ME Deliverables published

© ETSI 2022. All rights reserved

Tasks

© ETSI 2022. All rights reserved

Task 0: Project Management

• Four TTF working sessions

• Additional working sessions to be scheduled as needed.

• Progress and final reports

• Communications

• Open meetings: 10-Mar-2021, 19-May-2021, 7-Jul-2021, 14-Jul-2021

• Board SOOS presentation: 20-May-2021

• Presentation at the UCAAT 2021

• TTF Website: https://portal.etsi.org/STF/STFs/STF-HomePages/T013

14

https://portal.etsi.org/STF/STFs/STF-HomePages/T013

© ETSI 2022. All rights reserved

Task 1: TDL Evolution

• Standardised textual syntax -> brace- and indentation-based

• Parameterizable test objectives -> TO variants

• Re-usable events in TDL-TO -> variants / events templates

• Supporting RESTful API services testing -> features, framework

• Resolving open CRs -> CR updates in Mantis pending

• Design of new features according to the submitted CRs

15

© ETSI 2022. All rights reserved

Status: TDL Evolution

• Textual syntax draft proposal (Part 8) - additional refinements

• both brace-based (default) and indentation-based delimiters for blocks

• alternative notation for select constructs (Message, ProcedureCall)

• natural vs programming language feel (currently still a bit of a mix)

• natural language for TO, programming language for TDs

• completeness: mostly complete

• few exceptions, e.g. Annotations, Comments on DataUse

• case-insensitive keywords

16

© ETSI 2022. All rights reserved

Status: TDL Evolution

17

Package returns tdl::Package:
 AnnotationFragment
 'Package' name=Identifier
 BEGIN
 (^import+=ElementImport)*
 (packagedElement+=PackageableElement)*
 (nestedPackage+=Package)*
 END
 WithCommentFragment?
;

Package CombinedBehaviours {
Import all from DataUse
Import all from DataDefinition
Import all from DataUse.DynamicDataUse
Import all from TestConfiguration

Test Description singleCombinedExample uses base {
//…

}
}

Package CombinedBehaviours
Import all from DataUse
Import all from DataDefinition
Import all from DataUse.DynamicDataUse
Import all from TestConfiguration
Test Description singleCombinedExample uses base

BEGIN : ‘{‘
END : ‘}’

BEGIN : <INDENT+>
END : <INDENT->

© ETSI 2022. All rights reserved

Status: TDL Evolution

18

Package TestConfiguration {
Import all from DataDefinition
Import all from Foundation
Message Gate HTTP accepts Post, Posts
Message Gate HTTPS extends HTTP accepts Binary
Procedure Gate RPC accepts publish
Component Node {

timer global
variable Binary authToken
variable Boolean authenticated
variable Integer lastPostId
gate HTTP http
gate RPC rpc

}
Component SecureNode extends Node {

gate HTTPS https
}
Configuration base {

create SUT server of type Node
create Tester client of type Node
connect client.http to server.http
connect cRPC=client.rpc to sRPC=server.rpc

}
}

Package TestConfiguration
Import all from DataDefinition
Import all from Foundation
Message Gate HTTP accepts Post, Posts
Message Gate HTTPS extends HTTP accepts Binary
Procedure Gate RPC accepts publish
Component Node

timer global
variable Binary authToken
variable Boolean authenticated
variable Integer lastPostId
gate HTTP http
gate RPC rpc

Component SecureNode extends Node
gate HTTPS https

Configuration base
create SUT server of type Node
create Tester client of type Node
connect client.http to server.http
connect cRPC=client.rpc to sRPC=server.rpc

BEGIN : ‘{‘
END : ‘}’

BEGIN : <INDENT+>
END : <INDENT->

Draft version

© ETSI 2022. All rights reserved

Status: TDL Evolution

19

Package TestConfiguration {
Import all from DataDefinition
Import all from Foundation
Message Gate HTTP accepts Post, Posts
Message Gate HTTPS extends HTTP accepts Binary
Procedure Gate RPC accepts publish
Component Node {

timer global
variable Binary authToken
variable Boolean authenticated
variable Integer lastPostId
gate HTTP http
gate RPC rpc

}
Component SecureNode extends Node {

gate HTTPS https
}
Configuration base {

Node server as SUT,
Node client as Tester,
connect client::http to server::http,
connect cRPC=client::rpc to sRPC=server::rpc

}
}

Package TestConfiguration
 Import all from DataDefinition
 Import all from Foundation
 Message Gate HTTP accepts Post, Posts
 Message Gate HTTPS extends HTTP accepts Binary
 Procedure Gate RPC accepts publish
 Component Node
 timer global
 variable Binary authToken
 variable Boolean authenticated
 variable Integer lastPostId
 gate HTTP http
 gate RPC rpc
 Component SecureNode extends Node
 gate HTTPS https
 Configuration base
 Node server as SUT,
 Node client as Tester,
 connect client::http to server::http,
 connect cRPC = client::rpc to sRPC = server::rpc

BEGIN : ‘{‘
END : ‘}’

BEGIN : <INDENT+>
END : <INDENT->

Final version

© ETSI 2022. All rights reserved

Status: TDL Evolution

20

 //default
server.http sends ? of type RestrictedListOfInt to client.http

 //default + variable assignment
server.http sends ? of type RestrictedListOfInt to client.http

assigned to authToken

 //alternative: swap source and target
client.http receives ? of type RestrictedListOfInt from server.http

 //alternative: swap source and target and assign to variable
authToken = client.http receives ? of type RestrictedListOfInt from server.http

Draft version

© ETSI 2022. All rights reserved

Status: TDL Evolution

21

 //default
server::http sends ? {RestrictedListOfInt} to client::http

 //default + variable assignment
server::http sends ? {RestrictedListOfInt} to client::http

where it is assigned to authToken

 //alternative: swap source and target
client::http receives ? {RestrictedListOfInt} from server::http

 //alternative: swap source and target and assign to variable
authToken = client::http receives ? {RestrictedListOfInt} from server::http

Final version

© ETSI 2022. All rights reserved

Status: TDL Evolution

22

 Test Purpose TP_RESOURCE_GET_200
 Objective: "Read full contents of a resource with a valid ID"
 Reference: "Clause 4.3.2.4", "Clause 4.3.2.6"
 Expected behaviour
 ensure that
 when
 the Server entity receives a vGET request containing
 uri indicating value "/resource/",
 id set to VALID_ID
 then
 the Server entity sends a HTTP response containing
 status set to 200 OK,
 body containing
 id set to VALID_ID

© ETSI 2022. All rights reserved

Status: TDL Evolution

23

 Test Purpose TP_RESOURCE_GET
 Objective: "Read full contents of a resource with an ID"
 Reference: "Clause 4.3.2.4", "Clause 4.3.2.6"
 Expected behaviour
 ensure that
 when
 the Server entity receives a vGET request containing
 uri indicating value "/resource/",
 id set to ID
 then
 the Server entity sends a HTTP response containing
 status set to HTTP_STATUS
 with
 Note 1: "This test purpose has variants."
 Variant TP_RESOURCE_GET_200v1
 Objective: "Read full contents of a resource with a valid ID"
 Bindings
 value ID set to VALID_ID,
 value HTTP_STATUS set to 200 OK

© ETSI 2022. All rights reserved

Status: TDL Evolution

• Other matters for discussion

• Change title of TR 103 119? (still “Reference Implementation”) -> future

• Status of Annex B in Parts 1 and 4 (“unofficial textual syntax”) -> deprecated

• add note that it is superseded by Part 8, may be removed in the future

• Clause renumbering to bring related parts together -> avoided for now

• Validation operation / alternatives for data -> discuss during WG meeting

• different scenarios for the specification of data alternatives

• introduce dedicated constructs vs guidelines for existing features

24

© ETSI 2022. All rights reserved

Task 2: TOP Maintenance

• Implement the elaborated workflow for RESTful API services
testing from Task 3

• Provision of a TDL-TD code generator and execution engine to
support the execution of RESTful API services tests

• TOP maintenance in accordance to updates of its base software
(Eclipse)

• Resolving open CRs and alignment of TOP according to TDL
changes performed in Task 1

25

© ETSI 2022. All rights reserved

Status: TOP Maintenance

• Prototypical implementations for Part 8

• conversion between different notations for validation -> also for migration

• Prototypes for transformation of OpenAPI and ASN.1 data definitions

• Prototypes for interpreter/code generator for tests for RESTful APIs

• Prototype for transforming TOs/TPs to TDs

• data, configuration, behaviour stubs

26

© ETSI 2022. All rights reserved

Task 3: Methodology

• Elaborate a defined way to derive TDs from TOs and provide
guidelines for a semi-automatic workflow

• Elaborate a workflow to specify TOs/TDs for RESTful API services
starting from an OpenAPI specification in accordance with EG 203
647

• Demonstrate and describe the application of TOP for RESTful API
Services testing

• Update online documentation, wiki, examples -> to be merged

• Solicitation of requirements for describing tests of AI systems and
ML models

27

© ETSI 2022. All rights reserved

Status: Methodology

• Conventions for the derivation of TDs from TOs

• data, configuration, behaviour

• alternative syntax TP-like syntax for TDs in Part 4

• Conventions for the derivation of TDL data from OpenAPI / ASN.1

• overall framework applicable to other kinds of data specifications as well

• Framework for executing TDL specifications for RESTful API tests

• parts may be subject to normative work in the future, e.g. TRI

28

© ETSI 2022. All rights reserved

Status: Methodology

29

TDL Data Type Model
(generated)

Data Type Specification
(OpenAPI / ASN.1 / XSD / …)

TDL Behaviour Model
(user defined or generated)

Data Type Implementation
(Java / JavaScript / Python / …)

Test Executable

Encoding / Decoding Adapter

SUT / IUT

Generator / Interpreter

Generator / Compiler TDL Data Type Importer User / Test Generator

Process

Mapping (trace)
Process (optional)

Reference

Target Execution Platform

TDL Tooling

Adaptation*

Encoded or raw data

Encode data in adapter if raw

If mapping not sufficient

1 3

4

10

12

11

7

9

16

8

2

6

5

1815

14

17

13

© ETSI 2022. All rights reserved

Status: Methodology

30

openapi: 3.1.0
info:
 title:'Library'
 version:'0.1'
paths: {}
components:
 schemas:
 LibraryBook:
 type:object
 properties:
 title:
 type:string
 authors:
 type:array
 items:
 type:string
 Library:
 type:object
 properties:
 address:
 type:string
 books:
 type:array
 items:
 $ref: '#/components/schemas/LibraryBook'

Package generated_from_mapping_conventions_yaml {
 Type string;

 Use "mapping_conventions.yaml" as SOURCE_MAPPING; //(5)
 Use "generated/java" as TARGET_MAPPING; //(6)

 Type LibraryBook (
 title of type string,
 authors of type LibraryBook___authors
);
 Collection LibraryBook___authors of type string;

 Map LibraryBook to "#/components/schemas/LibraryBook"
 in SOURCE_MAPPING as LibraryBook_SOURCE_MAPPING;
 Map LibraryBook to "LibraryBook"
 in TARGET_MAPPING as LibraryBook_TARGET_MAPPING;

 Type Library (
 address of type string,
 books of type Library___books
);
 Collection Library___books of type LibraryBook;
 Map Library to "#/components/schemas/Library"
 in SOURCE_MAPPING as Library_SOURCE_MAPPING;
 Map Library to "Library"
 in TARGET_MAPPING as Library_TARGET_MAPPING;
}

Package mapping_usage {
 Import all from generated_from_mapping_conventions_yaml;

 //example data instances
 Library exampleLibrary (
 address = “Sophia-Antipolis, France”,
 books = {
 new LibraryBook(
 title = "TOP Guide",
 authors = {
 "Martti Käärik",
 "Finn Kristoffersen",
 "et al."
 }
),
 new LibraryBook(
 title = "Introduction to TDL"
),
 TDLTutorial
 }
);
 LibraryBook TDLTutorial (
 title = “Getting Started with TDL"
)

 //example behaviour models
}

public LibraryBook title(String title) {
 this.title = title;
 return this;
}

@javax.annotation.Nullable
@ApiModelProperty(value = "")
public String getTitle() {
 return title;
}

public void setTitle(String title) {
 this.title = title;
}

public LibraryBook authors(List<String> authors) {
 this.authors = authors;
 return this;
}

public LibraryBook addAuthorsItem(String authorsItem) {
 if (this.authors == null) {
 this.authors = new ArrayList<String>();
 }
 this.authors.add(authorsItem);
 return this;
}

Generator / Compiler TDL Data Type Importer User / Test Generator

1 3

7

8

2

6

5

4

Process

Mapping (trace)
Process (optional)

Reference

Target Execution Platform

TDL Tooling

Adaptation*

© ETSI 2022. All rights reserved

Status: Methodology

31

NodeDescriptor ::= SEQUENCE
{
 aNodeName NodeName, -- Node name
 aShortName UUID, -- Short node name
 aNode CHOICE
 {
 aLink SEQUENCE
 {
 aLinkedFileIdentity NodeIdentity, -- Identity of the linked SSP file
 aLinkedFileSize FileSize -- Size of the linked SSP file
 },
 aFile SEQUENCE
 {
 aFileSize FileSize -- Size of the SSP file
 },
 aDirectory SEQUENCE
 {
 }
 },
 aMetaData SEQUENCE OF MetaDatum OPTIONAL, -- Optional meta data
 aACL SET OF AccessControl OPTIONAL -- Access Control List attribute
}

/* Node identity */
NodeName ::= UTF8String (SIZE(1..16)) -- node name encoded in UTF-8
NodeReference ::= SEQUENCE (SIZE(1..6)) OF NodeName -- pathname and node name

NodeIdentity ::= CHOICE
{
 aShortName UUID, -- UUID of file reference using absolute pathname
 aNodeReference NodeReference -- Node reference
}

Type NodeDescriptor (
aNodeName of type NodeName ,
aShortName of type UUID ,
aNode of type NodeDescriptor___aNode ,
optional aMetaData of type NodeDescriptor___aMetaData ,
optional aACL of type NodeDescriptor___aACL

) ;
Type NodeName with {

UTF8String ;
} ;
Collection NodeReference of type NodeName ;
Type NodeIdentity (

aShortName of type UUID ,
aNodeReference of type NodeReference

) with {
CHOICE ;

} ;

Type NodeDescriptor___aNode (
aLink of type NodeDescriptor___aNode___aLink ,
aFile of type NodeDescriptor___aNode___aFile ,
aDirectory of type NodeDescriptor___aNode___aDirectory

) with {
CHOICE ;

} ;
Type NodeDescriptor___aNode___aLink (

aLinkedFileIdentity of type NodeIdentity ,
aLinkedFileSize of type FileSize

) ;
Type NodeDescriptor___aNode___aFile (

aFileSize of type FileSize
) ;
Type NodeDescriptor___aNode___aDirectory () ;

Collection NodeDescriptor___aMetaData of type MetaDatum ;
Collection NodeDescriptor___aACL of type AccessControl ;

ASN.1 Data Definitions TDL Data Definitions (imported)

© ETSI 2022. All rights reserved

Status: Methodology

32

 the IUT entity receives a SUBSCRIBE message containing
 payload containing
 filterLength corresponding to TOPIC_FILTER_LEN_SEC_CVE_01,
 topic_filter corresponding to TOPIC_FILTER_LEN_SEC_CVE_01;;
 from the ATTACKER_CLIENT entity

 Data {
 UTF8String TOPIC_FILTER_SEC_CVE_01; // topic filter used in TP_MQTT_BROKER_SEC_CVE_001
 Int16 TOPIC_FILTER_LEN_SEC_CVE_01; // corresponds to lengthof(TOPIC_FILTER_SEC_CVE_01) + 1
 }

 Type SUBSCRIBE_message (
 payload of type SUBSCRIBE_message_payload
) ;
 Type SUBSCRIBE_message_payload (
 filterLength of type Int16 ,
 topic_filter of type UTF8String
) ;

TO (inline data)

TDL (structured data)

© ETSI 2022. All rights reserved

Status: Methodology

33

Adapter module

PredefinedFunctions RuntimeHelper

SystemAdapter Validator Reporter

ProviderModule

TestControl <ComponentType>

<TestDescription_
ComponentInstance>

PredefinedFunctions
(default impl.)

RuntimeHelper
(default impl.)

Code generator
*.codegen

UI
*.eclipse

Runtime
.rt.

TRI
*.tri

TDL model

JUnit

Guice

Adapters

Eclipse

© ETSI 2022. All rights reserved

Status: Methodology

34

JavaClass JavaStaticField JavaMethodJavaStaticMethod

ActionDataInstance

SimpleDataType

StructyuredDataType

CollectionDataType

EnumDataType

JavaPackage JavaClass

ProcedureSignature

Member

<Predefined
SimpleDataType>

Integer, Boolean,
String

TimeEnumDataType->
SimpleDataInstance

JavaField

© ETSI 2022. All rights reserved

Status: Methodology

35

Tester System
Adapter Validator Reporter

send

matches

behaviourStarted
comment*

receive

behaviourCompleted
testObjectiveReached

setVerdict*

addReceiver
receive

removeReceiver

receive

parallel

receive any

receive alt-1

receive alt-2

matches
setVerdict*

setVerdict

© ETSI 2022. All rights reserved

Status: Methodology

36

Test
Code

Test
Control

Completion
Service

exc = addExceptionalBehaviour()

next_event_future = next()

removeExceptionalBehaviour(exc)

future = submit(receive)
submit(exceptionals)

receive_future = receive()

receive_constraint_future = timeConstraint() future = submit(timeout)

add to stack

cancel futures

take()

remove
from stack

alt

[next_event_future == receive_future]

[next_event_future == receive_constraint_future]

[else]

set verdict fail

data = receive_future.get()

validate data

exc = getExceptionalBehaviour(next_event_future)

execute exc.behaviour

© ETSI 2022. All rights reserved

Open Questions

© ETSI 2022. All rights reserved

Informative vs Normative Work

• Some topics raise questions, may need a new home

• OpenAPI / ASN.1 use and guidelines, TO to TD derivation, TRI

• Use of TDs as containers for TPs -> currently syntax specialisation in Part 4

• scope and limitations (constructs, semantics, etc.) -> currently unrestricted

• further syntax refinements if needed

• Informative as a start -> split TR in the future (new WIs)

• Some parts may become normative eventually (TRI)

• New contact point at CTI (due to Michele’s departure)

38

© ETSI 2022. All rights reserved

Future

• New TTF ToR submitted, focusing on

• Web platform for TDL and integration with NWM

• TOP project refinements (execution architecture, code generation, UX)

• already covered to an extent (for RESTful API testing)

• Potential normative work: TRI, transformation rules (currently informative)

• Final ToR not yet available -> WG Chair

• Potential delay to timeline, considering also leadership uncertainty

• TTF Roadmap needs updating

39

© ETSI 2022. All rights reserved

Any other business?

40

© ETSI 2022. All rights reserved

