Draft ETSI TS 103 942 V0.1.1 (2023-03)
7

Draft ETSI TS 103 942 V0.1.1 (2023-03)
Testing (MTS);
Security Testing;
IoT Security Functional Modules

TECHNICAL SPECIFICATION
[image: ETSI_BG_final_new]

Reference
DTS/MTS-TST10SECTEST_IOTMODULE
Keywords
IoT, security, testing,TDL

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

[bookmark: _Hlk67652697]Siret N° 348 623 562 00017 - APE 7112B
Association à but non lucratif enregistrée à la
[bookmark: _Hlk67652713]Sous-Préfecture de Grasse (06) N° w061004871

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure
Notice of disclaimer & limitation of liability
The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.
[bookmark: EN_Delete_Disclaimer]No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.
Copyright Notification
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.

© ETSI 2023.
All rights reserved.

Contents
Intellectual Property Rights	4
Foreword	4
Modal verbs terminology	4
Executive summary	4
Introduction	4
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definition of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	7
3.3	Abbreviations	7
4	Specification of the IoT Modules	8
4.1	IoTAC Secure Reference Architecture	8
4.2	IoTAC Modules	11
4.2.1	Front End Access Management	11
4.2.2	Run-time monitoring system	12
4.2.3	Attack Detection	13
4.2.4	Honeypots	14
4.2.5	AI-based Network Wide Attack Assessment	15
5	Relevant Security Test Methods	16
5.1	Functional and Security Testing	16
5.2	Static Application Security Testing (SAST)	17
5.3	Dynamic Application Security Testing (DAST)	19
5.4	TDL-TO as a specification technique	21
5.5	Methodology for mapping to TDL-TO	22
6	Detailed List of Test Purposes	23
6.1	Functional Test Cases	23
6.1.1	Front-End Access Management	23
6.1.2	Run-time Monitoring System	24
6.1.3	Attack Detection	24
6.1.4	Honeypots	25
6.1.5	AI-based Network Wide Attack Detection	27
6.2	SAST Test Cases	27
Annex A (normative or informative): Title of annex	31
Annex B (informative): Bibliography	32
History	34

[bookmark: _Toc129255566][bookmark: _Toc136416806]Intellectual Property Rights
[bookmark: For_tbname]Essential patents
[bookmark: IPR_3GPP][bookmark: _Hlk67652472][bookmark: _Hlk67652820]IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).
[bookmark: _Hlk67652492][bookmark: _Hlk67652856]Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.
[bookmark: _Toc129255567][bookmark: _Toc136416807]Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
[bookmark: _Toc481503921][bookmark: _Toc487612123][bookmark: _Toc525223404][bookmark: _Toc525223854][bookmark: _Toc527974963][bookmark: _Toc527980450][bookmark: _Toc534708585][bookmark: _Toc534708660][bookmark: _Toc129255568][bookmark: _Toc136416808]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc129255569][bookmark: _Toc136416809]Executive summary
The aim of the present document is to provide a comprehensive and informative guide for individuals engaged in security testing of Internet of Things (IoT) infrastructures. It covers relevant security testing techniques and offers practical recommendations by defining test objectives using TDL-TO [2] that are applicable across multiple industrial domains.
[bookmark: _Toc129255570][bookmark: _Toc136416810]Introduction
The present document provides a comprehensive introduction and guide for developers and users interested in security testing of generic Internet of Things (IoT) architectures that can be used in a broad range of industrial domains. It covers critical testing aspects of the IoT architecture, including:
Functional Testing;
Static Application Security Testing (SAST); and
Dynamic Application Security Testing (DAST).
The testing approach is designed to be versatile and applicable to various IoT architectures. However, it is specifically applied to the IoTAC System Architecture, which is based on the proposed IoTAC Reference Architecture. The IoTAC Reference Architecture expands upon the ISO/IEC 30141 IoT Reference Architecture [1] by addressing known security vulnerabilities.
The present document is structured to provide a broad and general overview of the testing approach. Clause 4 introduces the IoTAC Secure Reference Architecture and explains the key modules and components of the IoTAC System Architecture. In clause 5, relevant security test methods and general testing principles are explained. Finally, clause 6 provides concrete examples of Test Purposes (TPs) using the standardized Test Description Language (TDL) defined by ETSI ES 203 119-4 [2]. Overall, the present document aims to be a valuable resource for anyone interested in conducting effective security testing of IoT architectures, regardless of their specific domain.

[bookmark: _Toc129255571][bookmark: _Toc136416811]1	Scope
The present document offers a guide for developers and users who wish to perform security testing on Internet of Things (IoT) architectures. The testing approach described is intended for the IoTAC System Architecture, but it is versatile and can be adjusted to suit a range of different IoT architectures. It covers fundamental testing aspects, such as Functional Testing, Static Application Security Testing (SAST), and Dynamic Application Security Testing (DAST).
In addition to presenting proposed security test methods and general testing principles, the present document offers more practical guidance to users by providing concrete examples of Test Purposes (TPs) using TDL-TO [2] as a specification language. By including these examples, the present document goes beyond a theoretical discussion of testing principles and provides tangible applications for readers to follow. This allows developers and users interested in IoT security testing to not only gain a deeper understanding of the testing approach but also to see how it can be applied in practice. Thus, this comprehensive document is designed to provide a valuable resource for anyone seeking to conduct effective security testing of IoT architectures in diverse industrial domains.
[bookmark: _Toc129255572][bookmark: _Toc136416812]2	References
[bookmark: _Toc129255573][bookmark: _Toc136416813]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[1]	ISO/IEC 30141:2018: "Internet of Things (IoT) - Reference Architecture".
[2]	ETSI ES 203 119-4 (V1.5.1) (2022-05): "MTS; TDL; Part 4: Structured Test Objective Specification (Extension)".
[bookmark: _Toc129255574][bookmark: _Toc136416814]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]	ISTQB glossary English V3.6.1.
[i.2]	Deliverable D2.3: "Architecture Design Document", Public Deliverable, February 2022, IoTAC project.
[i.3]	OWASP Static Code Analysis (SCA)
[i.4]	OWASP Application Security Verification Standard (ASVS), March 2019
[i.5] ETSI TR 101 583 (V1.1.1) (2015-03): "MTS; Security Testing; Basic Terminology".
[i.6] ETSI TS 103 701 (V1.1.1) (2021-08): “CYBER; Cyber Security for Consumer Internet of Things:
 Conformance Assessment of Baseline Requirements ”
[bookmark: _Toc129255575][bookmark: _Toc136416815]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc129255576][bookmark: _Toc136416816]3.1	Terms
For the purposes of the present document, the following terms apply:
black-box testing: testing activity conducted without knowledge of the internal structure of the system under test
system under test: real open system in which the implementation under test resides
white-box testing: testing based on an analysis of the internal structure of the component or system under test
[bookmark: _Toc129255577][bookmark: _Toc136416817]3.2	Symbols
Void.
[bookmark: _Toc129255578][bookmark: _Toc136416818]3.3	Abbreviations
For the purposes of the present document, the following abbreviations apply:
AADRNN Auto-Associative DRNN
AD	Attack Detection
ASD	Application and Service Domain
BSS	Business Support Systems
DAST	Dynamic Application Security Testing
DRNN 	Dense Random Neural Network
DB	Data Base
FEAM	Front-End Access Management
IDD	Infected Device Detection
IoT	Internet of Things
JWT	JSON Web Token
MPPE	Multi-Purpose Processing Engine
NW-AA	Network-Wide Attack Assessment
OMD	Operation and Management Domain
OSS	Operational Support Systems
RA	Reference Architecture
RAID	Resource and Interchange Domain
RM	Reference Model
RMS	Run-time Monitoring System
SAST	Static Application Security Testing
SCD	Sensing and Controlling Domain
TP	Test Purpose
MTS ETSI Technical Committee - Methods for Testing and Specification 	
TDL-TO	TDL Test Objective
IoTAC Security by Design IoT Development and Certificate Framework with Front-end Access Control
ISO	International Organization for Standardization
TDL	Test Description Language
AI	Artificial Intelligence
JSON	JavaScript Object Notation
SDK	Software Development Kit
API	Application Programming Interface
ML	Machine Learning
RNN	Random Neural Network
ADT	Attack Detection Training
DoS	Denial of Service Attack
SYN 	Synchronized
SYNACK	Synchronized Attack
ARNN	Adversarial Random Neural Network
GP	Get Parameters
SP	Set Parameters
CI	Continuous Integration
ISTQB	International Software Testing Qualifications Board
OWASP	Open Web Application Security Project
IDE	Integrated Development Environment	
S-SDLC	Secure Software Development Lifecycle
KPI	Key Performance Indicator
ASVS	Application Security Verification Standard
ISVS	IoT Security Verification Standard
TC	Technical Committee
TO	Test Objective
PICS	Protocol Implementation Conformance Statement
FTCST	Functional Test Case Specification Templates
HTTP	Hypertext Transfer Protocol
SSL 	Secure Socket Layer
TLS	Transport Layer Security
SHA	Secure Hash Algorithm
GPU	Graphics Processing Unit
FPGA	Field Programmable Gate Array
ASIC	Application Specific Integrated Circuit
PBKDF2	Password-Based Key Derivation Function 1 and 2
[bookmark: _Toc129255579][bookmark: _Toc136416819]4	Specification of the IoT Modules
[bookmark: _Toc129255580][bookmark: _Toc136416820]4.1	IoTAC Secure Reference Architecture
ISO/IEC 30141 [1] provides a comprehensive and flexible framework that organizations can use to design and implement secure IoT systems. Its international recognition and emphasis on risk management make it a reliable choice for organizations looking to deploy secure IoT solutions. Moreover, the ISO/IEC 30141 RA is flexible and can be adopted to different IoT use cases from various domains. However, it only provides high-level security recommendations and guidelines [1]. IoTAC proposes an ISO/IEC 30141 RA-based Secure IoT Reference Architecture as a solution to this problem [i.2]. The extended ISO/IEC 30141 Domain-based Reference Model is presented in Figure 1, where newly introduced IoTAC components and mapped to the corresponding domains. The six ISO/IEC 301414 domains and the newly introduced IoTAC functional components are described below.
[image:]
[bookmark: _Ref115365081]Figure 1: Extended ISO/IEC 30141 Reference Model (RM)
The Sensing and Controlling Domain (SCD) is the central domain of the ISO/IEC 30141 RA, containing most of its innovative functionalities. The IoTAC project introduces the following components:
IoT Security Gateway serves as a secure entry point for IoT devices in an enterprise network, aiming to protect sensitive data from potential threats. It carries out various functions, such as receiving, verifying, and distributing sensor messages, as well as relaying control commands to actuators. Its primary tasks include receiving and scanning messages from sensors and devices, logging security events, detecting intrusions within the internal network, ensuring device cybersecurity, and providing control methods for connected devices.
The AI-based Attack Detection uses machine learning to identify malicious behaviour or anomalies in individual traffic packets or a group of packets. The Attack Detection component is connected to the IoT Security Gateway, and when it detects any malicious activity, it sends out Threat Notification messages.
AI-based Network-Wide Attack Assessment (NW-AA) begins by conducting a security assessment of each device in the IoT network, with the goal of ultimately providing a comprehensive evaluation of the system's security.
Honeypots use advanced anomaly detection algorithms to redirect attackers towards isolated environments and monitor their behaviour. This allows for early identification of potential intrusions and underlying causes of attacks, aiding in the adoption of timely security measures.
FEAM Gateway is an integral component of the Front-end Access Control Management system. Its primary function is to serve as an intermediary between the protected device or system and the FEAM Management module. In this capacity, it assumes responsibility for regulating access to the protected system. By providing an additional layer of security, the FEAM Gateway ensures that only authorized users and devices are granted access to the system.
The Resource and Interchange Domain (RAID) includes all the functions required to access the IoT system resources.
Front-End Access Management (FEAM). The FEAM component represents an innovative capability-based access control system that fulfills the requirements of the Zero Trust concept. It relies on the use of smart cards for the storage of sensitive data, digital signatures and certificates, multi-factor authentication, and fine-grained privileged access management. Additionally, it adheres to the principle of least privilege on a session level. One novel feature of FEAM is the separation, both in time and space, of the delegation of access privileges from the processes of authentication and authorization.
The Operation and Management Domain (OMD). The OMD contains functional components responsible for the overall management of the IoT system. The ISO/IEC 30141 RA identifies two major functional components within the OMD: operational support systems (OSS) and business support systems (BSS).
Run-time Monitoring System (RMS) provides a real-time service that collects security-related data from monitored IoT system components or applications and stores it for subsequent processing. The system employs analytics algorithms to analyse the collected data, with the aim of detecting abnormal patterns. To achieve this, the RMS utilizes monitoring probes that are responsible for data collection and publishing to the monitoring platform.
The Application and Service Domain (ASD) represents the collection of functions implementing application and service logic that realizes specific business functionalities for the service providers in the ASD. The Application Support subgroup provides the execution infrastructure and various kinds of data stores, historical data repositories, etc. During the system analysis phase, a need was identified to incorporate the following common IoTAC components:
Data Bus is a communication channel that routes all real-time data within IoTAC's platform. The platform supports publish-subscribe functionality, enabling users to push their data or subscribe to receive data that meets their needs. IoTAC's Data Bus facilitates real-time data exchange among various components.
Observational Repository is a repository that allows permanent storage of data from the IoTAC platform that is monitored or processed.
Attack Detection Repository hosts both the offline-trained version of AD model for parameter storage as well as the online-trained version to be used for performance evaluation.
Figure 2 illustrates the elaborated IoTAC Domain-based Reference Model [i.2]. Further information can be found in D2.3 [i.2].
[image: A picture containing text, screenshot, diagram, plan

Description automatically generated]
[bookmark: _Ref125376969]Figure 2: IoTAC Domain-based Reference Model (detailed view) [i.2]	Comment by Catherine Lavigne: Reproduction of third party material in ETSI standards
If this figure is copied from another source document ([i.2]) please ensure that you have the appropriate authorization to use it and provide us with a copy of this authorization.
Please use the template available in the link below to obtain the author's authorization:
https://portal.etsi.org/Services/editHelp!/Tohelpyouinyourwork/Useandreproductionoftext,signsandmateriallegallyprotected/Copyrights.aspx

DRAFTING RULES, clause 4.3

[bookmark: _Toc129255581][bookmark: _Toc136416822]4.2	IoTAC Modules
[bookmark: _Toc129255582][bookmark: _Toc136416823]4.2.1	Front End Access Management
The Front-end Access Management Module is a novel form of capability-based access control system. In this system, the responsibility of authorizing transactions and authenticating users is delegated to the front-end, which refers to the secure element of the user. Upon registration with the access management system, users are assigned a set of privileges or rights to perform specific functions. These privileges are loaded into the User Secure Application, which is a smart card application running on the user's chip card. When a user initiates a transaction, the request is sent to the secure application. If the transaction request matches one of the stored privileges, the transaction is authorized; otherwise, it is rejected. The authorization is then prepared as a JSON Web Token (JWT), which is signed in the secure application. The JWT is sent to the FEAM Gateway module, which is embedded or integrated into the protected device. The validity of the signature is verified, and the command may be executed without the local device knowing any personal or privilege information. The FEAM module includes several core components, such as the Client Application, FEAM SDK, User Secure Application, Management Module, and FEAM Gateway module, as shown in Figure 3. The key functionalities of the components are described briefly in Table 1 while more details are available in D 2.3 [i.2].
[image: Diagram

Description automatically generated]
[bookmark: _Ref125033090]Figure 3: Front End Access Management Component Diagram [i.2]
[bookmark: _Ref125034414]Table 1: Front End Access Management Core Components
	Front End Access Management /User Secure Application

	Client Application is a mobile or desktop application used by the user of the FEAM system.

	FEAM SDK manages all communication with the User Secure Application, Management and FEAM Gateway modules. It is part of the FEAM Client application.

	User Secure Application runs on a user secure element and stores keys and user credentials, authenticates the user, and authorizes all operations.

	Management Module encompasses the business logic and manages the workflow of the FEAM module. Specifically, it keeps track of all the users, all their privileges, defines the constraints of the privileges and keeps a log of each operation.

	FEAM Gateway Module is the entry point to the protected system, it validates the tokens in the commands, and allows or rejects access based on the result of the validation.

[bookmark: _Toc129255583][bookmark: _Toc136416824]4.2.2	Run-time monitoring system
Runtime Monitoring System (RMS) is a comprehensive framework for data collection that offers the specifications and necessary implementation to enable a real-time data collection, transformation, filtering, and management service. Its purpose is to provide support to data consumers, which include analytics algorithms responsible for detecting attacks, as well as other third-party applications that report abnormal behaviour using real-time or historical data. The framework is highly versatile and can be applied to IoT environments supporting solutions in various domains, including industrial and cybersecurity, among others. For instance, the solution can be used to gather security-related data from monitored IoT systems, including network, system, and proprietary data, among others, and store it for detecting patterns of abnormal behaviour by applying simple mechanisms like filtering and pre-processing. The design of the framework is underpinned by configurability, extensibility, dynamic setup, and stream handling capabilities. One of the key features of the framework is that it is detached from the underlying infrastructure by employing a specialized data model for modelling the solution's Data Sources, Processors and Results which facilitates the data interoperability, discoverability, and configurability of the offered solution. The module includes six core components, as follows: Probe Management & Configuration, Probe Registry, MPPE Registry, Automatic Reconfiguration, Data Routing, and Multipurpose Processing Engine as illustrated in Figure 4. The core components of the RMS are described in Table 2. Further details about the RMS are available in D2.3 [i.2].
[image: Diagram

Description automatically generated with medium confidence]
[bookmark: _Ref128753005]Figure 4: Run-time Monitoring System [i.2]
[bookmark: _Ref125269454]Table 2: Run-time Monitoring System
	Run-time Monitoring System

	Probe Management and Configuration manages and configures the deployed probes. It can receive automatic probe configuration commands and correspondingly configures the managed probes. Manual probe configuration commands may also be received by the Management and Configuration dashboard.

	Multi-purpose Processing Engine (MPPE) acts as a wrapper of available algorithms to enable their management and data compatibility (input/output) to the Runtime Monitoring System. MPPE utilizes a proprietary configuration API and data model which provides information on the processor description, instantiation, and dataflow configuration.

	Data Routing enables the annotation and routing of incoming data streams.

	Probe Registry maintains a record of the deployed probes. Probe deployment data, as well as state and configuration data are maintained by the registry. The registry provides probe creation, reconfiguration, and search capabilities. It facilitates the automatic deployment of probes and their dynamic discovery.

	Automatic Reconfiguration receives abnormal behaviour reports for the monitored system and sends automatic probe re-configuration commands based on a predefined scenario.

	Probe is responsible for collecting data from the target IoT system or application and streaming to the RMS platform through the data routing component.

	RMS Dashboard facilitates the monitoring and management of the RMS by offering a user friendly dashboard.

[bookmark: _Toc129255584][bookmark: _Toc136416825]4.2.3	Attack Detection
Attack Detection (AD) module is using a Machine Learning (ML) model called Dense Random Neural Network (DRNN), with novel network metrics provided from on-line traffic measurements. These measurement-based metrics are used as input data for learning by the AD module and used for decision making during normal operation. Thus, the AD module learns the communication patterns between IoT devices during normal operation of the network and detects malicious activities from these same metrics. On the other hand, the AD can also be trained off-line, and used on-line. The AD is trained with normal traffic that is collected during the cold-start of the IoT to create an Auto-Associative DRNN (AADRNN) via offline learning. Thus, the AD can recognize malicious traffic even if the characteristics of an attack are unknown and no pre-collected attack data is available. Note that cold-start refers to a predefined length of time after AD is deployed for the first time. Figure 5 displays the component diagram of AD including the subcomponents, APIs, external databases, and user interfaces. As shown in this figure, the AD component is comprised of four subcomponents: Metrics Extraction, AD Initialization, AADRNN Attack Detection, and AADRNN Training.
[image:]
[bookmark: _Ref125270551]Figure 5: Attack Detection
Table 3: Attack Detection Module
	Attack Detection System

	AD Initialization sets the parameters of AD as predefined values and calculates the initial values of scaling factors used to normalize the metric values through historical normal traffic for a fixed length time window.

	Metric Extraction calculates three specific metrics to identify the footprints of Mirai Botnet attacks in network traffic. These metrics include the total size of the latest packets, the average inter-transmission times of the latest packets, and the total number of packets transmitted in a fixed-length time window. They are designed to highlight the differences between attack and normal traffic and can be computed using only the packet header information, thus preserving anonymity and enabling real-time operation on lightweight systems.

	AADRNN Attack Detection employs a trained AADRNN and a decision-making algorithm that predicts expected metric values for normal network operation based on extracted metrics. The algorithm calculates the weighted average of the absolute differences between expected and actual metric values and applies a threshold to the mean to detect malicious packet transmission.

	AADRNN Training model of AD is trained incrementally in parallel to the real-time operation of AD through ADT API using only normal traffic to learn its metrics. To this end, an incremental semi-supervised training procedure based on a reconstruction problem is developed. Specifically, incremental training algorithm stores historical normal traffic for fixed-length time windows and updates the connection weights of the AADRNN for the traffic at the end of each window.

[bookmark: _Toc129255585][bookmark: _Toc136416826]4.2.4	Honeypots
The honeypots are passive network participants that record and analyse network traffic to detect threats and attacks against network devices. As part of efforts to secure the IoT application network, a honeypot solution was implemented utilizing both classical and advanced detection techniques. The classical detection techniques were implemented to identify common attacks such as Portscan, Login Hacking, DoS, and malware infections. The advanced detection mechanism was developed utilizing a distributed learning approach across multiple collaborating nodes to identify potential attacks like Portscan, Bruteforce, and DoS attempts even before attackers finish their network scans and exploit potential vulnerabilities. This two-world approach has effectively enabled mitigating attacks against IoT application networks. The architecture of the IoTAC honeypots is designed to be straightforward and efficient, as depicted in Figure 6. Its lightweight nature allows for optimized resource usage and streamlined operation.
[image: Diagram

Description automatically generated]
[bookmark: _Ref125382383]Figure 6: Honeypots
Table 4: Honeypots
	Honeypots

	Portscan detection involves the identification of susceptible services on a device, typically achieved by probing a small subset of ports. Due to the speed of this method, a significant portion of the network can be scanned quickly. While Portscan detection is a simple approach, it may also generate a substantial number of false positives.

	Bruteforce Detection is a security mechanism that identifies repeated attempts to access a system using weak or publicly-known login credentials. In the case of a honeypot, the credentials used by the attacker to access one of the simulated services are logged. They can be reviewed by an administrator to gain insight into the attack pattern or identify compromised credentials. The honeypot can be configured to permit access to the simulated service after a defined number of attempts or with specific credentials, enabling the analysis of the attacker's behavior and target identification. Such recorded login attempts require manual inspection by an administrator to devise effective countermeasures.

	Denial of Service (DoS) detection is a security mechanism that identifies instances where a network service is overwhelmed with an excessive number of requests, causing the device to become unavailable due to resource exhaustion. The attacker typically employs a specialized program to execute a DoS attack. The honeypot analyses the incoming network traffic, scrutinizing packet arrival times and resource utilization, to detect the four most frequent forms of DoS attacks, which include Ping of Death, SYN flooding, Smurf, and SYNACK attacks.

	Malware Detection through vulnerable software detection involves identifying unknown entry points into a system and network that cannot be effectively covered by a single mitigation measure. To accomplish this, the honeypot records and analyses any command or tool executed by an attacker once they have gained access to a remote device. The administrator shall manually inspect the executed commands and remotely load assets to identify possible exploits created by the attacker. To simulate the execution of custom binaries, which may be present on IoT field devices and targeted by attackers, the administrator can quickly create a custom command response using honeypot configuration.

	Advanced Detection is a feature that facilitates the identification of network-wide attacks, including those previously described, such as scanning multiple devices for a particular service, attempting identical credentials on multiple devices, probing multiple devices for DoS attacks, and executing similar commands on multiple devices. To compare their findings with each other, honeypots periodically request each other's threat API. If a particular activity occurs on at least two devices, it is logged and reported as a shared threat. The recurrence of a threat generates multiple entries in the log and hence amplifying its severity.

[bookmark: _Toc129255586][bookmark: _Toc136416827]4.2.5	AI-based Network Wide Attack Assessment
Network-Wide Attack Assessment (NW-AA) component detects the infected IoT devices by assessing the attack decisions made for individual devices via Attack Detection component. NW-AA module consists of two components which are ARNN Infected Device Detection (IDD) and ARNN Training (see Figure 7). IDD component, at each call, uses the connection weights and the parameters (which have been computed in training stage) of the algorithm from the NW-AA Parameters DB via NW-AA GP (Get Parameters) API and gets the attack decisions of local detectors as an input from the Alert Signal DB via AD Alarm API. ARNN Training, at each call, first gets the collected attack decisions of local detectors from Alert Signal DB via AD Alarm API and the current parameters from NW-AA Parameters DB via NW-AA GP API; then, updates the parameters in NW-AA Parameters DB via NW-AA SP (Set Parameters) API.
[image:]
[bookmark: _Ref128755693]Figure 7: AI-based Network Wide Attack Assessment
Table 5: AI-based Network Wide Attack Assessment
	AI-based Network Wide Attack Assessment

	ARNN Infected Device Detection detects infected devices in the IoT network making an assessment from the outputs of the existing local attack detectors.

	ARNN Training is responsible for periodically updating the parameters of the ARNN model that is assigned for Network-Wide Attack Assessment via training on the collected data.

[bookmark: _Toc129255587][bookmark: _Toc136416828]5	Relevant Security Test Methods
[bookmark: _Toc129255588][bookmark: _Toc136416829]5.1	Functional and Security Testing
The approach for testing and evaluation of IoTAC run-time components is focused on detection of functional errors and security vulnerabilities. The following three phases are defined:
Functional (Security) Testing to verify the functionality of a component according to the functional requirements. Within this document, we consider intra- and inter-component testing.
Static Application Security Testing (SAST) is a "white box testing approach" for proactive prevention, early detection, and identification of security issues.
Dynamic Application Security Testing (DAST) is a "black box testing" for simulation of live attacks.
The overall approach will be performed in the Continuous Integration (CI) of the DevSecOps lifecycle as illustrated in Figure 10.
Functional security testing is to determine whether the test item meets its functional security requirements. At the beginning of functional security testing, clearly defined security requirements should be specified, which have to be considered in the further course of development. These requirements can be used later on to perform measurements of the security quality of the software. Clearly defined security requirements are the basis for the implementation of test cases, with which the quality can be proven. Functional security testing does not differ from functional testing with respect to the suitable testing techniques. Therefore, established techniques such as equivalence partitioning and boundary value analysis can and should be applied for functional security testing. The test design could be performed manually by deriving functional security test cases from the requirements or automatically that would require deriving a test model from the requirements. Automated test design may achieve higher coverage at the cost of creating a test model what can be an elaborate task and makes the entire tool chain more fragile compared to manually design test cases and implementations.
The intra-component tests (or unit tests) are conducted to ensure that each component functioned correctly when integrated with other modules. The tests are specified and executed by the component developers during the software development process. Normally, developers are using different testing tools for each component, depending on the programming language used. They then run these test cases to evaluate the functionality of the modules. Depending on the type of test implementation (automated or manual), test evaluation is performed automatically by comparing the expected return value or manually by inspection by the developers. If the tests fail, the developer can identify and fix any defects in the code.
Inter-component testing is the testing phase that aims to ensure the smooth interaction between different software components. It involves testing the communication channels, interfaces and interactions between the different components to ensure that the system behaves as expected. The primary objective of inter-component testing is to identify and resolve any issues that may arise from the integration of different components, thus ensuring the overall stability and reliability of the system. Inter-component TPs are defined in section 6.
Functional security testing is a basic building block of security testing and should be used in conjunction with non-functional security testing.
[bookmark: _Toc129255590][bookmark: _Toc136416830]5.2	Static Application Security Testing (SAST)
Static Application Security Testing (SAST) is a testing methodology that analyses source code in an automated fashion to find security vulnerabilities that can make software applications in their runtime susceptible to cyber‑attacks. SAST is realized with the usage of specialized tools, following formalized procedures for source code analysis (SCA) [i.3] and static application security testing [i.4] by OWASP. Analysis by SAST tools typically covers the logic of an application (e.g., classes, routines, functions), its settings (e.g., configuration files), and its dependencies (e.g., libraries). SAST analysis provides feedback to software development teams about security defects in specific locations of the source code. In addition, SAST provides remediation guidance to refactor the code or secure code snippets to achieve a secure implementation.
In the general scenario, SAST analysis takes source code as input and provides security defects as output. To achieve that, all SAST tools perform their operations in three distinct phases:
The first phase is about modelling the source code. The source code is transformed from the specific format of a programming language (e.g., java, php, go, .net) into a modelled format that further facilitates analysis and querying.
The second phase is about running checks against the modelled code based on a list of rules that typically exist in the rule engine of SAST tools. These rules can effectively be viewed as predefined test cases that are executed against the modelled code to detect potential security defects. SAST rules are broadly distinguished between those that perform keyword search operations and those that perform taint analysis. Taint analysis focuses firstly to identify points in the code where input is introduced by external entities and secondly to follow the handling of that input in the source code until an action is taken (e.g., DB entry updated).
The third phase is the report generation where security defects are presented to the development teams.
SAST rulesets in relevant tools are often pre-set per programming language to detect security vulnerabilities that align with commonly known security issues encountered in the field. Many default rulesets are scoped against the OWASP Top 10 most critical web application security risks (https://owasp.org/www-project-top-ten/) and seek to identify injection weaknesses, weak cryptographic implementations, security misconfigurations, security logging failures, etc.. It is possible with most SAST tools to write custom rules that complement pre-set rulesets and can yield value to detect new vulnerabilities, violations against industry secure coding standards and contextual security risk scenarios that stem from the software application logic and particular programming language used (e.g. the bundled pre-set rulesets for different programming languages named as Quality Profiles in SonarQube).
SAST is incorporated into software development operations with the main goal to ensure that source code is continuously reviewed, and insecure implementations are proactively corrected. To achieve that goal, SAST analysis is prevalent, as shown in Figure 10:
in the Integrated Development Environment (IDE) suites used individually by developers, performing source code analysis (SCA); and
in Continuous Integration (CI) pipelines that automate the steps of building and delivering a new version of a software application.
[image:]
Figure 10: SAST in the CODE and BUILD phases of DevSecOps,
coinciding with the Implementation phase of S-SDLC
Integrating SAST in the IDE (CODE phase) offers:
real-time feedback to developers as they type their code; and
empowers them to correct security vulnerabilities before a code commit.
As an example, the Source code analysis tools [i.3] can be deployed by software developers as an extension to their IDEs for code quality evaluation and performing SAST in the IDE, as shown in Figure 11.
[image: SonarLint for Visual Studio 2017 - Visual Studio Marketplace]
Figure 11: Source code analysis (performed by SonarLint) Depicting Vulnerabilities in Visual Studio IDE
In the case of CI integration, SAST becomes part of the so called DevSecOps approach that aims to integrate security and make it a shared responsibility throughout the entire development lifecycle. More practically, a DevSecOps approach effectuates decision gates in CI pipelines that designate approval or rejection for completion based on SAST metrics and results. For example, SAST approaches [i.4] initially define 'Quality Gates' (Figure 12, for the example case of SonarQube SAST tool) that combine different metrics about quality of the code including security vulnerabilities. A 'Quality Gate' receives a rating once an analysis has been completed that informs about the relative performance against the underlying benchmark metrics. The rating can act as information during the execution of a CI pipeline and inform a decision of failing or continuing the build operation.
[image:]
Figure 12: Quality Gate in SAST tools such as SonarQube, defining the test objectives and
criteria for a successful SAST test execution
Definition of Quality Gates is a combination of a security measure/metric, a comparison operator (rule upon a threshold) and an error value. By using these KPIs, a Quality Gate answers the practical question of whether a development project meets certain security criteria and is ready for release. These KPIs will ensure the production of high-quality secure solutions and will drive the different components developments. Security metrics may concern security vulnerabilities and security hotspot issues.
To become SAST tool and programming language agnostic (as SAST tools are dependent on the programming language used for developing a software application), one could describe the SAST KPIs and associated rulesets in a generic format using TDL-TO, however there should be translation mechanisms to convert these into the specific SAST tools KPI representation means (such as the Quality Gates and Quality Profiles per programming language of SonarQube), to be used in practice and as part of the CI processes.
Among the advantages brought around by using SAST are the following ones:
Automated security testing directly into the code.
Scalability - running analyses across multiple software repeatedly.
Automatic identification of well-known security flaws.
Precision in highlighting security flaws and affected code areas to developers.
[bookmark: _Toc129255591][bookmark: _Toc136416831]5.3	Dynamic Application Security Testing (DAST)
Non-functional security testing aims at identifying vulnerabilities through negative testing. The most prevalent technique is fuzz testing, a highly automated approach that generates randomly invalid and unexpected input data. More advanced approaches exploit information about the interface to generate semi-valid input data that is more likely to detect vulnerabilities. Since fuzzing is by its nature highly automated and quite effective in vulnerability detection, it is well-suited for integrating non-functional security testing in a DevSecOps approach. DAST is black box security testing on the application level to identify vulnerabilities that could be exploited by an attacker with access to the external interfaces.
Penetration testing is mimicking the behaviour of an attacker to attempt unauthorized access to the test item through one or more vulnerabilities. Different approaches of penetration testing are ranging from black-box to white-box testing and can be further distinguished between intrusive and non-intrusive testing depending on whether exploiting identified vulnerabilities or not. Usually, penetration testing is performed on a system in it operational or comparable environment. Penetration testing involves not only a single tool but a large set of different tools that support the different activities of penetration testing, e.g. reconnaissance, in-depth scanning, exploitation, post- exploitation and password attacks. DAST tools for web applications are also commonly used for penetration testing of web applications. However, penetration testing differs from DAST in creativity required to assess the information obtained from the behaviour of the test item, may include not only identification of single vulnerabilities but also chains of vulnerabilities that can be exploited by an adversary in a multi-stage attack. Hence, penetration is sometimes considered as an art and cannot be completely automated.
Security Requirements
To conduct effective security testing, it is crucial to define dedicated security requirements derived from various sources. These sources include regulatory compliance or organizational security policies, risk analysis, and established security guidelines and standards.
One such standard commonly utilized is the OWASP Application Security Verification Standard (ASVS). This standard, along with the IoT Security Verification Standard (ISVS), provides comprehensive requirements specifically tailored for application and IoT security.
In addition to the OWASP ASVS and ISVS, test cases defined in the ETSI TS 103 701 v1.1.1 (2021-08) are considered. These test scenarios are designed to address a baseline security level for protecting IoT products against prevalent cybersecurity threats. The baseline effort outlined in ETSI EN 6103 645 serves as a reference for these test cases.	Comment by Mary Jankovic: Is this reference correct?

ETSI EN 303 645 V2.1.1 (2020-06)
CYBER; Cyber Security for Consumer Internet of Things:
Baseline Requirements

To further enhance security assessments, the ETSI TS 103 701 v1.1.1 (2021-08) standard, focusing on Cyber Security for Consumer Internet of Things, provides conformance assessment of baseline requirements. This standard ensures that IoT products meet essential security criteria.
Lastly, the ETSI EN 603 645 standard is referenced for Cyber Security Testing and Evaluation Services. This standard outline specific protocols for testing and evaluating the cybersecurity aspects of products.
By integrating these various sources, organizations can derive comprehensive security requirements that encompass regulatory compliance, industry standards, risk analysis, and best practices. This approach ensures thorough security testing and helps mitigate potential vulnerabilities and cybersecurity risks in applications and IoT systems.
Techniques to be used
The tools used for testing can be divided in two parts, the environment tools that are part of the CI/CD-Pipeline that is described in more details in D6.2 and thus used by a testing script to perform the various types to security tests.
Environment tools are software applications or platforms designed to manage and control the various aspects of software development and deployment environments. These tools help automate and streamline processes such as code deployment, configuration management, infrastructure provisioning, and resource allocation. By providing a centralized and efficient approach to environment management, these tools contribute to improved productivity, faster development cycles, and more reliable software deployments.
Developers often use a version control system (e.g., GitHub) to upload their code updates. Each component typically has its own repository on such version control system.
To automate the software development process, continuous integration and deployment (CI/CD) tools (e.g., Jenkins) are used. In this case, a CI/CD tool is employed to define pipelines for each repository or component. These pipelines are triggered by events, such as updates to the relevant repository. A configuration file, often called a pipeline file, outlines the necessary steps and tests to be executed. When a new commit is added to the repository, the pipeline resets the associated container, retrieves the updated code, and initiates security tests.
Additionally, container platforms (e.g., Portainer) are commonly used to manage and facilitate the deployment of containers. These platforms provide a user-friendly graphical interface for debugging purposes, enabling easy configuration and deployment of containers.
DAST VM is a separate virtual machine in which the security testing tools (listed below) are installed and run to perform various tests.
Security testing tools are specialized software applications used to assess the security posture of software systems and identify vulnerabilities or weaknesses that could potentially be exploited by attackers. These tools automate various security testing techniques, including vulnerability scanning, penetration testing, code analysis, and security assessments. By leveraging these tools, organizations can proactively identify and address security flaws, enhancing the overall resilience and protection of their software applications and systems.
An penetration testing tool is commonly used to identify potential vulnerabilities in applications. This tool performs various security tests to assess the security of an application. It offers a flexible command-line interface (CLI) that allows for easy configuration and customization of scans based on the requirements of different modules. Some key features of this penetration testing tool include active scanning for common vulnerabilities like SQL injection, cross-site scripting (XSS), and remote file inclusion. It also supports automated fuzz testing, which helps in discovering new vulnerabilities. Furthermore, passive scanning capabilities are available to identify potential security issues without actively attacking the target. A notable feature of this tool is its comprehensive reporting functionality, which generates detailed reports on the vulnerabilities detected during a scan. These reports provide valuable insights into the security posture of the application and help in remediation efforts.
A network exploration and security auditing tool are commonly used to scan systems and assess their security posture. This tool enables the scanning of open ports on a system, identification of the operating systems in use, detection of running services on those ports, and identification of any potential vulnerabilities that may exist.
By employing this network exploration and security auditing tool, organizations can gain insights into the exposed network surface, understand the services and systems in operation, and identify potential security weaknesses. This helps in evaluating the overall security of the network and enables proactive measures to mitigate vulnerabilities and enhance security.
The various testing tools are coordinated by a separate testing script. The testing script is the heart of testing. It calls the other testing tools listed above, passes the required data from one tool to another, starts different tests at different starting points of the SUT depending on the parameters given, and generates reports that provide detailed information about the vulnerabilities found, or automatically creates Gitlab issues. This allows developers to understand the issues quickly and easily and prioritise their remediation.
One of the main benefits of using the test script for automated security testing using the various testing tools is that it can be integrated into the software development lifecycle. This means that security testing can be performed on a regular basis throughout the development process, rather than at the end of the project.
Security Test Case Specification Template is illustrated in Figure 13.
[image: Graphical user interface, text, application, email

Description automatically generated]
[bookmark: _Ref115348462]Figure 13: Security Test Case Specification Template
DAST Test Case Execution pipeline is illustrated in Figure 14.
[image: A picture containing timeline

Description automatically generated]
[bookmark: _Ref115348625]Figure 14: DAST Test Case Execution
[bookmark: _Toc129255592][bookmark: _Toc136416832]5.4	TDL-TO as a specification technique
The Test Description Language (TDL) is a new domain-specific language for specifying test descriptions and presenting execution results. TDL is developed and standardized by the Technical Committee Methods for Testing and Specification (TC MTS) at the European Telecommunications Standards Institute (ETSI). It consists of a standardized meta-model that defines relevant concepts, the relationships between them, and the associated semantics. Using TDL, Test Objectives (TO) can be specified in a simplified and generic manner using informal text. With the Structured Test Objective (TDL-TO) extension, it is possible to specify (semi-) structured test objectives in a more formal manner and use concrete syntax notation to present those concepts [i.3]. By using a structured approach, test objectives can be checked for synthetical and semantic consistency. In TDL-TO, additional concepts are introduced for describing the domain, including events, entities, and structure of the test objective. Figure 15 illustrates the foundational concepts of structured test objective specification [i.3].
[image: Diagram

Description automatically generated]
[bookmark: _Ref124865399]Figure 15: Structured Test Objective Specification Foundation Concepts [i.3]	Comment by Catherine Lavigne: Reproduction of third party material in ETSI standards
If this figure is copied from another source document ([i.2]) please ensure that you have the appropriate authorization to use it and provide us with a copy of this authorization.
Please use the template available in the link below to obtain the author's authorization:
https://portal.etsi.org/Services/editHelp!/Tohelpyouinyourwork/Useandreproductionoftext,signsandmateriallegallyprotected/Copyrights.aspx

DRAFTING RULES, clause 4.3

Additional descriptive meta-information may be included in structured test objectives, such as a reference to a related test configuration and the selection of the PICS that are applicable to the test.
[bookmark: _Toc129255593][bookmark: _Toc136416833]5.5	Methodology for mapping to TDL-TO
Methodology for translation of functional tests:
Step 1: Analysis of Functional Test Case Specification Templates (FTCST)
Step 2: Definition of common test configurations
	
	TDL-TO

	1
	TP Id

	2
	Package name

	3
	Reference

	4
	Test purpose/Test Objective

	5
	Common configuration file

	6
	Expected behaviour block/If

	7
	Expected behaviour block/Then

Methodology for translation of SAST test cases
Step 1: Customization of the ruleset (Quality Gates) for pre-defined SAST tests in order to detect potential security defects, capitalizing on pre-set rulesets per the used programming language (aligning with commonly known security issues), and defining custom ones.
Step 2: Definition of common test configurations, translating the ruleset for the specific programming language to TDL-TO descriptions.
	
	TDL-TO

	1
	TP Id

	2
	Package name

	3
	Reference

	4
	Test purpose/Test Objective

	5
	Common configuration file

	6
	Expected behaviour block/When

	7
	Expected behaviour block/If

	7
	Expected behaviour block/Then

[bookmark: _Toc129255594][bookmark: _Toc136416834]6	Detailed List of Test Purposes
[bookmark: _Toc129255595][bookmark: _Toc136416835]6.1	Functional Test Cases
[bookmark: _Toc129255596][bookmark: _Toc136416836]6.1.1	Front-End Access Management
	TP Id
	TC_FEAM_02_01

	Test Objective
	Ensure that a keypair is stored in keystore.

	Reference
	AFR02 [D2.2]

	Initial Conditions

	with {
 the IUT_FEAM has an empty keystore and
 the IUT_FEAM generates a new_TLS_keypair
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM stores the new_TLS_keypair containing
 new_TLS_keypair corresponding to TLS_keypair
 }
 then {
 the IUT_FEAM has a keystore containing
 TLS_keypair indicating value new_TLS_keypair
 }
}

	TP Id
	TC_FEAM_02_02

	Test Objective
	Ensure that an existing keypair will not be overwritten.

	Reference
	AFR02 [D2.2]

	Initial Conditions

	with {
 the IUT_FEAM has a filled keystore containing
 TLS_keypair indicating value keypair and
 the IUT_FEAM generates a new_TLS_keypair
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_FEAM stores the new_TLS_keypair containing
 new_TLS_keypair corresponding to TLS_keypair
 }
 then {
 the IUT_FEAM has a keystore containing
 TLS_keypair indicating value keypair
 }
}

[bookmark: _Toc129255597][bookmark: _Toc136416837]6.1.2	Run-time Monitoring System
	TP Id
	TC_RMS_01

	Test Objective
	Ensure that a new Processor Definition is registered.

	Reference
	RTM_FR_6 [D2.2]

	Initial Conditions

	with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP POST request containing
 JSON corresponding to Processor_Definition
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP response containing
 JSON corresponding to Processor_Definition,
 ID corresponding to Processor_Definition,
 status indicating value 200
 }
}

	TP Id
	TC_RMS_02

	Test Objective
	Ensure that a Processor Definition can be retrieved based on an ID.

	Reference
	RTM_FR_6 [D2.2]

	Initial Conditions

	with {
 the IUT_RMS_ProcessingEngine being_in the deployed_state and
 the IUT_RMS_ProcessingEngine_Interface being_in the reachable_state
}

	Expected Behaviour

	ensure that {
 when {
 the IUT_RMS_ProcessingEngine receives a HTTP GET request containing
 ID corresponding to Processor_Definition
 }
 then {
 the IUT_RMS_ProcessingEngine sends a HTTP response containing
 JSON corresponding to Processor_Definition,
 status indicating value 200
 }
}

[bookmark: _Toc129255598][bookmark: _Toc136416838]6.1.3	Attack Detection
	TP Id
	TC_AD_01

	Test Objective
	Ensure that the AD component detects Botnet attack packets with high accuracy.

	Reference
	AD_FR3, AD_NFR3 [D2.2]

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the trained_state and
 the IUT_AD being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_AD receives some attack_packets
 }
 then {
 the IUT_AD generates an output containing
 numbers less than 0.5 corresponding to benign_packets,
 numbers higher than 0.5 corresponding to attack_packets
 }
}

	TP Id
	TC_AD_02

	Test Objective
	Ensure that the parameters of AD are properly updated using the benign network traffic within the cold-start of AD.

	Reference
	-

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_AD receives some normal_packets
 }
 then {
 the IUT_AD has some learnt_parameters
 }
}

	Final Conditions

	with {
 the IUT_AD being_in the trained_state
}

	TP Id
	TC_AD_03

	Test Objective
	Ensure that the deployed AD is capable sniffing the packets from the targeted port and calculate traffic metrics.

	Reference
	AD_FR1, AD_FR2, AD_NFR2 [D2.2]

	Initial Conditions

	with {
 the IUT_AD being_in the deployed_state and
 the IUT_AD being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_AD receives some normal_packets
 }
 then {
 the IUT_AD calculates some traffic_metrics
 }
}

[bookmark: _Toc129255599][bookmark: _Toc136416839]6.1.4	Honeypots
	TP Id
	TC_HP_01

	Test Objective
	Ensure that the Honeypot can detect a common portscan attack.

	Reference
	HP_FR2 [D2.2]

	Initial Conditions

	with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives an nmap_portscan
 }
 then {
 the IUT_HP stores a report containing detected_portscan
 }
}

	TP Id
	TC_HP_02_01

	Test Objective
	Ensure that the Honeypot detects and stores a login activity.

	Reference
	HP_FR3 [D2.2]

	Initial Conditions

	with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives a random ssh login
 }
 then {
 the IUT_HP stores a report containing login_activity
 }
}

	TP Id
	TC_HP_02_02

	Test Objective
	Ensure that the Honeypot allows access to a remote host with the right credentials.

	Reference
	HP_FR3 [D2.2]

	Initial Conditions

	with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives a login success
 }
 then {
 the IUT_HP allows a remote host login
 }
}

	TP Id
	TC_HP_02_03

	Test Objective
	Ensure that the Honeypot blocks access to a remote host with the wrong credentials.

	Reference
	HP_FR3 [D2.2]

	Initial Conditions

	with {
 the IUT_HP being_in the started_state and
 the IUT_HP being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_HP receives a login error
 }
 then {
 the IUT_HP rejects a remote host login
 }
}

[bookmark: _Toc129255600][bookmark: _Toc136416840]6.1.5	AI-based Network Wide Attack Detection
	TP Id
	TC_NWAA_01

	Test Objective
	Ensure that the NWAA component successfully distinguishes compromised and normal devices in the considered IoT network.

	Reference
	NW-AD_FR_1, NW-AD_NFR_1 [D2.2]

	Initial Conditions

	with {
 the IUT_NWAA_IDD being_in the deployed_state and
 the IUT_NWAA_IDD being_in the trained_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_NWAA_IDD receives some attack_packets
 }
 then {
 the IUT_NWAA_IDD generates a report containing comprised_devices
 }
}

	TP Id
	TC_NWAA_02

	Test Objective
	Ensure that the implemented NWAA training algorithm works well, and connection weights converges properly to a local minimum.

	Reference
	NW-AD_FR_1 [D2.2]

	Initial Conditions

	with {
 the IUT_NWAA_Training being_in the deployed_state and
 the IUT_NWAA_Training being_in the default_state
 }

	Expected Behaviour

	ensure that {
 when {
 the IUT_NWAA_Training is_trained_in a dataset
 }
 then {
 the IUT_NWAA_Training generates a report containing
 performance_metrics corresponding to model_with_initial_weights,
 performance_metrics corresponding to model_with_trained_weights
 }
}

[bookmark: _Toc129255601][bookmark: _Toc136416841]6.2	SAST Test Cases
Two examples are given for mapping SAST test in TDL-TO selected because they apply in more than one programming languages used (e.g. Java and Python). component_tested represents any component programmed in a respective programming language.
	TP Id
	TC_SAST_01

	Test Objective
	Prevent use of weak SSL/TLS protocols different from "TLSv1.2", "TLSv1.3", "DTLSv1.2" or "DTLSv1.3"

	Reference
	OWASP Top 10 2017 Category A3 - Sensitive Data Exposure
OWASP Top 10 2017 Category A6 - Security Misconfiguration
MITRE, CWE-327 - Inadequate Encryption Strength
MITRE, CWE-326 - Use of a Broken or Risky Cryptographic Algorithm
SANS Top 25 - Porous Defenses

	Initial Conditions

	with {
 component_tested initiating_new Connection over HTTP
}

	Expected Behaviour

	ensure that {
 when {
 component_tested initiates HTTP connection using SSL/TLS protocols different from “TLSv1.2", "TLSv1.3", "DTLSv1.2" or "DTLSv1.3"
 }
 then {
 stop building component_tested and
 issue vulnerability report
 }
}

	

	Rule: Weak SSL/TLS protocols should not be used (in Java programming language)

	Description: This rule raises an issue when an insecure TLS protocol version is used (ie: a protocol different from "TLSv1.2", "TLSv1.3", "DTLSv1.2" or "DTLSv1.3").

	Noncompliance Code Example:
javax.net.ssl.SSLContext library:
context = SSLContext.getInstance("TLSv1.1"); // Noncompliant
okhttp library:
ConnectionSpec spec = new ConnectionSpec.Builder(ConnectionSpec.MODERN_TLS)
 .tlsVersions(TlsVersion.TLS_1_1) // Noncompliant
 .build();

	Compliant Solution:
javax.net.ssl.SSLContext library:

context = SSLContext.getInstance("TLSv1.2"); // Compliant
okhttp library:
ConnectionSpec spec = new ConnectionSpec.Builder(ConnectionSpec.MODERN_TLS)
 .tlsVersions(TlsVersion.TLS_1_2) // Compliant
 .build();

	TP Id
	TC_SAST_02

	Test Objective
	Passwords should not be stored in plain-text or with a fast hashing algorithm

	Reference
	OWASP CheatSheet - Password Storage Cheat Sheet
OWASP Top 10 2017 Category A3 - Sensitive Data Exposure
MITRE, CWE-328 - Reversible One-Way Hash
MITRE, CWE-327 - Use of a Broken or Risky Cryptographic Algorithm
MITRE, CWE-916 - Use of Password Hash With Insufficient Computational Effort
SANS Top 25 - Porous Defenses

	Initial Conditions

	with {
 user authenticating to access component_tested
}

	Expected Behaviour

	ensure that {
 when {
 user password is stored in clear-text or with a hash algorithm vulnerable to bruce force attacks
 }
 then {
 stop building component_tested and
 issue vulnerability report
 }
}

	

	Rule: Passwords should not be stored in plain-text or with a fast hashing algorithm (in Java programming language)

	Description: User password should never be stored in clear text, instead a hash should be produced from it using a secure algorithm:
not vulnerable to brute force attacks;
not vulnerable to collision attacks; and
a salt should be added to the password to lower the risk of rainbow table attacks.
This rule raises an issue when a password is stored in clear-text or with a hash algorithm vulnerable to bruce force attacks. These algorithms, like md5[footnoteRef:1] or SHA-family[footnoteRef:2] functions are fast to compute the hash and therefore brute force attacks are possible (it is easier to exhaust the entire space of all possible passwords) especially with hardware like GPU, FPGA or ASIC. Modern password hashing algorithms such as bcrypt[footnoteRef:3], PBKDF2[footnoteRef:4] or argon2[footnoteRef:5] are recommended. [1: https://en.wikipedia.org/wiki/MD5] [2: https://en.wikipedia.org/wiki/Secure_Hash_Algorithms] [3: https://en.wikipedia.org/wiki/Bcrypt] [4: https://en.wikipedia.org/wiki/PBKDF2] [5: https://en.wikipedia.org/wiki/Argon2]

	Noncompliance Code Example:
@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth, DataSource dataSource) throws Exception {
 auth.jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery("SELECT * FROM users WHERE username = ?")
 .passwordEncoder(new StandardPasswordEncoder()); // Noncompliant
 // OR
 auth.jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery("SELECT * FROM users WHERE username = ?"); // Noncompliant; default uses plain-text
 // OR
 auth.userDetailsService(...); // Noncompliant; default uses plain-text
 // OR
 auth.userDetailsService(...).passwordEncoder(new StandardPasswordEncoder()); // Noncompliant
}

	Compliant Solution:
@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth, DataSource dataSource) throws Exception {
 auth.jdbcAuthentication()
 .dataSource(dataSource)
 .usersByUsernameQuery("Select * from users where username=?")
 .passwordEncoder(new BCryptPasswordEncoder());

 // or
 auth.userDetailsService(null).passwordEncoder(new BCryptPasswordEncoder());

[bookmark: _Toc129255602][bookmark: _Toc136416842]Annex A (normative or informative):
Title of annex

[bookmark: _Toc129255603][bookmark: _Toc136416843]Annex B (informative):
Bibliography

[bookmark: _Toc129255605][bookmark: _Toc136416844]History
	Document history

	V0.1.0
	February 203
	Early draft

	V0.1.1
	March 2023
	Clean-up done by editHelp!
E-mail: mailto:edithelp@etsi.org

	
	
	

	
	
	

	
	
	

ETSI
image2.jpeg
[User Domain

/Oferations and Management Domail Applicaton & Service Domain (ASD)

(OMD) Resource Access &
Interchange Domain (RAID)
Run-time Menitoring ‘ Data Bus %Z:Last;&nsl
System (RMS)
‘ | Front-end Access
SecCM Repository Management (FEAM)

Attack Detection Repository

-

Sensing & Controlling Domain (SCD)

loTAC Security Gateway ‘

Network-Wide Attack
Assessment

Attack Detection ‘ ‘ ‘ ‘ Honeypots ‘ ‘ FEAM Gateway Module ‘

Physical Entity Domain (PED)

image3.jpeg
10TAC User Domain

Reporting Dashboard

FEAM UI

RMS Dashboard loT Gateway Dashboard

Operation & Management Domain

- Resource & Interch

ange Domain

|

-Probe Managemeni

Monitoring Data (Observations,
— g ()

RMS

FEAM Admin

|

Annotated Monitoring Data (Observations)

-Event Reporting:

ain 1
Abnormal Behaviour Events Reporting———— |

. Attack
ngerc\)l:iilc?nal Detection
P y Repository

Sensing

Al based Attack
Detection

Honeypots

8
5
Q
>
2
5 S
3 =
s 3
k] 14
o H
= ;
!
S
®
£
]
Al-based Network- | <
Wide Attack 8
Assessment S

ke Threat Notification
I0TAC Security Gateway :
FEAM Gateway|
Module :
H A 7 Threat Notification x
H H < J
1 H

Network Traffic |

Command=--~

loT System

A 2
‘ Sensors ‘ ‘

Attack Detectors

A
Foneypots

Probes |

Physical Entity Domain (PED)

Sensed Physical Objects

Controlled Physical Objects

image4.jpeg
<<component>> &
Client Application

<<component>>

pplication
©— ""Feamspk
FEAM SDK
API

<<component>>
Admin Module

Admin Module AP

<<component>>
FEAM Gateway Module

FEAM Gateway Module API

User Secure Application

g

]

SSAAPI

CACSAPI

FEAM Gateway
DB API

<<component>> £
Admin Module (AM) DB
<<component>> 1]
Server Secure Application
(SSA)
<<component>> g
CA Certificate Server (CS)
<<component>> £

FEAM Gateway Database

image5.jpeg
<<component>>] Probe API
Probe.

PNC API

<<component>>
RMS Dashboard

MPPE API

<<component>> &I

10TAC Security Gateway

©

RSP

<<component>>

Attack Detection

o

<<component>>

<<component>>]
Probe Management & Configuration
PRDBAPI

Runtime Monitoring System

<<component>> 8]
Probe Registry

<<component>>
Mutti Purpose Processing Engine

<<component>>
MPPE Registry

<<component>> [
©—| Observational Repository

Observation Repo API

DRAPI <<component>> Sj}
Data Routing
P ——— |
© Automatic Reconfiguration
ARAP
<<component>
SecCM Repo
BescH A

Data Bus API

image6.jpg
<<component>>

AA-Dense RNN-based Attack Detector

<<component>>
Metrics Extraction

Network
Traffic Packets

<<component>>

© AD Initialization
ADIAPI
[J
<<component>> © <<component>>
ul ADReI AADRNN Attack Detection AD Alarm API
@ [<<component>>
ADTAPI | ' AADRNN Training e
r#
4

<<component>>
AD Parameters DB

Network traffic statistics DB

<<component>>

<<component>> g
‘ Data Bus
g
<<component>>
J Alert Signal DB; format TBD
g)

<<component>>
Attack Detection Repository

image7.png
Configution API

<<component>>
Honeypot Configuration

Network Traffig

<<component>>
Network Services

<<component->
1T Honeypot

<<component>>
Threat Analysis

<<component>>
Portscan Detection

<<component>>
Bruteforce Detection

<<component>>
Do$ Detection

<<component>>
Threat Info Log

<<component>>
Malware Detection

<<component>>
Advanced Detection

Threat Info API

Fee: A

ing from gther Honeypots,
uted anofnaly detection)

image8.jpeg
<<component>>
Multi-module Security Assessment

<<componen>> q
Network Wide Attack Assessment

£

ﬁ(. - N <<component>> &
3 ML ARNN Infected Device Detection
<<component>> l f
ul
<<component>> Z
A ARNN Training =
O E —Q—

<<component>> £ L <<component>> &

Alert Signal DB

NW-AA Parameters DB

<<component>>
Attack Assessment DB; format TBD

image9.png
B>
DEV OPS

PLAN CODE BUILD TEST RELEASE DEPLOY OPERATE MONITOR
<

Requirement

Implementation Testin, i
Analysis p g SEC Release Maintenance

*SAST in IDE (e.g. Sonarlint)

Design
g *SAST in Cl (e.g. SonarQube)

DevOps Pipeline

S-SDLCphases

image10.png
EEESREE 20
(%] ConsoleApplication2 - (Global Scope) ~ @ main() -
i HATELIRE CpSETEEy -

NouhswN

using namespace std;

int checkwin();
void board();

CppiS5945: Use “std:string” instead of a C-style char array.
pp:S5421: Global variables should be const.

image11.png
fr I master © April 21,2021, 148 AM Version o

lssues Security Hotspots Measures Code Activity More ~

QUALITY GATE STATUS & MEASURES

roject Information

Passed New Code Overall Code
since

Al conditions passed.
Started ago

O & Newvuineraviies secuy @)

O © new Seauy Hotspots © — Reviewed

image12.png
([»] Testcase ID

Com pone| nt The Component under test including version identifier
Related R equ irements Requirements verified by the test case (including source document)

Test Objective The objective of the testcase

Test Description
Brief description of the test case

Initial Conditions / Configurations
Configurations or conditions required for the test case

Test Technique

Technique usedto check requirement
(e.q. fuzzing, vulnerabilities scan, efc.)

image13.png
@ JFrog Container Registry

Build app| |mage ‘
Unit test QA tests

> * —_— g —— —
Build Push Deploy container Integration
image | Jocker | imageto === indevserver JOCK@(&UAtests

o il

Security Tests

image14.png
Ores

emiy

o

(Foundation)
PackageableElement

event

(Foundation)
TestObjective

objectiveURI: String [']
description: String (0..1]

B structredTestojective

image1.jpeg

