ETSI TR 103 910 V0.0. (2023-06)
6

[bookmark: docnumber][bookmark: docversion][bookmark: docdate]ETSI TR 103 910 V0.0.64 (2023-065)
[bookmark: doctitle]MTS AI Testing Test Methodology and Test Specification for AI-enabled Systems

<

[bookmark: GSBox]
[bookmark: doctypelong]TECHNICAL REPORT
[image: ETSI_BG_final_new]

[bookmark: page2]Reference
[bookmark: docworkitem]DTR/MTS-103910
Keywords
AI, ML, testing

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

[bookmark: _Hlk67652697]Siret N° 348 623 562 00017 - APE 7112B
Association à but non lucratif enregistrée à la
Sous-préfecture de Grasse (06) N° w061004871

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure
Notice of disclaimer & limitation of liability
The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.
[bookmark: EN_Delete_Disclaimer]No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.
Copyright Notification
[bookmark: CleanupToDelete]No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© ETSI yyyy.
[bookmark: tbcopyright]All rights reserved.

[bookmark: _Toc451532662]
Contents
Intellectual Property Rights	5
Foreword	5
Modal verbs terminology	5
Executive summary	5
Introduction	5
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definition of terms, symbols and abbreviations	6
3.1	Terms	6
3.2	Symbols	7
3.3	Abbreviations	7
4	General conditions of testing ML-based systems	7
4.1	Machine Learning	7
4.2	ML-based systems and its integration	9
4.3	Testing ML-based systems	9
5	Challenges and specifics of testing ML-based systems	10
5.1	Open context and technology	10
5.2	Stochastic solution approach and deep learning	10
5.3	Robustness issue and missing transparency of neural networks	11
5.4	Fault and failure model for testing ML-based systems	11
5.5	Verification vs. validation of ML-based systems	12
6	Quality attributes addressed by testing ML-based systems (Taras)	13
6.1	Model relevance	14
6.2	Correctness	14
6.3	Robustness	14
6.4	Efficiency	14
6.5	Security	14
6.5.1	Confidentiality	15
6.5.2	Integrity	15
6.5.3	Availability	15
6.6	Data Privacy	15
6.7	Fairness	15
6.8	Interpretability	15
6.9	Learnability	16
7	Test items and integration in testing ML-based systems (Gerhard, Taras)	17
7.1	Test items from a workflow perspective	17
7.2	Test items of the business understanding and inception phase	18
7.3	Test items of experimentation and training pipeline development phase	19
7.4	Test items of the training phase	20
7.5	Test items of the system development and integration	21
7.6	The test items of the operation and monitoring phase	21
8	Test methods for testing ML-based systems (Uni Göttingen)	22
8.1	Requirements-based testing	22
8.2	Evaluation of the data	22
8.3	Risk-based testing	22
8.5	Analytical Estimation	23
8.6	Search-based testing	23
8.7	Combinatorial testing	24
8.8	Metamorphic testing	24
8.9	Differential testing	25
8.10	Adversarial Attacks	25
8.9	Exploratory testing	26
8.10	Probabilistic testing	26
8.11	Testing with failure models	26
8.12	Diversifying test	27
8.13	Reviews	27
8.14	Static analysis	27
9	Workflow and process aspects of testing ML-based systems	27
9.1	Test Management for testing ML-based systems	27
9.2	Dynamic test process for testing ML-based systems	27
9.2.1	Test planning phase	27
9.2.2	Test design & analysis phase	29
9.2.3	Test Implementation & execution phase	31
9.2.4	Evaluating exit criteria and reporting phase	31
10	Testing in the ML Life Cycle	33
10.1	The ML Life Cycle	33
10.2	Plan	33
10.3	Data Engineering	33
10.4	Code	33
10.5	Model Engineering	33
10.6	Model V&V	34
10.7	Test	34
10.8	Integration	34
10.9	Deploy	34
10.10	Operate	35
10.11	Monitor	35
Annex A: Title of annex	36
Annex: Bibliography	37
Annex: Change History	39
History	40

[bookmark: _Toc451532663][bookmark: _Toc487531422][bookmark: _Toc527986725][bookmark: _Toc67666480][bookmark: _Toc67667087][bookmark: _Toc134717505]Intellectual Property Rights
Essential patents
IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org).
Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.
[bookmark: _Toc451532664][bookmark: _Toc487531423][bookmark: _Toc527986726][bookmark: _Toc67666481][bookmark: _Toc67667088][bookmark: _Toc134717506]Foreword
[bookmark: For_doctype][bookmark: For_tbname][bookmark: For_shortname]This Technical Report (TR) has been produced by {ETSI Technical Committee|ETSI Project|<other>} <long techbody> (<short techbody>).
[bookmark: _Toc451532665][bookmark: _Toc487531424][bookmark: _Toc527986727][bookmark: _Toc67666482][bookmark: _Toc67667089][bookmark: _Toc134717507]Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc451532666][bookmark: _Toc487531425][bookmark: _Toc527986728][bookmark: _Toc67666483][bookmark: _Toc67667090][bookmark: _Toc134717508]Executive summary
The document covers testing of AI-enabled systems for the purpose of standardisation and elaborates on test methodologies and methods for test specification.
It identifies requirements for testing and comes forward with proposals to tackle the technical aspects of certifying trustworthiness of AI in standardisation contexts.
[bookmark: _Toc451532667][bookmark: _Toc487531426][bookmark: _Toc527986729][bookmark: _Toc67666484][bookmark: _Toc67667091][bookmark: _Toc134717509]Introduction
Machine Learning (ML) and especially the application of neural networks (NN) has been able to achieve amazing successes in recent years due to the availability of large amounts of data as well as the increase in computing capacity. These successes include applications from image recognition, which now achieve better results than humans in many areas, the almost human-like abilities of speech recognition and conversation, which were finally demonstrated convincingly by the NLP model GPT3, or the massive superiority of algorithmic decision systems in learning and playing strategic games such as Go, demonstrated by the Google subsidiary DeepMind.
With the increasing success of ML and NNs, the need to integrate ML models and NNs into software systems that are developed to accomplish critical tasks and operate in critical environments is growing. At this point at the latest, the question arises as to how ML, NN as well as their integration into systems can be rigorously tested and quality assured. This document describes methods and approaches for testing ML-based applications.
We intentionally focus on ML as the currently most widely spread method in the field of artificial intelligence (AI). Other methods, such as Symbolic AI, have their justification, but are not used to the same extent as is currently the case with ML.
The document provides an introduction into the topic of testing ML-based systems. It presents principles and challenges for testing ML-based systems, quality attributes and test itemives as well as suitable test methods and their integration into the life cycle of typical ML-based applications for industry.
[bookmark: _Toc451532668][bookmark: _Toc487531427][bookmark: _Toc527986730][bookmark: _Toc67666485][bookmark: _Toc67667092][bookmark: _Toc134717510]1	Scope
The present document …
[bookmark: _Toc451532669][bookmark: _Toc487531428][bookmark: _Toc527986731][bookmark: _Toc67666486][bookmark: _Toc67667093][bookmark: _Toc134717511]2	References
[bookmark: _Toc451532670][bookmark: _Toc487531429][bookmark: _Toc527986732][bookmark: _Toc67666487][bookmark: _Toc67667094][bookmark: _Toc134717512]2.1	Normative references
Normative references are not applicable in the present document.
[bookmark: _Toc451532671][bookmark: _Toc487531430][bookmark: _Toc527986733][bookmark: _Toc67666488][bookmark: _Toc67667095][bookmark: _Toc134717513]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: INF_1][i.]	"ISO/IEC/IEEE International Standard - Systems and software engineering--Vocabulary," in ISO/IEC/IEEE 24765:2017(E) , vol., no., pp.1-541, 28 Aug. 2017, doi: 10.1109/IEEESTD.2017.8016712.
[bookmark: INF_2][i.]	ISO/IEC 22989:2022 Information technology – Artificial intelligence – Artificial intelligence concepts and terminology
[bookmark: INF_3][i.]	ISO/IEC TR 29119-11:2020 Software and systems engineering — Software testing — Part 11: Guidelines on the testing of AI-based systems
	etc.
[bookmark: _Toc451532925][bookmark: _Toc527986734][bookmark: _Toc67666489][bookmark: _Toc67667096][bookmark: _Toc134717514]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc451532926][bookmark: _Toc527986735][bookmark: _Toc67666490][bookmark: _Toc67667097][bookmark: _Toc134717515]3.1	Terms
For the purposes of the present document, the following terms apply:
Decision-making process –	 A process, that selects a course of action among several possible alternative options. A decision is based on assumptions of the target environment and a set of data that represent a concrete state of the target environment, and a goal to be achieved.
Deep Neural Network –
ML-model –	Software artifact, that has been trained to fulfil a certain task or functionality. During training it processes a set of inputs to learn expectations on its output. ML-models are used for different tasks. In general terms, they are used to support decision-making processes based on input data and a previously learned state. Typical tasks are regression, classification, clustering, dimensionality reduction and control tasks (Zhang et. al. 2019). They are statistic in nature, i.e., solutions based on them are based on statistical inference.	Comment by Hans-Werner Wiesbrock: They are statistic in nature, i.e., solutions based on them are based on statistical inference.	Comment by Großmann, Jürgen: Done.
Neural Network (NN) –Define an ML approach that uses a layered network of mathematically modelled neurons. If an NN has more than one internal layer (so called hidden layer), it is referred to as a Deep Neural Network (DNN).	Comment by Gerhard Runze: Question: Is there a need to define "neuron" as well - as long as we don't have normative references?
Test data sets are used after training to test the generalizability of the ML model. They are selected independently of the training data but should have the same probability distribution as the training data set.
Training datasets are datasets with examples used for learning the patterns and relationships in the data and are used to train the weights of the ML model.
Training infrastructure –	A software-based infrastructure that enables an efficient training process. It consists of software that supports data selection, data preparation and the compilation of suitable data sets. It also provides algorithms and software to realize different model architectures and operationalizes the training process so that different candidate models can be generated and compared. 	Comment by Gerhard Runze: I'm not experienced in the definition of the term "infrastructure"…
My association with this term contradicts with the described use. In my opinion an 'infrastructure' is less a particular applications (like "software that does something special"), but more general in its use (like "software that allows to store an operate on large amount of data and allows high data throughput...").	Comment by Großmann, Jürgen: Explain by a picture in the follow up text (see later comment)	Comment by Großmann, Jürgen: Done
Training process –	A process for building an ML model using a specific training infrastructure and a set of input data or scenarios. It consists of activities that select and prepare the training input in order to tune the model so that it is able to generalizes beyond the training inputs.
Validation datasets are used to tune the hyperparameters of a model. In particular, they are used to prevent overfitting of the model to the training data.

[bookmark: _Toc451532674][bookmark: _Toc487531433][bookmark: _Toc527986736][bookmark: _Toc67666491][bookmark: _Toc67667098][bookmark: _Toc134717516]3.2	Symbols
For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

[bookmark: _Toc451532675][bookmark: _Toc487531434][bookmark: _Toc527986737][bookmark: _Toc67666492][bookmark: _Toc67667099][bookmark: _Toc134717517]3.3	Abbreviations
For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:
DNN	Deep Neural Network
ML	Machine Learning
NN	Neural Network
GPU	Graphics Processing Unit
MLOps	Machine Learning and Operations
DevOps	Development and Operations
SVM	Support Vector Machines
<ACRONYM1>	<Explanation>

[bookmark: _Toc101941458][bookmark: _Toc134717518]4	General conditions of testing ML-based systems
[bookmark: _Toc134717519]4.1	Machine Learning
Machine Learning is used as generic term for a sub-field of artificial intelligence, whereby a software system is supposed to find solutions to problems on its own. Based on the information made available to it, such a software system learns to subsequently apply what it has learned to new data. Examples of ML algorithms are neural networks, regression models, decision trees, Bayesian inference and kernel-based methods.
Typically, a differentiation is made between supervised learning, unsupervised learning, and reinforcement learning. Typical areas of application for the latter are real-time decisions, navigation for robots, game playing, and all areas in which the independent acquisition of knowledge and skills is involved [19]. Supervised and unsupervised learning can in turn be divided into two sub-parts, each of which has its own characteristic applications. The two paradigms classification and regression can be assigned to supervised learning. Typical applications for classification are fraud identification, image recognition, customer behaviour analysis and diagnosis. Regression is more typically used for popularity prediction in advertising, weather forecasting, market prediction, lifetime estimation and population growth prediction. Unsupervised learning can again be divided into two sub-paradigms: dimensionality reduction and clustering. Typical applications for the former are big data visualization, compression, structural analysis, feature minimization. Characteristic of clustering are recommendation systems, targeted marketing, segmentation.

[image:]
[bookmark: _Ref129879924]Figure 1 Different areas in ML and their fields of application
While the functionality of classical software is the result of a design process that addresses the structural set-up of the software, an ML model is built differently. ML is conceptually related to the idea of optimization and to some extent, this has a major impact on testing and quality assurance.
An ML model could be considered as a piece of software with certain structural characteristics. These characteristics, however, describe how parameters are related to each other or algorithms are applied. However, in comparison with classical software, the structural set up of an ML model has only little effect on the actual functionality of the model, probably however on other characteristics like the ability of the model to learn, its robustness, the comprehensibility of the decision-making and other sort of non-functional characteristics.
If we look at NNs, for example, the structural design is quite simple compared to classical software. It consists of a certain arrangement of parameters and algorithms in a graph structure. Parameters and algorithms are arranged in such a way that they are able to approximate the function desired by the user as accurately as possible within the framework of an optimization process based on data. In particular, it is the data, the architecture of the network, the hyperparameters and the way how the training is carried out that are critical to the success of the optimization process. This dependence on data and architecture and the lack of function specific software code has both a major impact on quality assurance in general and testing.
The software code of an ML model is generic and can be considered quite simple. Thus, it usually does not show the same error probability that classical software has.
On the other hand, the parameter settings that result from the training process and their interaction during inference are extremely complex and usually not comprehensible to humans. They can be considered as a major origin of failures, but they are nearly impossible to test on a systematic basis.
The result of an optimization process is to find the most optimal solution possible. For more complex problems, however, these solutions are not error-free. Stochastic deviations and errors are intrinsic properties of ML since it is based on statistical inference.	Comment by Hans-Werner Wiesbrock: as being based on statisitical inference	Comment by Großmann, Jürgen: Aspect integrated.
As a result, a much broader scope has to be set for testing and quality assurance. In addition to the typical white and black box procedure, data and the training process must become the subject of more intensive testing.
[bookmark: _Toc134717520]4.2	ML-based systems and its integration
In the context of quality assurance and testing, we cannot consider ML models in isolation. ML-models are trained, integrated, and applied within a particular technical and often physical environment. Following this, we distinguish the technical environment of an ML model and the application environment. While we usually have influence on the technical environment, the application environment can only be controlled to a limited extent. An ML model in its technical environment can be considered as an ML-based system that has a specific architecture. This architecture implements a typical data processing pipeline. In addition to the ML model, such a system usually contains components for data acquisition and preprocessing as well as components for decision postprocessing and presentation. Since there is an extremely strong binding between the ML model and its environment, the model must especially be tested with the software that is used data acquisition and preprocessing as well as for decision postprocessing and presentation. Unlike classical software, the dependency between the model and its surrounding components is often more difficult to characterize than integration relevant characteristics of classical software.
ML models are dependent on the input data and their pre-processing. The collection and pre-processing process is done by hard- and software components that thus has a major impact on the performance of the model.
ML models provide complex output that must be carefully interpreted to lead to a reliable prediction or decision. This is usually done by additional software components that post-process the inference result.
ML models might be safeguarded and monitored by dedicated software components to ensure a reliable performance over time.
ML models are trained for a specific purpose, targeting a dedicated operational environment. Deviations between the environment (i.e., the data) used for training process and the operational environment might have crucial effects on the performance of the ML model in operation. Thus, especially the training process must be subject to quality assurance.
ML models and their properties are often so complex that they are usually not understood.	Comment by Großmann, Jürgen: Expanding towards organization aspects.	Comment by Großmann, Jürgen: Done: See last sentence. not sure if this covers the intent of the comment.
Finally, the development of high-quality models requires collaboration from different disciplines. The coordination effort and communication requirements are correspondingly high and must be sufficiently taken into account in the organization of quality assurance.
[bookmark: _Toc101941463][bookmark: _Toc134717521]4.3	Testing ML-based systems
Primarily, software testing is an activity that tries to find faults. This can improve the overall quality of the system and reduce the likelihood of undetected failures occurring. Testing, among other things, serves to build confidence in the functionality of a system. In addition to finding errors, this also includes systematic testing, which at least attempts to formulate arguments for the absence of bugs and faults under certain conditions. In analogy to software testing “Machine Learning Testing (ML testing) refers to any activity designed to reveal machine learning bugs.” (Zhang et al., 2019)
On the one hand, this definition shows that testing ML is about quite different and diverse approaches. Testing is not limited to dynamic testing of the model, but also includes testing of the data, hyperparameters and learning algorithms. For this purpose, various methods and approaches can be used, whether they are static like such as review and other forms of analysis, or dynamic in nature. In particular, data is usually not directly testable via a dynamic test and must be quality assured and tested using more suitable analysis procedures.
However, Zhang et al. limit their definition to testing machine learning and do not explicitly address testing ML-based systems. In contrast to that, we want to emphasize that testing ML is always also about testing the software surrounding the ML model. It is therefore not sufficient to ensure that an ML model works as intended as a single component, but always as part of an integrated system.
Thus, “testing techniques should not solely expose misclassifications and prediction errors at the ML model level, but rather look at the side-effects of such inaccuracies at the overall system level. Individual misclassifications (or individual mis-predictions) are suboptimal definitions of failures if the whole MLS is considered, because they may have no consequences, or, on the contrary, may lead the overall system to deviate significantly from its requirements and result in a failure.” (Riccio et al., 2019)
In the course of this document, we will work out which test approaches, test itemives and principles can be usefully applied to the testing of ML-based systems. We will investigate which methods of software testing can be directly adopted for ML-based systems and which are difficult to transfer and what needs to be considered additionally. Among many other topics, we will address what role the stochastic nature of ML plays for testing, what and how can be considered a bug in this context, how to deal with specific technical shortcomings of current ML approaches, and which quality properties are relevant, how they propagate through an ML-based system and how they are addressed by different testing approaches.
Testing ML-based systems is the process of planning, preparation, and measurement with the aim of determining the properties of ML-based systems and showing the difference between the actual and the aimed state. (Pol et. al. 2002).

[bookmark: _Toc134717522][bookmark: _Toc101941464]5	Challenges and specifics of testing ML-based systems
[bookmark: _Toc134717523]5.1	Open context and technology
ML-based systems are usually used for tasks that cannot be efficiently solved by classical programming. These include problems that are too huge or too complex to be completely specified. This applies, for example, to applications that perform object detection in an uncontrolled environment such as road traffic or the surveillance of a railway line. In this case, the Operational Design Domain (ODD) of such a software is considered as an open context problem. Open context problems are called ¥-complex and cannot be specified correctly in all details (Podey et. al, 2019). Any specification is subject to assumptions that lead to an incomplete or unreliable deduction of the purpose (i.e. what we may consider as useful service that is to accomplished by a system), context (i.e. the technical and societal environment of a system) and realization of a based system. In addition, state of the art specification processes lack adequate specification means to model this kind of uncertainty in a meaningful way.	Comment by Großmann, Jürgen: Needs to be explained.	Comment by Großmann, Jürgen: General aspects as well as relation to ML
This has serious consequences for testing. Given that we cannot fully determine the context of a system, nor, consequently, its purpose, we lack an objective basis for testing the system. Missing specification means to express uncertainty in knowledge during specification puts additional burden on required deductions like deriving test specifications and test implementations that refer to and respect uncertainties in the overall system specification.
Finally model representations of the problem (including the ML-model and thus the ML-based system) are necessarily incomplete, since they are gained by an optimization process that is based on a selected set of examples.
Without exactly knowing the purpose and context of a problem there is no way to specify completeness with respect to the representativeness of data that are used for training and testing, nor would it be possible to address possible corner cases in a systematic manner.
[bookmark: _Toc134717524]5.2	Stochastic solution approach and deep learning
ML is considered to be a stochastic solution that is often applied to problems, that are intrinsically non-stochastic problems. The recognition of objects, for example, is in principle a deterministic and not a stochastic problem. Stochasticity comes into play because, as already said above, the available knowledge about the purpose and the context of the solution is limited. A stochastic and data-based approach is considered to overcome some of the problems that are associated with the given knowledge gap, but leads to new problems in testing and quality assurance, In particular, the evaluation and treatment of failures must take into account the statistical set-up of the solution approach. Among other things, this includes the fact that failures cannot simply be eliminated and must be accepted within statistical boundaries. 	Comment by Hans-Werner Wiesbrock: but leads to new problems in testing, especially in the definition of what a bug is and how it can be detected.	Comment by Großmann, Jürgen: Done: Text revised. Clarify terms fault and failure.	Comment by Großmann, Jürgen: TODO: reformulate in a way, that we have to accept failures as natural part of these systems.
	Comment by Großmann, Jürgen: Done
It is assumed that the lack of explicit knowledge about the variety of objects to be recognized can be compensated for by the availability of a sufficient number of examples that implicitly allow this knowledge to be extracted from the examples in the course of a training process. However, this comes at cost. Since no one knows the original distribution of the problem space, examples can only be selected based on a "best guess" about the configuration of the problem space. Moreover, deviations and errors are intrinsic to a stochastic solution approach. Since ML is based on statistical inference, a single failure in a test run cannot be directly counted as an indication to a fault. Thus, it therefore always has to be assumed that a stochastic solution cannot be completely correct in the deterministic sense. There will always be a “natural” error rate that must be accepted. The aim of the optimization process is to reduce this error rate to an acceptable level. 	Comment by Hans-Werner Wiesbrock: As being statistical inference a singular failure in a test run cannot directly be read as a bug. 	Comment by Großmann, Jürgen: Done: Text revised.
In ordinary test processes, one has a set of test cases and after execution gets the subset of failed ones. To derive a statistical quantity from this, one might look at the relative frequency of failed runs, i.e. the number of failed divided by the number of all test cases.This measure could also be taken in the case of ML systems. But this is not correct, because one expects, due to the statistical nature of SW, that some of the tests will statistically fail. Instead of the relative frequency, one has to weight the individual test cases with their empirical probability, i.e. specify the probability of occurrence to each test case, not only for the failing. Then the total probability for the occurrence of all executed test cases must be calculated and also for the failings. Their quotient gives the correct quality measure for ML system one can derive by dynamical testing.Moreover, approximation methods are only partially reliable, and the generalization capability of any ML solution is limited and susceptible to distribution shifts.
Last but not least, ML models are integrated to form ML-based systems that may consist of a complex interplay between ML-Models and classical software. Considering the tolerances, errors and uncertainties that underlie the processing of data in ML models, the combination of several ML models and their interconnection results in a degree of complexity that far exceeds the complexity of classical software.
ML models cannot be easily fixed or reoptimized at any point, i.e. models may have to be completely rebuilt if deviations occur. Improving the one side can disimprove the other without control.
[bookmark: _Toc134717525]5.3	Robustness issue and missing transparency of neural networks
In contrast to other forms of ML (e.g., linear or logistic regression, the k-nearest neighbour algorithm, Bayesian classifiers, SVM) specifically deep neural networks lack transparency and stability. While interpretable models allow a human user to understand at least parts of the decision-making process, deep neural networks often show a better performance but in the same time the inference procedure lacks interpretability and statistical evaluability. This means that for a human observer, even if he or she has access to the internals of the model, it is not comprehensible on the basis of which parameters and properties in the ML model a particular decision is made.
Furthermore, especially neural networks lack reliable information on the quality of a decision. Although classification or regression models provide prediction probabilities at the end of the pipeline (e.g., by softmax output), these may unfortunately be often misinterpreted as model confidence. However, a model can be uncertain in its predictions even if its softmax output is high [7]. The provision of reliable statements on the uncertainty of a model decision, on the other hand, would make it possible to also design safety-critical applications more reliably. If reliable information on the decision uncertainty is provided in addition to the results, results with high uncertainty could be handled separately by higher-level systems or the user. Moreover, neural networks are not necessarily robust and are vulnerable to intentional and random perturbations. This has been shown in multiple examples through so called Adversarial Examples and the vulnerability of deep learning in the presence of noise. Overall, there seems to be a trade off between robustness and generalizability [15].	Comment by Großmann, Jürgen: add more information about different methods for prediction.	Comment by Hans-Werner Wiesbrock: There seems to be a trade off between generalizabilty and robustness

Adversarial Examples Are Not Bugs, They Are Features, Madry et.al. arXiv:1905.02175v4 	Comment by Großmann, Jürgen: Done.
[bookmark: _Toc134717526]5.4	Fault and failure model for testing ML-based systems
In classical software testing, a distinction is made between the terms failure, fault and error. While the term failure describes the perceived manifestation of a fault, the term fault describes the internal state of the program that has led to the failure and the term error describes the human cause that led to the fault. The ISTQB distinguishes the terms as follows:
Fault (or defect): a flaw in a component or system that can cause the component or system to fail to perform its required function, e.g., an incorrect statement or data definition. A defect, if encountered during execution, may cause a failure of the component or system.
Failure: deviation of the component or system from its expected delivery, service, or result.
Error: a human action that produces an incorrect result.
The existence of a failure shows that a system does not work as expected. However, not every fault in a software system shows up by a failure. Faults may have no effect because of the way the software is used, or their effect may be reduced by the shielding or corrective intervention of other software functions so that they do not become apparent. Moreover, failures are not only the result of software errors, but can also be caused by environmental conditions.
Even if the above terms and concepts can be applied to ML, it remains fundamentally necessary to extend them in such a way that the specifics of ML are addressed more strongly.
Zang et al. (Zhang et al. 19) extend the notion of defect to ML by defining that an ML bug (or ML defect) refers to any imperfection in a machine learning item that causes a discordance between the existing and the required conditions. Compared to the definition of a fault, which refers to flaws in components or systems, the definition of Zang et al. extends to so-called ML items, which, in addition to the components and systems, also allow other items from the ML process (eg. data) as carriers of a fault.
The same thing is addressed and extended by Borg et. al. by introducing the terms snug and dug. "Bug is not a suitable term to cover all functional insufficiencies, given its strong connotation to source code defects. Still, we need a new similarly succinct term in the context of MLware. We propose snag to refer to the difference between existing and required behaviours of MLware interwoven of data and source code. The root cause of a snag can be a bug either in the learning code or the infrastructure [36], but it is often related to inadequate training data – we call the latter phenomenon a dug.” (Borg 2020)
Finally, Humbatova et al. (Humbatova et al. 2019) created a taxonomy of ML-faults based on interviews with academics and practitioners in the area of ML. At the high-level, the taxonomy differentiates between ML faults in the various artifacts or work products that are developed during an ML lifecycle. Thus, a distinction is made between faults in the ML model, the API (e.g., to access the GPU or other computation related service routines), the data processing chain (e.g., tensors and input data), and in the different artifacts of the training process (data, hyperparameter).
Failures are usually identified as a deviation between the specification of a system and the actual behaviour of a system. As a prerequisite for such an approach, the specification of a system must be a reliable reference for the expected behaviour. Considering again the application of a system in an open context environment, the specification is not necessarily complete nor completely correct. In the automotive industry, for example, ISO 21448 (SOTIF) is concerned with ensuring the safety of intended functionality (SOTIF) in the absence of a failure. ISO 21448 applies to systems and applications that require adequate situational awareness to be considered safe and the term “absence of failures” is meant to characterize a system to act insufficiently even if it does not get into a specified failure situation. In addition to the absence of failures, such a system is expected to recognize potentially unknown and unsafe conditions and reduce the associated risks by itself. If it is not able to do so, the functionality or behaviour is considered not sufficient for the aimed purpose.
Podey et al. (Podey et al. 2019) distinguish between the so-called
aimed purpose of a system, which is implicitly expected and necessarily vague, and the
intended purpose of a system, relating to explicitly expressed expectations that is for example given by a specification.
Podey et al. use the term intended in the same manner than explicitly expressed and as applied in the context of ISO26262 & SOTIF in the terms intended functionality and intended behaviour.
Finally, it must be asked whether a stochastic approach, as we find it in machine learning, is not by definition subject to deviations and failures. This can be traced back to two reasons. 	Comment by Großmann, Jürgen: Expand towards behavior in out of distribution conditions (Expectations, assumptions etc.). 	Comment by Hans-Werner Wiesbrock: There are at least two sources of systematic deviations: On the one hand, the distribution function is approximated by a ML system in the learning process and, as an approximation, deviations from the optimum are always to be expected, but on the other hand, the mode of operation of a ML system is statistical reasoning, often according to Bayes).
It is precisely the latter that necessitates the use of statistical criteria to define deviations from expectations, i.e. failures in the narrower sense.	Comment by Großmann, Jürgen: Todo: highlight the fact that it has uncertainty from approximating towards a probabilistic function.	Comment by Großmann, Jürgen: Done
On the one hand side, ML is an optimization process that tries to approximate an aimed purpose by adapting a set of parameters to best fit with a given set of data. Separating the data in training, test and validation data sets helps detecting overfitting and allows to measure the generalization capabilities. However, the overall optimization process is a trade-off between different model characteristics and ensures that, on average, a model works as expected. This always implies that situations can be found in which a model decision does not represent an optimum or could even be considered as wrong. On the other hand side the mode of operation of a ML system is statistical reasoning, often according to Bayes. Uncertainties and deviations stem from the statistical nature of the inference process. It is precisely the latter that necessitates the use of statistical criteria to define deviations from expectations.
Thus, a single counterexample may not immediately be considered a violation of the intended purpose. Rather, the failure must be statistically proven as statistical relevant. Whether and which kind of statistical deviations need to be considered as individual failures or not is currently not defined sufficiently.
[bookmark: _Toc134717527]5.5	Verification vs. validation of ML-based systems
The purpose of software verification is to ensure that a software product, service, or system meets a set of design specifications while software validation aims to determine whether such a product, service, or system can accomplish its intended use, goals and objectives [i.1]. Software testing is the process of planning, preparation, and measurement with the aim of determining the properties of a software system and showing the difference between the actual and the required state [4]. In this context, validation testing is considered as an activity that aims to collect evidence that for an end product the stakeholder’s true needs and expectations are met while verification testing checks that all specified requirements at a particular stage of the development of a product are met.
In ML, validation and test have a slightly different meaning. Validation and testing are dedicated activities in the training process of a model. They are often bound to dedicated data sets. Validation datasets are used to tune the hyperparameters of a model. In particular, they are used to prevent overfitting of the model to the training data. Test data sets are used after training to test the generalizability of the ML model. They are selected independently of the training data but should have the same probability distribution as the training data set. Validation and test data sets belong to the training process and thus are intrinsically bound to the training activities. This is to be distinguished in principle from the analytical activities of testing and quality assurance as normally carried out for software systems. Firstly, the analytical activities are much more far-reaching than just testing the basic performance criteria such as over fitting and generalization. They typically address all the quality attributes that are relevant for a stakeholder. Moreover, they span over a bigger portion of the system life cycle and address all activities that may give rise to quality. Secondly, software validation requires organizational independence in order to achieve trustworthy results. In fact, it is now common practice to have tests performed by somewhat independent departments or teams to prevent bias on the part of the developers.
Nevertheless, there is a common core of both definitions. Evaluation and testing in ML also serves to assess the suitability of a model for its intended purpose. Test and validation datasets serve as more or less ideal representations of the application context and are used test and optimize the parameters of the model to gain the most optimal solution considering evaluation metrics like accuracy, precision, recall, specificity, F1 score, ROC and others.
In summary, there must be a serious shift from verification to validation when testing ML-based systems. Application fields with open context and the stochastic solution approach of ML lead to specifications becoming less informative. For testing, this means that the specification cannot be the only reference for the desired characteristics of a system and new ways must be found to validate the system in a meaningful way. Among other things, the systematic comparison with reference systems or the validation at runtime with a targeted feedback of the user experience as an evaluation criterion could be discussed here.
	Comment by Hans-Werner Wiesbrock: Possible approaches to verification in ML:
- Statistical Learning Using the Vapnik-Chervonenkis capacity, one can determine how large the training data set wanted to be in order to be able to achieve a certain goodness.
- Using Lipschitz criteria, the stability (robustness) of a network can be determined
- SMT Solver Certified Control: An Architecture for Verifiable
Safety of Autonomous Vehicles, arXiv:2104.06178v1	Comment by Großmann, Jürgen: TODO: add reference to verification technologies.	Comment by Großmann, Jürgen: Will be done by HWW
[bookmark: _Toc101941465][bookmark: _Toc134717528]6	Quality attributes addressed by testing ML-based systems (Taras)	Comment by Großmann, Jürgen: May reference to ISO 25059	Comment by Großmann, Jürgen: ISO/IEC AWI 25059 Software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) - Quality model for AI-based systems	Comment by Großmann, Jürgen: Additional QA: Transparency of the data and methods are used

AI-based systems can be designed depending on the fulfilment of quality requirements by AI models in tests. For example, improvements in terms of redundancy of functional features, failover or continuous accuracy improvements can be made here. Different learning strategies characterise the methodological spectrum of machine learning, e.g. supervised, unsupervised, semi-supervised, reinforcement or adversarial learning. Compared to purely rule-based methods and within the machine learning spectrum, supervised machine learning enables automatic learning based on data to generate AI models. Below are described the following quality attributes of ML-based systems in detail.
· Model relevance
· Correctness;
· Robustness;
· Efficiency;
· Security;
· Confidentiality;
· Integrity;
· Availability;
· Data privacy;
· Fairness;
· Interpretability;
· Learnability.

[bookmark: _Toc101941466][bookmark: _Toc134717529]6.1	Model relevance
In general, different learning strategies characterise the methodological spectrum of machine learning, e.g. supervised, unsupervised, semi-supervised, reinforcement or adversarial learning. Compared to purely rule-based methods and within the machine learning spectrum, supervised machine learning enables automatic learning based on data to generate AI models. The following table gives an overview of Machine Learning methods.
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Neural networks	Comment by Hans-Werner Wiesbrock: ??? entries do not match the headings	Comment by Großmann, Jürgen: TODO: Delete table
	Clustering
	Temporal Difference Learning

	Statistical learning
	Dimension reduction
	Monte Carlo methods

	Probabilistic methods
	Probabilistic methods
	Adaptive dynamic programming

The relevance of models depends on the range of methods and the capabilities of the system used. A basic distinction can be made between three different methods, which are advantageous depending on the concrete application aim. While unsupervised learning is well suited for clustering approaches, reinforcement learning enables the maximisation of a main variable to reach one goal in presence of competing objectives. In terms of supervised learning, machine learning models learn abstract representations of features through a generalisation of function approximation problems. While pure mathematical approximation problems involve real numbers or vectors, interaction spectrum data can be incomplete, imprecise, non-numerical and a mix of different data topologies and structures. The quality of abstraction and applicability to specific problems can be described by the quality of the functional features that underlie the range of existent ML methods and enable a multi-perspective as well as uniform assessment of the range of capabilities.

Overfitting, ability to generalize

[bookmark: _Toc101941467][bookmark: _Toc134717530]6.2	Correctness
Correctness assesses the extent to which the system produces correct and reliable results. Testing the accuracy of an ML-based system involves comparing its output against the expected or ground truth output.

[bookmark: _Toc101941468][bookmark: _Toc134717531]6.3	Robustness
The robustness of an ML-based system refers to its ability to handle unexpected or unusual inputs and still produce accurate results. Testing for robustness involves exposing the system to different types of inputs to determine how it behaves in unexpected situations.	Comment by Hans-Werner Wiesbrock: that is generalizability. robustness refers to perubations (adverarial attacks, metamorphic transformations...) and the robsutness against them
Intentional perturbation, randomly expected perturbation
[bookmark: _Toc101941469][bookmark: _Toc134717532]6.4	Efficiency
Efficiency describes the extent to which resources in terms of, i.a., time, financial expenditures and energy are invested to achieve specific goals regarding, e.g., speed, accuracy, robustness and functional safety. <TBD>

[bookmark: _Toc101941470][bookmark: _Toc134717533]6.5	Security
[bookmark: _Toc101941471] Security refers to the ability of the ML-based system to protect its data and prevent unauthorized access or tampering. Testing for security involves subjecting the system to different types of attacks and evaluating its ability to detect and prevent them.
[bookmark: _Toc134717534]6.5.1	Confidentiality
 Confidentiality of ML-based systems depicts a set of characteristics to ensure the information security of data as well as the ML-based system. In terms of confidentiality assessment access control mechanisms, extent of anonymisability of data involved, compliance with legislations, vulnerability assessments as well as the system security can be evaluated.

[bookmark: _Toc134717535]6.5.2	Integrity
In the context of machine learning, integrity means that the data used in machine learning models meet certain operational quality requirements as well as information security requirements. Operational quality requirements represent data that is complete, consistent and free of bias, which requires data collection with multi-factor dependencies, cleaning and validation processes to avoid errors, inconsistencies or biases in the data.
In addition, integrity in terms of operational quality can be represented by the degree of transparency and explainability so that, among other things, the planning, decision-making, optimisation and inference processes performed by the model can be understood and explained by humans.
In terms of information security requirements, machine learning models and the data they use must be protected from unauthorised access and modification.

[bookmark: _Toc134717536]6.5.3	Availability
In general, the availability of ML-based systems describes their ability to operate with a certain quality of feedback, controllability and systematic embedding of influencing factors. To assess the feedback quality, individual functional characteristics can be tested, such as the absence of interruptions, appropriate time intervals or the degree of implementation of specified parameters. The testing of availability can be carried out within the framework of load tests, fault injection or response time analyses, among others. Load tests can assess the extent to which ML models can respond to an increasing number of parameters, depending on the ML method used and the characteristics of the data analysed. A system's response to parasitic behaviour can be analysed during fault injection to assess how it reacts.

[bookmark: _Toc101941472][bookmark: _Toc134717537]6.6	Data Privacy
 Privacy describes protection of personal or sensitive information from access or use by unauthorised individuals or organisations. In ML-based models, privacy depicts restricitions to ensure information security during obtaining training data, training the model and analysing data during model operation.

[bookmark: _Toc101941473][bookmark: _Toc134717538]6.7	Fairness 	Comment by Großmann, Jürgen: Discuss general structure of contributions to Section 6. Do we distinguish between unsupervised, supervised and reinforcement in general and for all the QA?
The fairness of machine learning models is influenced both by the algorithms used to develop models and by the data if used as the basis for training and testing the models.
Unsupervised learning
As a metric to depict deterministic outcomes during the separation of entities in dependence of sensitive characteristics can be used "cluster stability," which measures the degree to which the model produces consistent clustering results when applied to different random subsets of data. This metric can be used to identify the variability in the model's assessment of favours or disadvantage of specific entitites.
Using cluster separation can be understood to which extent different entities or correspondent sensitive characteristics are separated into distinct clusters. By that can be clarified, how sensitive attributes are grouped together or devided into separate clusters by using, i.a., the metrics „Davies-Bouldin index“ or „Silhouette score“.
The extent to which entities are homogeneously represented within each cluster can be determined by focussing on their sensitive characteristics. Metrics such as epsilon-neighbourhood and within-cluster variance may be used for this purpose.
Supervised learning
Data
With regard to data, consistency, representativeness as well as diversity are key to affect fairness for testing and training of ML models.
For supervised learning, consistency can be measured by assessing the degree of agreement via Cohen’s kappa between different labels or annotations for the same data point. A high level of agreement indicates consistentcy and reliability of training data.
Representativeness can be measured by assessing the degree to which the training data accurately reflects the distribution of data in the real world. One way to measure representativeness is to use "cross-validation", which involves evaluating the model's performance on a diverse range of subsets of the data. By evaluating the model's performance on a range of data subsets, researchers can ensure that the model is trained on data that is representative of the full range of real-world data. Moreover, by evaluating the model's fairness cahracteristics on a range of environments, it can be ensured that the model is trained on data that is representative of the full range of real-world scenarios that it is likely to encounter.
To foster diversity, bias can be affected by ensuring that data is unbiased by identifying and removing sensitive characteristics which might foster bias. Due to changes in environmental conditions as well as tendencies in multifactorial development of forecasted parameters, machine learning models may need to be retrained or updated to ensure that they continue to produce results which may lead to fair decisions.
Algorithms
By focussing an algorithms of supervised learning, equalised odds might be achieved to avoid unfairly favoring or disadvantageous behaviour towards sensitive characteristics tby balancing both true and false positive rates along entities involved.
Furthermore, statistical parity might assess whether the overall probability of a positive outcome is equal across different entities in dependence of their sensitive characteristics by measuring the distribution of positive predictions.
Additionally, analysing the confusion matrix separately for specific entities and correspondent sensitive attributes provides insights into potential biases in supervised learning algorithms. For this purpose can be compared the true positive rate, false positive rate, false negative rate, and true negative rate across entities involved.
Reinforcement learning
For reinforcement learning, consistency can be measured by assessing the degree to which the model produces consistent behavior in response to similar input stimuli over multiple episodes. One way is to measure the extent to which the model produces similar rewards for similar actions in different episodes. This metric can be used to evaluate the stability of the model's behavior over time to identify correlating factors which might lead to unfair decisions.
To describe the deviation from intended rewards, the believe-action gap of RL models might be identified to understand, how the assumed intention of the model regarding beliefs is reflected by its actions. The believe-action gap enables to understand disparities in the distribution of actions across sensitive characteristics which might foster bias in decision-making. In addition, comparing the rewards for individual entities, as well as differences that exist between them, enables an assessment of fairness in the allocation of rewards.
Furthermore, to understand fairness characteristics of RL models with correspondend multifactorial relationships, agent variation might be taken into account, to depict long-term consequences regarding disproportionately favor or disadvantage sensitive characteristisc. This involves acknowledging and addressing variations in starting conditions, capabilities, or preferences of the agents within the RL system.
<TBD>

[bookmark: _Toc101941474][bookmark: _Toc134717539]6.8	Interpretability
[bookmark: _Toc101941475] Interpretability of ML-based systems refers to the ability to understand and explain systematics behind the system's predictions or decisions. It is an essential aspect of building trustworthy and reliable AI systems.

[bookmark: _Toc134717540]6.9	Learnability
<TBD>

[bookmark: _Toc101941476][bookmark: _Toc134717541]7	Test items and integration in testing ML-based systems (GroßmannGerhard, Taras)	Comment by Großmann, Jürgen: Note on how to deal with data quality. Problem: If we explicitly address this topic it may be to large for this document.
[bookmark: _Toc134717542]7.1	Test items from a workflow perspective
The term test item describes the item to be tested by a particular analytical procedure. In the case of dynamic testing, this is normally referred to as System Under Test (SUT), which somehow highlights the dynamic nature of the test item. However, analogous to the ISTQB, we use the concept of a test item in the following, which includes any work product in the life cycle of an ML-based system, in order to clarify that we deal with both static and dynamic test procedures.	Comment by Gerhard Runze: "test item" is a potential deviation to ISTQB.
According to ISTQB a test object is the "The work product to be tested" - I would associate this with the SUT. The test item however is "A part of a test object used in the test process".
Although our primary test item, as the name of this report suggests, is the ML-based system, we obtain several other test items that can be tested individually or partially integrated considering the development of an ML-based System as well as its systematic integration from individual components.
Due to the high importance of the data and the training process, the literature explicitly distinguishes between test items of the training phase, which are crucial for the quality and properties of an ML model, and the development and runtime artifacts, which are relevant for the integration of an ML-based system based on individual components. Zhang et al., 2019 for example distinguishes on a high-level between testing data, testing the learning program (i.e., the training infrastructure) and testing the ML-framework (i.e., the libraries and building blocks that are used to define models). 	Comment by Gerhard Runze: I'm still not sure if there is an explicit need to distinguish between "infrastructure" and "ML Framework".	Comment by Gerhard Runze: Potential reference to ISTQB CT-AI Syllabus:
"ML Framework - A tool or library that supports the creation of an ML model"
“Thus, when conducting ML testing, developers may need to try to find bugs in every component including the data, the learning program, and the framework.“ (Zhang et al., 2019).

[bookmark: _Ref129879904][image:]
Figure 2 Abstract workflow to develop, train and deploy ML-based systems or services	Comment by Großmann, Jürgen: Proposal to introduce Acceptance Criteria or DOD	Comment by Hans-Werner Wiesbrock: After an analysis of the problem area and the data... a rough concept is to be designed: Should one use a convnet, a transformer or gated recurrent nets (LSTM..) or must one use a reinforcement model ...
This is not a matter of hyper parameter but basic architecture and done before any training and testing. It should be part of phase 2.	Comment by Großmann, Jürgen: Done. Please have a look at the phase 2 description below.
In the following text, we distinguish different types of tests along the workflow for developing and operation of an ML system. Together with these test types we identify the most important test items. Figure 1 shows an abstract workflow to describe the development, training, integration and operation of an ML-based systems that allow for a systematic approach to identify the test items that are relevant in testing ML-based systems.
On the high-level the workflow distinguishes four different phases
1. Business understanding and inception aims to derive a basic understanding of the overall objectives and requirements of the ML system. For this purpose, it is necessary to understand the business and technical context of the system and to obtain a basic understanding of the data available for modelling. 	Comment by Makedonski, Philip: Align in Figure above (& -> and)	Comment by Großmann, Jürgen: Done
2. Experimentation and training pipeline development aims to evaluate the data and modelling approach and to build a modelling infrastructure. In this phase, PoC systems are developed and evaluated for their basic applicability . Depending on the modelling approach, the training and data preparation pipeline is developed and integrated. 	Comment by Makedonski, Philip: Does it really have to be in production?	Comment by Großmann, Jürgen: Done
3. Training aims to create new models based on the modelling approach and with the help of the training pipeline. Depending on the degree of automation available, activities for data preparation, training including the tuning of hyperparameters, validation and quality assurance of the model are executed more or less automatically.
4. System development and integration aims to integrate the ML model into a software environment. The complexity of the integration depends on the application context and ranges from the simple provision of a user interface to complex integration with other models, sensor systems and complex control software, such as in automated driving.
5. Operation and monitoring is finally the phase in which the integrated ML-based system is being executed and monitored in its operating environment. Depending on the application context, various operating environments are possible, ranging from a simple cloud deployment to a distributed edge deployment.
Each of these phases is followed by a dedicated integration activity that aims to integrates the major outcomes of the phase. Test activities range from testing the individual test items and their integration to larger items in the integration phases.
[bookmark: _Toc134717543]7.2	Test items of the business understanding and inception phase
The Business understanding and inception phase aims for deriving and integrating the major KPIs and requirements of the application, service or system. Major work products are the business related KPIs, the technical KPIs and the overall requirements and quality criteria. The activity Planning and Requirements address general requirements management and planning activities while the activity KPIs and Requirements Integration addresses in particular the harmonization of KPIs and requirements with regard to completeness consistency, absence of contradictions and other cross-cutting concerns. Considering the iterative character of ML, KPIs and requirements need to be adapted in the following phases. Table 1 provides an overview on the major work products of the business understanding and inception phase, the related acceptance criteria and testing types.
[bookmark: _Ref134435254]Table 1 Work products, acceptance criteria and test types for the business understanding and inception phase.
	Work product/test item
	Acceptance criteria
	Test type/test objective

	Business KPIs
	· Business KPI are correct, complete, consistent, unambiguous, measurable, traceable, feasible and validated.
	· Review of business KPIs	Comment by Großmann, Jürgen: Discuss where to provide details for the individual test objectives/test types

	Training KPIs and acceptance criteria for training
	· Training KPIs and acceptance criteria for training are correct, complete, consistent, unambiguous, measurable, traceable, feasible and validated.
	· Review of training KPIs	Comment by Makedonski, Philip: training KPIs?

	Requirements and quality criteria
	· Requirements and quality criteria are atomic, correct, complete, consistent, unambiguous, verifiable, traceable and validated.
	· Review of data quality criteria

[bookmark: _Toc134717544]7.3	Test items of experimentation and training pipeline development phase
The experimentation and training pipeline development phase consists of extensive activities in the area of Data Analysis and Model Analysis. The purpose of these activities is to identify suitable modelling approaches and data preparation procedures that can be used to meet the KPIs and requirements derived from the first phase for the given data set. In the course of the activities, a suitable model architecture including layers and model code will be realized and the necessary software components for data preparation and training will be implemented and integrated into a functional pipeline. Major work products of this phase include the adequate data format for training data, samples of the training data, feature definitions and feature selection criteria, the model architecture and code as well as all algorithms, libraries and components required for the training. Table 2 provides an overview on the major work products of the experimentation and training pipeline development phase, the related acceptance criteria and testing types.
[bookmark: _Ref134436986]Table 2 Work products, acceptance criteria and test types of the experimentation and training pipeline development phase
	Work product/test item
	Acceptance criteria
	Test type/test objective

	Training data format and samples.
	· Quality criteria for data quality are completely defineddefined.
· Training data are suitable for purpose (training and inference)
· Training data are availableavailable.
· Training data are processable
	· Review of data quality criteria
· Testing initial samples of training data for major data quality attributes
· Review of data sources and their availability
· Testing training data formats and meta data

	Features and feature selection criteria
	· Features are identifiedidentified.
· Features are sufficient to allow for reliable inferenceinference.
· Features are available in training and inference data
	· Redundancy?
· Ranking? / Usefulness?

	Label structure and label adequacy

	· Labels are identifiedidentified.
· Label structure and format is adequate?
	

	Model architecture, layers and algorithms
	· The basic model architecture, layers and algorithms are defined and evaluated with the data that are available for training and inference
	· Review of architecture and layer interfaces.

	Training algorithms (Loss Function, Optimizer), libraries and interfaces

	· Algorithm used for training are working correctlycorrectly.
· Test the libraries and interfaces used for training and model set up are compatible with each other and the machine learning model being developed
	· Review of algortihmsalgorithms
· Code review
· Functional testing of algortihmsalgorithms and libraries
· CompatiblityCompatibility reviews and tests of training and library interfaces

	Model Code
	· Model code is sufficiently tested with respect to training and inference capabilities and layer integration.
	· Code review of model code
· Layer and submodel testing (unit testing)
· Functional testing of model software behaviourbehavior during training and inference
· Metamorphic / Differential?	Comment by Großmann, Jürgen: Not clear if this belongs here or in the next row.

	Hyperparameters
	· Major hyperparameters are defined and tuned for the given data and model architecture
	· Cross Validation to test the performance of the model on different subsets of the data and with different hyperparameters.

	Basic model performance
	· ML-Model performance is sufficient as a candiatecandidate model for exhaustive training.
· ML-Model is robust and generalizes wellwell.
· The ML-model is free of unwanted bias
	· Model performance testing and evaluation
· Model robustness testing
· Model bias testing

	Traininng pipeline components
	· Functionality of the pipeline components
· Integration of the pipeline components
· Software-hardware embedding of the training pipeline
	· Unit/component testing of pipeline components (classical software testing).
· Integration testing of pipeline components (classical software testing).
· System testing of the training pipeline (classical software testing).
· Testing of Software-hardware embedding (e.g. GPU integration) of the pipeline.
· Test the API of the pipeline to ensure that it is easy to use and integrates well with other systems.

[bookmark: _Toc134717545]7.4	Test items of the training phase
The training phase is responsible for training ML models for production based on the modelling approaches and data preparation activities identified in the experimentation phase. If possible, this is done in an automated way and with the help of a predefined training pipeline. In the pipeline, all necessary activities from data validation and extraction, data preparation, model training, model evaluation, and model validation are performed. The dinal result is the delivery of an ML model that best meets the requirements and KPIs from phase 1. Table 3 provides an overview on the major work products of the training phase, the related acceptance criteria and testing types and test objectives.
Table 1 Work products, acceptance criteria and test types of the training phase
	Work product/test item
	Acceptance criteria
	Test type/test objective

	Training data
	· Data and data sets are correct,
· Data distribution and data splits are defined correctly.
· Data are free of unwanted bias
	· Test data format and type correctness
· Test data correctness and consistency
· Test data sets for missing data, duplicates, outliers, inconsistencies
· Test data set distribution and data skewness (e.g.e.g., any kind of imbalance regarding features and labels)
· Test for correlated features
· Test data for unwanted bias

	Hyperparameters

	· Hyperparameters are fine-tuned
	· Cross Validation to test the performance of the model on different subsets of the data and with different hyperparameters (e.g. different learning rates, batch sizes, regularizations, etc.).

	ML-Model

	· ML-Model performance is sufficient for production.
· ML-Model is robust and generalizes wellwell.
· The ML-model is free of unwanted bias
	· Model performance testing and evaluation
· Model robustness testing
· Model bias testing

	Evaluation concepts and criteria

	· The evaluation concept and criteria are sufficient to ensure an adequate selection and evaluation of the candidate models.
	· Review of evaluation concept and criteria

[bookmark: _Toc134717546]7.5	Test items of the system development and integration
In the system development and integration phase, the ML model is successively integrated into the software environment required for operation in production. As the first integration stage, we consider the integration of the model with software components that have a direct impact on the quality and performance of the model inference. This includes the integration of the model with the data sources for the inference (databases, user interfaces, sensors, etc), the data preprocessing components for the inference, and components that plausibilize or contextualize the result of the inference. We call the result of this integration the prediction pipeline. The model is then integrated with other system components until a complete system is available. The testing and quality assurance activities in this phase largely follow the established best practices of classical software testing. Table 4 provides an overview on the major work products of the system development and integration phase, the related acceptance criteria and testing types and test objectives.
Table 1 Work products, acceptance criteria and test types of the system development and integration phase
	Work product/test item
	Acceptance criteria
	Test type/test objective

	Prediction pipeline
	· ML model is correctly integrated in the prediction pipeline.
· The prediction pipeline is correctly integrated with additional components e.g. safety mechanisms (safety cage, redundant models, plausibility checker etc.)
	· Integration test (i.e.i.e., classical software testing)

	ML-based system or component
	· Prediction pipeline is integrated with the rest of the ML-based systemsystem.
· Software-hardware embedding of the prediction pipeline and the ML-based system (model and data pre-processing or result preparation, GPU integration)

	· Integration test (i.e.i.e., classical software testing)
· System test (i.e.i.e., classical software testing)
· Performance test for inference

[bookmark: _Toc134717547]7.6	The test items of the operation and monitoring phase
For the operation and monitoring phase, the model is executed in its operating environment. Testing and monitoring activities must ensure that the model functions safely in the application context and is not outdated. Depending on the assessed risk of the ML-based system during runtime, it is necessary to implement the execution of online testing (monitoring) of the system in operation. These tests go hand in hand with dedicated security and monitoring components that are supposed to identify corner cases and potential distribution shifts. As part of the system testing also the effectiveness of the online testing (monitoring) measures shall be verified.
Table 5 provides an overview on the major work products relevant in the operations phase, the related acceptance criteria and testing types and test objectives.
Table 1 Work products, acceptance criteria and test types of the operation and monitoring phase
	Work product/test item
	Acceptance criteria
	Test type/test objective

	ML-based system or component
	End user accepts the model in production
	· A/B testing

	ML-model
	Model is free from drift
	· Monitor data drift between the training and testing sets to ensure that the model is still accurate and reliable over time.
· Monitor inference skew and bias

[bookmark: _Toc101941477][bookmark: _Toc134717548]8	Test methods for testing ML-based systems (Uni Göttingen)	Comment by Großmann, Jürgen: Align with 29119 and ISTQB AI-Testing Syllabus	Comment by Makedonski, Philip: Does it make sense to associate the methods also to the test items and/or quality attributes from the previous two clauses? E.g. suitability for specific items/attributes?	Comment by Makedonski, Philip: The ISTQB Syllabus only partially addresses that, generally focusing more on the association to the testing challenges
In this section, each test method is described according to the following structure:	Comment by Makedonski, Philip: Add separate overview section (required by template)
General definition of the test method
How the test method works
The type of issues the test method addresses (i.e., functional or non-functional issues)
[bookmark: _Toc101941478][bookmark: _Toc134717549]8.1	Requirements-based testing (Gerhard)	Comment by Makedonski, Philip: All sections to be updated according to template
The standard norm for testing is the fulfilled proof of all requirements in a requirement specification. ML-based systems, however, usually operate in open context, see chapter 2.2. An even approximately complete list of requirements will not exist. Therefore, explicit requirements are usually insufficient as a basis for testing. Nevertheless, a detailed analysis of the requirements specification should be the starting point for testing. Because in it the delimitation of the ML-based system is to be found, what it should do and where it is not responsible, and above all, in which environment it is to be used. Very helpful, if available, are detailed use cases [9], which narratively describe requirements and the possible interactions of the system with their intended environment.
Based on the requirements in the specifications, test cases must be systematically derived that can provide evidence of their fulfilment. The guiding question here is what can go wrong and will the identified, possible errors be completely covered up by tests.
Since ML-based systems usually infer probabilistically, an error cannot be proven by one counterexample, e.g. one wrong face recognition. Rather, it has to be checked during testing whether statistically the number of false results is significant. Only then is there a case of misbehaviour. This means, in particular, that in the case of ML-based systems, a single proof of an erroneous inference is not sufficient. If necessary, many similar tests must be defined and performed for a requirement so that a statistical evaluation of their results is possible.
[bookmark: _Toc101941479][bookmark: _Toc134717550]8.2	Evaluation of the data (UNI Göttingen)	Comment by Großmann, Jürgen: Evaluation of data is more about what to test not how to test. May be rename to balance and completeness testing.
To evaluate the training data, its balance and completeness, it is essential to obtain a good overview of the various contexts in which the ML-based system is to be used. Therefore, it recommended to first extensively analyseanalyze and extend the given use cases. These virtual simulations can more precisely delineate the operation domain and identify further edge cases. Thus, they help to develop an ontology of the environment.

[bookmark: _Toc101941481][bookmark: _Toc134717551]8.3	Risk-based testing (FhG)
General definition:
Testing of safety-critical, security-critical or mission-critical software faces the problem of determining those tests that assure cover the essential properties of the software and have the ability to unveil those software failures that harm the critical functionalitys of the software. Even for "normal", less critical software, testing is usually done with severely limited resources and tight timelines, which means that testing efforts must be focused. This also involves more detailed testing of the functionality of a software, which are associated with a higher business risk. However, also for ‘normal’ less critical software a comparable problem exists: Usually testing has to be done under severe pressure due to limited resources and tight time constraints with the consequence that testing efforts have to be focused and be driven by business risks. Both decision problems can adequately be addressed by risk-based testing which consider risks of the software product as the guiding factor to steer all phases of a test process, i.e., test planning, design, implementation, execution, and evaluation [33],[34], [35]. Risk-based testing is a pragmatic, in companies of all sizes widely used approach REF _Ref62489344 \r \h [36] which uses the straightforward idea to focus test activities on those scenarios that trigger the most critical situations of a software system. It has become quite popular and several approaches were developed (see Erdogan et al. REF _Ref62489787 \r \h [37] for a comprehensive survey of risk-based testing approaches).
 How it works: Risk-based testing is a pragmatic and often intuitively used approach [36] to focus test activities on those scenarios that trigger the most critical situations of a software system. It has become quite popular, and several approaches were developed in different context and application domain. See Erdogan et al. [37] for a comprehensive survey of risk-based testing approaches and [39] for with a systematic compilation of different approaches to risk-based testing in the context of IT security. In general, a number of different approaches exist for risk-based testing, with different emphases. A rough distinction can be made between risk-based test selection and risk-based test evaluation. Risk-based test selection addresses the problem that only a limited number of test cases can be realized or executed and that these test cases cover the use cases, functions or components to which the greatest risk is associated. A risk-based test evaluation, on the other hand, addresses the problem that the errors found during testing must be evaluated and, if necessary, a release can be made even with existing errors if these do not affect the critical functionality. The prerequisite for both approaches is a risk analysis. This can be formalized to varying degrees and ranges from an intuitive risk assessment by the tester to formalized and formal procedures with which an attempt can be made to describe risks qualitatively and quantitatively.
Types of issues addressed: Machine learning systems are systems that often operate in open environments, where it is fundamentally difficult to completely specify and delimit the often very extensive application environment. Strategies for risk-based test selection help to identify areas of the application environment that needs more extensive testing than others. Various factors influence the estimation of ML technology-related risks. Among others this includes risk exposure in the environment, severity of the hazard and statistical behavior of the ML-based component. Furthermore, machine learning is a stochastic approach with the consequence that the occurrence of errors usually cannot be completely avoided, and errors cannot be easily fixed. Therefore, ML-based systems enforce a paradigm shift that no longer focuses solely on the avoidance of individual software errors but take into account functional deficiencies and their relation to mission and business criticality. Thus, methods for risk based test evaluation are 	Comment by Hans-Werner Wiesbrock: ??? incomplete sentence
Currently, there are only a limited number of risk-based testing approaches that specifically address machine learning. Some of the approaches are motivated by safety-critical applications in the field of mobility. Especially in the area of autonomous driving, there are a number of methods that deal with the identification and quantification of hazardous scenarios using various methods [40]. However, even though ISO 21448 recommends the combination of risk assessment and testing no systematic approach is yet described. In [41] Foidl and Felderer propose a risk-based data validation approach that tries to identify the risk of poor data quality for each feature used in training ML-based software systems. The risk of low data quality is calculated considering the importance of the feature for the overall system performance and the probability that feature is badly represented by the data. The latter is determined by assessing the data source quality, the data pipeline quality, and the occurrence of specific context-independent anomalies in the data. Schwerdner et. Al. [10] propose a risk-based approach to evaluate compare models for their robustness in a standardized way. The basis for the evaluation are so-called key risk indicators, which describe for concrete scenarios the probability of the occurrence of noise or corruptions as well as the errors resulting from these disturbances. The approach allows to compare models considering the errors weighted in terms of probability of occurrence and effect considering the special properties of the deployment environment.

Based on the hypothesis that the use of ML-based systems in the context of safety-critical applications requires a paradigm shift, which is no longer solely based on avoiding faulty behaviour of a software, but must additionally consider functional deficiencies, especially against the background of the complexity of the systems as well as the deployment environments, we see risk-based testing as an important approach to identify potential risks and, in the context of certification, to provide evidence that they relevant risks could be sufficiently mitigated by appropriate risk coverage through testing. We are not currently aware of any appropriate approaches specifically for ML software. In principle, there is a great need for research in this area.
How it works
Increasingly with their successes and growing capabilities, ML-based systems are also being used in critical areas. A prerequisite for this is a risk analysis. In the risk analysis, extensive testing is then required, especially for risk mitigation, to prove possible, dangerous behavior of the system as unlikely.
Various factors influence the estimation of ML technology-related risks: risk exposure in the environment, severity of the hazard and statistical behavior of the ML-based component. In order to now estimate the remaining risk using testing, it is recommended to represent the results by means of a 3-shaped risk tensor, where the indices go over the above factors, [10]. A final overall assessment of the risk can be performed with this tensor application specific.
Types of issues addressed
TBD
[bookmark: _Toc101941483][bookmark: _Toc134717552]8.5	Analytical Estimation (HWW)
Dynamic tests always check samples whose selection must also be justified. Therefore, in the field of conventional SW, complementary analytical estimations are usually expected. However, this is almost impossible for ML-based systems that use e.g., deep nets, since they are hardly analytically accessible so far with their multitude of parameters and nonlinearities. Current Explainable AI (XAI) research is investigating many different approaches here.
If the ML model has too many or too few parameters, new misbehaviour may occur. In the first case, the system learns to react convincingly in the training situations, but fails in new situations, (Poor Generalization, Overfitting). In the second case, the system only moderately learns the training data, but usually behaves similarly in new situations (Underfitting). Thus, in novel situations, the system will react much more inappropriately or will consistently fail to exploit a possible mitigation potential. Indicator for overfitting or underfitting is monitoring and evaluating the learning process. If, in the further course of training, the loss values on the validation set are significantly higher than on the training data, this indicates overfitting. If, on the other hand, the loss values on both data sets remain equally bad despite extensive learning, this points to underfitting.
Analytically, behind the problem of over/under fitting lies the fact that the capacity of the network is not adequate to the problem (relevance of the model). For this purpose, the capacity of the selected ML model can be estimated analytically [12] and compared with the complexity of the learning data.
If a natural metric exists on the space of learning data, e.g., a variant of the Euclidean metric on the high-dimensional real vector space of pixel data of images, and the decision of the ML model is based on simple evaluations in a high-dimensional feature space, e.g., via max-pooling or softmax in the penultimate layer of a neural network, a Lipschitz constraint can be usefully defined and estimated. The Lipschitz constant then provides an analytical estimate of a network's susceptibility to perturbation and hence its robustness.
[bookmark: _Toc101941484][bookmark: _Toc134717553]8.6	Search-based testing (Großmann)	Comment by Großmann, Jürgen: Tailor towards testing and not towards optimization of model properties.
General definition: Search-Based Testing (SBT) is the application of optimizing search techniques to solve software testing problems. capabilities. Among others SBT is used to generate test data, prioritize test cases, minimize test suites, optimize test oracles, increase test coverage, and validate real-time properties of software. The search algorithms can be guided by different criteria, such as code coverage, requirements coverage, or fault-detection. In general this may include random search, to randomly generates test inputs and evaluates their effectiveness in revealing faults, genetic algorithms that generate a population of test cases, evaluate their fitness (based on a defined objective function), and use selection, crossover, and mutation operations to evolve the population over multiple generations, particle swarm optimization, where swarm of particles moving through the input space and the swarm collectively explores the space to find promising solutions. The effectiveness of search-based testing depends on factors such as the quality of the search algorithm, the representation of test inputs, and the defined objective functions. It is often used in combination with other testing techniques to complement and enhance the overall test coverage and fault detection capabilities.
How it works:
The key idea of SBT in ML is to leverage search algorithms to explore and navigate the various spaces associated with machine learning models, parameters, data, and configurations to identify potential model performance issues, robustness issues, and efficiency issues. SBT can be applied as long a continuous optimization function could be found. It supports activities like data preparation, feature selection and extraction, model evaluation, adversarial testing and in reinforcement learning.
Types of issues addressed: Since both training an ML model and search-based testing are optimization processes, SBT can be applied to machine learning in several ways to improve testing and validation of ML models or other artifacts in the ML life cycle. For example, machine learning models often have numerous hyperparameters that need to be set appropriately for optimal performance. Search-based testing can be employed to explore the hyperparameter space efficiently, finding combinations that yield the best performance metrics or minimize errors. Moreover, SBT can help identify the best model for a specific task by comparing different algorithms or configurations. The search process can consider factors like accuracy, computational efficiency, and model complexity to select the most suitable option. By exploring the feature space, SBT can be used to determine the most relevant features or feature combinations for a machine learning model, identify subsets of features that result in improved performance or reduced dimensionality and leading to more efficient and accurate models. In addition, SBT ca be used for synthetic data generation, augmentation, and data space exploration, ensuring better coverage of input variations and uncovering potential edge cases. [14]. Finally, SBT can be employed to search for such adversarial examples efficiently [15], helping identify weaknesses and improving the robustness of the model. Finally, SBT techniques can also be applied to reinforcement learning settings e.g., to optimize the agent's behavior or policy.

Are runtime constraints met, memory consumption, or other constraints such as value or output ranges? These are classic questions to the test, which are met by a targeted search for extreme examples. Various optimization algorithms are used to solve them. For ML-based systems, the use of these methods shifts away from the possible extreme cases for the test item to targeted perturbations of the inputs for the purpose of intentional misbehaviour. E.g., how to purposefully obtain false classifications, manipulate facial images so that the account protected with biometric data can be opened without authorization? Or in the case of reinforcement learning, how are the feedbacks to be changed so that the algorithm becomes unstable?
How it works
Since ML-based systems are now used in many security-critical areas, robustness against hostile manipulation is of utmost importance. Thus, there is a whole branch of research that investigates the topic of adversarial attacks [15].
In the classic case of search-based testing, individual extreme examples are sought for the test. The goal is to test the test item even in these cases. This approach reaches a new level for ML-based systems. Since the learning process of these systems is typically an optimization itself, this technique can be used not only to discover single counterexamples, but also to generate arbitrarily many new input data that can challenge the old system. For this purpose, one couples a generative model and a discriminator together in the form of a two-person zero-sum game (GAN): the generator tries to produce as good as possible fake copies of the original data, the discriminator hangs to distinguish real and fake data [14], which are available with the training data.
Types of issues addressed:
Nowadays, there are various extensions of this technology and a wide variety of applications, including transforming a blackbox ML-based system into a whitebox system with a known architecture.
[bookmark: _Toc101941485][bookmark: _Toc134717554]8.7	Combinatorial testing (Jürgen)
General definition:
How it works
The principle behind combinatorial testing is based on the observation that many defects or failures in software systems are caused by interactions between different input parameters rather than by individual parameters in isolation. By testing a range of parameter combinations, i.e., combinations that each include two, three, or some other number of parameters, the technique can effectively detect a large portion of the errors arising from interaction effects. The choice of the appropriate value of for parameter combinations depends on factors such as the complexity of the system, the number of input parameters, and the available resources. Pairwise testing (2-wise) is often used as a starting point, as it provides a good balance between coverage and efficiency. It covers interactions between pairs of parameters, which tend to be the most critical in terms of defect detection. However, higher values of "n" can be chosen when there are specific concerns about interactions involving more than two parameters.
How it works: To generate test cases for n-wise testing, various algorithms and tools are available that employ combinatorial design theory or optimization techniques. These tools generate a minimized set of test cases that cover all possible combinations of n parameters with minimum redundancy, ensuring comprehensive coverage while minimizing the testing effort. However, the application of combinatorial testing in ML is even for small input spaces challenging since the number and possible valuations of the individual input parameters are too large.

However, there is a number of potential application scenarios when the input space is subdivided by a systematic classification approach that reflects for example A common way to systematically increase the test depth is to combine different test cases. In the area of embedded systems, for example, the classification tree method [13] is often used for this purpose. The initially unstructured test space is partitioned into classifications and classes according to various test aspects. This partitioning is then used for test planning: Which combinations of classes are relevant, which combinatorics should be considered, and how many test cases should be defined for them?
Types of issues addressed:
Since the meaning of the numerous parameters of a model and their influence are usually not understood and are only adjusted by the learning process, a balanced, representative selection of training data is essential. In order to check the completeness of the data it is useful to define the planned environment of the test item according to various aspects like: tTypical situations, risk areas, possible sources of disturbing noise and other ininfluences.... at first, and different aspects thereof in a concise refinement, . Afterwards this classification can be refined intoleading to concrete scenariosmodel or ontology that covers an abstract representation of the input space by covering and risks or also perturbations e.g. and in this way the environment can be divided according to various viewpoints. Based on such a model, combinatorial testing provides a means to get a systematic test coverage following an equal distribution over the different aspects represented by the model. Providing a Such a partitioning of the environmentw, weighted model with their respective meaningsthat, besides the manifestation of the object and features of the domain, also specifies the frequency of their occurrence, the associated risk, etc., then allows a combinatorial testing could even provide a good estimation of the required distribution of the training and test data.
Types of issues addressed: Combinatorial testing could be used to select and generate test and training data for model testing. In [42] Gladisch et al show how combinatorial testing can be used to generate test, training and validation sets based on a domain model. In particular this approach is considered useful for systematic generation of synthetic data.
	Comment by Hans-Werner Wiesbrock: One has to take care in deriving quality criteria from combinatorical testing, see remarks in chap. 52. The relative frequency of failed vs. passed runs is not an approriate quality measure. It must be weightened by the (Radon-Nikodym) derivative relating the uniform distribution behind the combinatorics and the empirical one!
[bookmark: _Toc101941486][bookmark: _Toc134717555]8.8	Metamorphic testing (UNI Göttingen)
 General definition: 	Comment by Makedonski, Philip: Move to the start of the section. Remove specific part, e.g. reduce to “Definition”
Metamorphic Testing (MT) is a property-based software testing approach which offers the possibility of alleviating the oracle problem and thus can be used to test non-testable systems. The general idea of MT is to apply a set of predefined Metamorphic Relations (transformations or metamorphisms) to a source test case in order to generate follow up test cases which are tested against the system. If the output of the follow-up test cases violates the defined metamorphic relation, then the system can be considered as defective. 	Comment by Großmann, Jürgen: Is this a know term for systems where the oracle problem appllies. May be underspecified systems?
 How it works:	Comment by Makedonski, Philip: Remove specific part.
Definition of Metamorphic Relations: In MT, the first step is to identify Metamorphic Relations (MR) that define how the input and output of the system should change in response to a specific transformation. For example, if the ML model is trained to recognize handwritten digits, an MR could be that flipping the image horizontally or vertically should not change the predicted digit.
Generation of Test Cases: the next step is to apply the defined MRs to the original input data in order to generate new test cases (transformed version of the original input data)
Comparison of Outputs: In this step, we compare the output of the original input data and the transformed versions. If the output of the system is consistent for all versions of the transformed input data, then the system passes the test. However, if the output of the system is found to be inconsistent for any of the transformed versions of the input data, then the test fails, indicating that the system has a bug or a number of problems. For example, if an ML model train to recognize handwritten digits is unable to classify correctly a flipped handwritten digit, then this is an indication of a potential problem [2].
 Types of issues addressed: 	Comment by Makedonski, Philip: Remove specific part	Comment by Großmann, Jürgen: Types of issues addressed: Should refer directly to typical issues in testing ML	Comment by Hans-Werner Wiesbrock: The risk tensor [10] is a good way for pushing this to operational domain.	Comment by dapaah: could you please elaborate further on this?	Comment by Hans-Werner Wiesbrock: Metamorphic transformations also allow for a more sophisticated consideration of risk.
Given a family of pertubations Pert(t) with parameter t, e.g. weak/strong rain or blurring of images, rotation, noise...
Depending on the noise, an AI system e.g. an image recognition SW, will weaken in its functionality.
These data can be summarized in a tensor, see [10],rsik tensor, which contains the concrete image in one index and the parameter of the pertubation in another.
Depending on the intended ODD of the system and the associated potential pertubations (Per(t)) expected with some probability therein,
the quality of the system can be assessed in a more differentiated way.
Metamorphic testing is primarily a useful technique for addressing functional issues. However, it may also be useful for the detection of non-functional issues such as reliability and performance-related issues.
It is worth noting that a passed MT does not necessarily guarantee the correctness of the system. For instance, a metamorphic relation applied to a mislabeled image will pass a Metamorphic Test without exposing the mislabeling.	Comment by Makedonski, Philip: Revise example
[1] M. D. Davis and E. J. Weyuker, “Pseudo-oracles for non-testable programs,” Proceedings of the ACM ’81 conference on - ACM 81, 1981. doi:10.1145/800175.809889
[2] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes, “A survey on metamorphic testing,” IEEE Transactions on Software Engineering, vol. 42, no. 9, pp. 805–824, 2016. doi:10.1109/tse.2016.2532875
	Comment by Makedonski, Philip: Use proper citation style, e.g. IEEE (everywhere). Integrate with main list of references once finalised.
[bookmark: _Toc134717556]8.9	Differential testing (Universität Göttingen)
 General definition:
Differential Testing also known as “Back-to-Back Testing” is a testing technique used in software development that involves comparing the output of two versions of a program that ought to produce the same results. The purpose of Differential Testing is to detect differences or discrepancies between the two versions of the program, which can be indicative of bugs or unusual behaviour [1].	Comment by Makedonski, Philip: …also known as “Back-to-Back Testing”
 How it works:
In the context of machine learning, Differential Testing involves comparing the output of multiple implementations of the same learning algorithm which have also been trained on the same training data[2]. If there is a difference between the results, then presumably one or both implementations have a bug. For instance, if a Graph Neural Network (GNN) model with the same network and weights behaves differently when running on two different GNN implementations (such as PyTorch and TensorFlow), it is likely that one of the implementations is incorrect, even if the expected output is unknown. 	Comment by Makedonski, Philip: Need to make clear that we mean running already available models on different platforms (potentially with necessary conversion), rather than constructing/training models that use the same algorithm but implemented on different platforms (non-determinism)	Comment by Makedonski, Philip: Need to make sure that there are no reused components which may exhibit the same faults.
A drawback of Differential Testing is its resource inefficiency due to the multiple system runs, and its susceptibility to errors as the same errors may occur in various implementations of the system under test [3].
 Types of issues addressed:
Differential Testing may be used to address both functional and non-functional issues. Functional issues may include cases where one implementation of the model produces incorrect predictions compared to the other implementation, while non-functional issues may include cases where one implementation of the model takes longer to produce results or uses more resources than the other (i.e., this may be difficult to compare across platforms, scaling may need to be applied).	Comment by Makedonski, Philip: This may be difficult to compare across platforms, scaling may need to be applied.
In conclusion, Differential Testing is an important technique in machine learning testing that can help detect bugs and unexpected behaviour in an ML model by using one implementation of the ML model as a pseudo-oracle for the other.
[1] W. M. McKeeman, “Differential Testing for Software,” Digit. Tech. J., pp. 100–107, 1998.
[2] C. Murphy, G. E. Kaiser, and M. Arias, “An Approach to Software Testing of Machine Learning Applications,” International Conference on Software Engineering and Knowledge Engineering, 2007.
[3] D. Marijan and A. Gotlieb, “Software testing for Machine Learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 09, pp. 13576–13582, 2020. doi:10.1609/aaai.v34i09.7084

[bookmark: _Toc134717557]8.10	Adversarial Attacks (Universität Göttingen)
 General definition:
Adversarial Attacks refer to the subtle modification of original inputs to a trained machine learning model to cause it to make incorrect predictions or decisions. These attacks are typically carried out by adding small, carefully crafted perturbations to input data that are almost imperceptible to human observers but can significantly affect the output of the model. Adversarial Attacks are a growing concern in the field of machine learning, as they can potentially compromise the security and reliability of machine learning systems.
 How it works:
In the context of image classification, Adversarial Attacks work by discovering a slight modification that when applied to an original image, leads the model to inaccurately classify it, while still being correctly classified by the human eye [1]. For instance, for a given input image x, the objective is to find the smallest possible modification η such that the resulting altered image (i.e., adversarial example) x’ = x + η is misclassified. Adversarial attacks can be categorized as either targeted or untargeted. In a targeted attack, the adversary aims for the modified image x’ to be classified as a specific class t, whereas in an untargeted attack, the adversary’s objective is for the modified image x’ to be classified as any class other than its correct class [2]. To mitigate this risk, Adversarial testing otherwise known as adversarial training is performed by incorporating identified adversarial examples and the corresponding ground truth labels into the training data in order to ensure that the model is trained to correctly identify them [3].
 Types of issues addressed:
Adversarial Attacks can address both functional and non-functional issues in machine learning models. Functionally, these attacks can expose weaknesses in a model's decision-making process, revealing its vulnerabilities to malicious inputs. Non-functionally, Adversarial Attacks can also help to evaluate the robustness and reliability of machine learning models, as well as to identify potential areas for improvement in their design and implementation.
[1] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting Adversarial Samples from Artifacts,” ArXiv, 2017.
[2] J. Lin, L. L. Njilla, and K. Xiong, “Secure machine learning against adversarial samples at Test Time,” EURASIP Journal on Information Security, vol. 2022, no. 1, 2022. doi:10.1186/s13635-021-00125-2
[3] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing Adversarial Examples,” CoRR, 2014.

[bookmark: _Toc101941487][bookmark: _Toc134717558]8.9	Exploratory testing (Jürgen)
<TBD> Systematic testing approaches are used for this purpose, which, for example, divide the input data of a software system into classes and test selected representatives of each class. Furthermore, testing can contribute to a better understanding of an unknown system. The idea of exploratory testing describes testing as a creative act in which the tester learns new properties of the SUT by performing tests and can incorporate them into new tests. However, software testing cannot prove that the system is free from faults.
[bookmark: _Toc101941488][bookmark: _Toc134717559]8.10	Probabilistic testing
[bookmark: _Toc101941489]<TBD>
[bookmark: _Toc134717560]8.11	Testing with failure models
[bookmark: _Toc101941490]<TBD>
[bookmark: _Toc134717561]8.12	Diversifying test
<TBD>
Back to back test, regression test
[bookmark: _Toc101941491][bookmark: _Toc134717562]8.13	Reviews
<TBD>

[bookmark: _Toc101941492][bookmark: _Toc134717563]8.14	Static analysis
<TBD>

[bookmark: _Toc101941493][bookmark: _Toc134717564]9	Workflow and process aspects of testing ML-based systems	Comment by Großmann, Jürgen: Software testing is an activity that is oriented towards the life cycle of a software component and itself passes through various phases. A typical software testing process can for example distinguish test planning, test design & analysis, test implementation & execution as well as evaluating test exit criteria and reporting.
These or slightly varying phase distributions are also found in the literature and common standards. In the context of this paper, we use the above-mentioned division into phases to describe the challenges along the individual phases that we see specifically for the testing of ML-based systems.
	Comment by Großmann, Jürgen: Look at the ISTQB testing workflow published in the AI Testing Syllabus
[bookmark: _Toc134717565][bookmark: _Toc101941494]9.1	Test Management for testing ML-based systems
TBD.
[bookmark: _Toc134717566]9.2	Dynamic test process for testing ML-based systems
[bookmark: _Toc134717567]9.2.1	Test planning phase
Roughly speaking, the test planning phase serves to define the quality objectives, determine the test items and set up a test strategy that serves to test the desired quality objectives in a meaningful way. Afterwards the entire test process is planned in its technical, temporal, and monetary aspects, taking into account the available resources.
A test strategy describes which parts of the system are to be tested with which intensity, using which test methods and techniques, using which test infrastructure and in which order.
Testing ML-based systems places some special challenges on the test planning phase.
Challenge 1: Selection of appropriate quality and test itemives
Since ML-based system slightly differ in terms of engineering as well as operation, the test process must address additional test itemives, that are often not addressed in classical software testing. Besides coverage of the relevant functional aspects of the application context including standard cases/scenarios, all critical corner cases/scenarios as well as all defined non-functional properties like security, robustness, performance etc., testing ML-based systems need to reveal
data and labelling errors that lead to critical functional failures
software failures that undermine critical functionality during model training and model inference
unused or unintended decision capabilities of a model
bias and noise in decision processes
known vulnerabilities and failure modes of the technology used eg. in DNNs/CNNs
Challenge 2: Determining all relevant test items and the corresponding test procedures
To comprehensively test ML-based software systems, several new test items must be considered that are given little to no attention in classic software. These test items are:
data and labels
hyperparameters
loss function
optimiser
training KPIs and acceptance criteria
network architecture and additional design decision defining basic model properties
the ML-Model including the software implementation of the models’ internal behaviour and all parameter settings
the ML-Framework including the used libraries and algorithms
data pre-processing software during engineering
additional components that serve a proper integration of the ML-model including safety mechanisms (safety cage, redundant models), model and data pre-processing or result preparation, GPU integration.
Challenge 3 Definition of an appropriate integration and test procedure.
ML-based systems are complex entities with high dependencies. Thus, the quality of an ML-based decision system is not only based on the performance of the ML model, but also on
the performance of the data pre-processing chain including all the required sensors and data fusion components,
the software that interprets the output of the ML model, processes it for humans and/or translates it into actions, and
the seamless interaction of all these components.
In addition, the quality of the target system is dependent on the training data, data preparation, and training infrastructure. Thus, a systematic test approach does not only target the system and its integration, but also the entire data acquisition and training infrastructure. If we take this into account, the test levels of classical software testing can be extended as follows.
data pipeline testing
training pipeline testing
data and data integration testing:
component testing: ML-Model, data pre-processing, decision making
integration testing: Model in data pre-processing chain, Model in data pre-processing chain + decision making, ML-model subsystem with safeguarding
system testing: Entire system in test environment
acceptance testing: Entire system in operational environment
runtime testing
[bookmark: _Toc101941495][bookmark: _Toc134717568]9.2.2	Test design & analysis phase
The test design and analysis phase serve to implement the test itemives defined in the strategy in a meaningful way. This includes the identification of the abstract tests, the definition of suitable coverage and completeness measures and the specification of suitable procedures and frameworks for the automation of the tests.
Challenge 1: Identification of appropriate data testing procedures
Due to the high importance of data for the performance of a ML model, both the data, its origin, its storage, and preparation must be systematically tested and reviewed. In this context we distinguish between testing the data acquisition, preparation and storage infrastructures and testing the data and data quality itself.
Testing the data acquisition, preparation and storage infrastructures mainly addresses aspects of infrastructure testing like data base testing, testing the underlying communication and computation platforms regarding performance and availability, and the data processing infrastructures that allow for data preparation and refinement. The test approach must consider that these infrastructures are often dealing with big data that is, most of the processes are highly automated and require a high degree of availability and scalability that poses special requirements on hardware and software solutions with corresponding challenges for testing (see [16][17]).
According to L.P. English [18]data quality can be subdivided into three aspects, which can be considered independently of each other.
Data definition and information architecture quality describes the quality of the data specification based on the application context.
Data content quality describes the inherent quality characteristics of the data such as correctness of data values, completeness, unambiguity, freedom from errors, etc.
Data presentation quality describes how the data can be made available appropriately quickly, in a suitable format, and with a reasonable amount of effort.
Data quality dimensions are attributes of data quality that, if measured correctly, can describe the overall level of data quality. The identification of relevant quality dimensions forms the basis for the assessment and subsequent improvement of data quality. The quality dimensions are usually highly context-dependent, and their relevance and importance can vary depending on the organization and data type. The most common, i.e., the most frequently cited dimensions in the literature, are completeness, timeliness, and accuracy, followed by consistency and accessibility [19].
Overall, assessing data quality for ML applications is a complex task. Current best practices suggest that more data and better models provide better results.
Poor data quality can cause significant problems in both ML model building and big data applications.
Certain systematic preprocessing operations on the data help these models achieve higher effectiveness.
While traditionally data quality is assessed before the data is used, in the machine learning context quality can be assessed both before and after the model is built.
Data quality can be assessed before the learning process along the data and its compilation processes and after the learning process along the performance of the ML model.
The data quality is evaluated along different quality attributes, so that systematic evaluation criteria for the data quality can be established.
To date there are no testing approaches that directly address the issues from above in a systematic and automated manner.
Challenge 2: Identification and selection of appropriate tests for complex/open world scenarios
Testing machine learning suffers from a particularly difficult form of the oracle problem. While classical systems are usually fully specified, machine learning systems are designed to provide meaningful answers to questions for which there is not yet an answer known [1] (Zhang et al.). Training ML models typically aims to achieve good performance on training data while being able to generalize well to unseen, new data. For the models to learn the underlying function from the data provided to them, that data must sufficiently capture the features of the real-world problem. If incomplete, outdated, or irrelevant data are provided to the model, the model will not generalize towards unseen data.
The problem for testing then consists of defining suitable criteria for defining the completeness of the data for a partially unknown range and to generate test cases that systematically represent the entire input range. In addition, the test cases must be stored with suitable expected values that allow a systematic evaluation of a test run. This special form of the Oracle problem known from testing prevents a scalable test data generation. Solution approaches, such as metamorphic testing [32], are not yet able to realize the necessary scalability and efficiency required for a comprehensive testing approach.
Challenge 3: Dealing with ML-specific failure modes
Since ML and ML-based systems show significant differences to classical software engineering, testing processes may fail if they do not address failure modes that are specific for ML-based systems. These failure modes include bias, non-determinism, lack of robustness, and lack of transparency and understandability.
Decision bias: Bias in machine learning is a type of error in which certain elements of a dataset are weighted and/or represented more heavily than others. A biased dataset does not accurately represent the intended use case of a model, leading to biased results, low accuracy, and analytical errors. Bias can occur in several different areas, from human reporting and selection bias to algorithmic and interpretation bias. Sampling bias, for example, occurs when a dataset selected for training does not reflect the realities of the use case (e.g., when facial recognition relies significantly on data from only one population group e.g., men, women, Europeans). Exclusion bias most often occurs in the pre-processing phase of the data. It is often caused by the deletion of valuable information that is considered unimportant e.g., the deletion of a relevant feature that has not been recognized or that has been considered as unimportant. Measurement bias occurs when the data collected for training is different from the data collected in the real world, for example, when different sensors are used to record the training data as with the production data. Measurement bias can also result from inconsistent label assignment during the data labelling phase of a project. Finally, observer bias also known as confirmation bias, is the effect of seeing what you expect or want to see in the data during manual data selection and labelling processes.
Probabilistic nature and non-determinism: ML-based software, even if it has some fundamentally deterministic properties, is not necessarily stable with respect to the environment and environmental changes. Moreover, the training process itself is often nondeterministic and thus difficult to reproduce. Non-determinism in the training phase arises from the random initialization of model parameters, the stochastic selection of training data (e.g. mini batch sampling), and the use of stochastic functions in the optimization process. Non-determinism in the operation phase may arise using stochastic activation and weight functions. Moreover, neural networks are typically trained on graphics processing units (GPUs), which, under certain experimental conditions, yield nondeterministic outcomes for floating point operations.
Missing robustness: Robustness is the ability of a computer system to deal with erroneous input and to handle errors during execution. An ML model is considered robust if small perturbations in the input space yield only small perturbations in the output space. Since ML has been shown to be especially vulnerable against so called adversarial examples and against distributional shift, it can only be considered robust under certain circumstances.
An adversarial example is an input to a neural network that has been modified in such a way that it alters the output of the neural network, even though a human would still recognize the original class. In the extreme case, the modified input is indistinguishable from the original input for a human. Distributional shift describes a difference between the test and training environments [Ref 1]. Such distributional differences can be considered as gaps in the representation of reality and are a general problem in designing ML applications to be used in real-world applications. If the perceptual or heuristic inference processes of such a model have not been adequately trained to the correct distribution or the distribution of the environment changes in operation, the risk of unintended and harmful behaviour increases significantly.
Lack of transparency and understandability: Neural networks function as black box systems. Instead of humans explicitly coding the system behaviour with conventional programming, in ML the computer program learns based on many examples that represent the mapping of the input data to the desired output. Transparency in AI is generally referred to as explainability, which includes both interpretability and confidence in the system and its genesis[29][30]. While interpretability is the degree to which a human can understand the cause of a decision [31], confidence in a system is gained by understanding the system itself, its operational environment as well as the development of the system.
A challenge regarding testing arises from the dependence on a system that not even the developers and testers really understand. To gain confidence and certainty regarding elemental quality properties of neural networks, it is essential to enable at least a certain degree of human interpretability and understandability.
Challenge 4: Definition of appropriate coverage and completeness criteria
Due to the lack of logical structures and system specification, it is still unclear how evidence regarding test completeness could be provided for ML-based systems especially for those with DNN components. To date, there are several proposals that combine systematic testing of ML-based systems with coverage criteria related to the structure of DNNs. These include simple neuron coverage by Pei et al. [23], which considers the activation of individual neurons in a network as a variant of statement coverage. Ma et al. [22] define additional coverage criteria that follow a similar logic to neuron coverage and focus on the relative strength of the activation of a neuron in its neighbourhood. Motivated by the MC/DC tests for traditional software, Sun et al. [24] proposes an MC/DC variant for DNNs, which establishes a causal relationship between neurons clustering i.e., the features in DNNs. The core idea is to ensure that not only the presence of a feature, but also the combination of complex features from simple feature needs to be tested. Wicker et al. [25] and Cheng et al. [26]refer to partitions of the input space as coverage items, so that coverage measures are defined considering essential properties of the input data distribution. While Wicker et al. discretizes the input data space into a set of hyper-rectangles, in Cheng al. it is assumed that the input data space can be partitioned along a set of weighted criteria to describe the operating conditions. Finally, Kim et al. [21] evaluate the relative novelty of the test data with respect to the training dataset by measuring the difference in activation patterns in the DNN between each input. A good summary of the current state of the art regarding coverage criteria for testing DNNs can be found in [20]. In addition, the work of Dong et al [27] claims that there is only a limited correlation between the degree of different kinds of neuron coverage and the robustness of a DNN, i.e., improving the degree of simple neuron coverage measures does not significantly contribute to improving the robustness. However, in their study, Dong et al. did not analyse the effect of more complex coverage approaches (e.g., feature coverage and the MC/DC variant for DNNs) as well as coverage approaches that address the partitioning of the input data space.
[bookmark: _Toc101941496][bookmark: _Toc134717569]9.2.3	Test Implementation & execution phase
During the implementation and execution phase test cases are created and executed. Test cases should be based on the objectives and requirements identified during the planning and analysis phase. During the execution, the test team performs all tests. The deviations are logged, and defects are identified. Deviations are measured as the difference between actual and expected test results.
Challenge 1: Synthetic test data generation
ML systems process a wide variety of data. These range from simple tabular data to complex data streams (images, movies, radar or lidar data), such as those processed in ML-based perception systems. To be able to test such systems and to make the necessary large amounts of data available in sufficient diversity, data will have to be synthetically generated. The more complex the input data, the more complex is the process of data generation. For example, the creation of synthetic film sequences is significantly more complex and resource-intensive than the provision of simple numerical quantities.
Challenge 2: Achieving the necessary degree of automation and scalability.
The complexity and uninterpretability of DNNs lead to the fact that manual testing approaches are not sufficient to perform a comprehensive quality assurance of a DNN.
To cope with the complexity of the applications and to achieve consistent results in repeated tests a high degree of automation is required. Automation should encompass all necessary activities of the testing process, starting with test case identification, test data generation, test execution, and final test evaluation. Similar, to the training of an ML model, such an automated testing approach relies on a larger technical infrastructure that realizes automation in a in a trustworthy and reliable manner.
However, generating test cases automatically is still a challenge. For instance, studies [85, 86] claimed that the test cases generated by an automated testing tool may not cover all real-world cases. (Zhang 2020)
[bookmark: _Toc101941497][bookmark: _Toc134717570]9.2.4	Evaluating exit criteria and reporting phase
The test evaluation and reporting phase is used to evaluate the test execution against the defined and agreed exit criteria. Based on this evaluation, a decision can be made as to whether enough tests have been performed to achieve the quality objectives defined in the planning phase. The result of the test evaluation is then documented and summarized in a form that can be understood by all relevant stakeholders.
Challenge 1: Define and apply appropriate end-of-test criteria and validation metrics.
The interpretation, aggregation and evaluation of individual test results and the evaluation of the entire test process for ML-based systems can differ greatly from the procedures that are established for classical software systems. On the one hand, completely new test procedures have to be taken into account due to the consideration of data as a decisive quality factor, and on the other hand, the specific characteristics of an ML-based system, especially with regard to its failure characteristics, lead to different evaluation approaches.
On the one hand, DNNs in particular feature a complexity that is not reached by classic software. While it is possible to trace failure modes back to individual errors in classical software systems, this is much more difficult in ML-based systems. The high number of parameters, hyperparameters and optimization decisions makes it almost impossible to identify wrong parameters as the cause of a concrete failure mode.
Additionally, when considering different quality properties, it is important to keep in mind that there are dependencies between these properties, so that improving the KPIs for one property will worsen the KPIs of another property.
Risk-based testing approaches are basically able to relate variable quality properties of a system to the risks to the financial and fundamental risks of an application. An end-to-end approach on how to comprehensively apply risk-based testing in the context of ML systems has been sparsely explored.
Challenge 2: Communicate test status and evidence on quality in a comprehensible and trustworthy way
Test reports are designed to enable managers and users of software products to assess and understand the quality and risks of a software product in its application. To this end, the tests, their results, and the metrics used to demonstrate the performance of an ML-based system must be expressed in terms of their impact on the application domain in an understandable way. This is particularly important when it comes to assessing interconnected quality properties between which there may be a conflicting objective.

[bookmark: _Toc101941498][bookmark: _Toc134717571]10	Testing in the ML Life Cycle	Comment by Großmann, Jürgen: Might be obsolete because already addressed in Section 7
[bookmark: _Toc134717572]10.1	The ML Life Cycle
[image: Ein Bild, das Diagramm enthält.

Automatisch generierte Beschreibung]
Figure 3 The MLOps life cycle
[bookmark: _Toc101941499][bookmark: _Toc134717573]10.2	Plan
Purpose: This phase serves to develop a basic understanding of the problem to be solved by ML as well as the data required for it. Developers and spzeificators decide which features are feasible with machine learning and which can be useful for a given existing or a new product. Importantly, it is at this stage that they decide what types of models are best suited for the given problem and what data is needed to successfully learn the desired features.
Testing requirements and KPIs
[bookmark: _Toc101941500][bookmark: _Toc134717574]10.3	Data Engineering
This phase aims to identify the right data sets in the right distributions, collect the data in such a way that the model output can be delivered as efficiently as possible, enrich the data through labeling, store the lineage of the data, verify the quality of the labeled and prepared data, establish specific metrics to measure the quality of the data, store and analyze the data.
Testing the data sources and their reliability
Testing the data preparation and training pipeline (training phase)
Testing the data
[bookmark: _Toc101941501][bookmark: _Toc134717575]10.4	Code
Purpose: This phase aims to develop the source code that is required for setting up the model and related components. This includes, among other things, all components that form the data preparation and decision pipeline during deployment. The individual components, the software implementation of the model and the integration of all components into a functional unit must be realized and tested.
Testing the decision pipeline (in integration)
[bookmark: _Toc101941502][bookmark: _Toc134717576]10.5	Model Engineering
Purpose: This phase aims to parameterize and train model variants based on the available data and their labels by considering all related requirements, and to identify and select the most appropriate model. In practice, training runs are performed with different model architectures and initial parameters (hyperparameters) and the results are compared. All resulting models are benchmarked, evaluating their properties in terms of accuracy and generalizability. The best model(s) is/are selected and passed to the subsequent process for further V&V. For modeling, predefined ML frameworks are usually used to support the developers in creating the model code and realizing the algorithms.
Testing the model architecture and other design decisions
Testing the model pipeline
Testing the training assumptions (Hyperparameter settings, algorithms etc.)
Testing the model software and third-party libraries
[bookmark: _Toc101941503][bookmark: _Toc134717577]10.6	Model V&V
Purpose: In this phase, the model is fully validated and verified. The aim is to assess the extent to which the model fully meets the functional and extra functional requirements given. In addition to accuracy and generalizability, scalability, complexity, robustness, fairness and resource requirements in particular play a crucial role in the evaluation of a model. The model is checked against all relevant performance characteristics and KPIs. Finally, it is decided at this point whether the model(s) at hand are suitable for integration into the software stack or need to be improved via further iterations.
Testing the functional aspects of the ML-model
Testing extra-functional aspects of the ML-model e.g. robustness, fairness, transparency, security, scalability
[bookmark: _Toc101941504][bookmark: _Toc134717578]10.7	Test
Purpose: The selected model must be tested and evaluated in its deployment environment. For this purpose, the model must be integrated with the software and hardware of the target platform and systematically tested. The evaluation focuses on the safe functioning of the model in interaction with the necessary software and hardware as well as the interaction with additional safety components and functions, such as watchdogs for identifying dangerous situations and performing plausibility checks, redundancy for safeguarding the overall functionality, etc.
Model integration testing
SW/HW integration testing
[bookmark: _Toc101941505][bookmark: _Toc134717579]10.8	Integration
Purpose: In this phase, the model is transfered in a real-world setting or integrated into the application/edge device it was developed for. Most organizations typically follow stringent procedures, or even provide standard templates for building a complete release package. Testing happens throughout this process, starting with testing all input CIs, to testing and rehearsing the services before they are deployed live.

Testing end to end functionality
[bookmark: _Toc101941506][bookmark: _Toc134717580]10.9	Deploy
Purpose: In this phase, the release package is deployed to the live environment, beginning when change management authorizes the release package to be deployed to the target environments. Afterwards operators deploy the application to a production environment. They may also perform maintenance tasks on the application. There are different levels of deployment for models. In shadow deployment, the model results are not used directly. Deployment occurs in parallel with another model or the final decision is made by a human, regardless of what the model predicts. Usually this is done to determine how well the model is performing. In canary deployment, the model is presented with only a small portion of the data on which it is allowed to make decisions. Depending on how the model performs, the data is gradually increased, or the model is withdrawn, and adjustments are made. At Blue-Green deployment, the traffic is gradually changed from an old version (blue version) to the new version (green version). In this way, any kind of downtime is avoided and in case of errors, the application can be easily reverted to the previous stable version or the blue version.
Acceptance testing

[bookmark: _Toc101941507][bookmark: _Toc134717581]10.10	Operate
Purpose: This phase is organizing the operation of the ML-based application. It aims to minimize or eliminate downtime for your end users through efficiently managing hardware and software changes.
Runtime testing

[bookmark: _Toc101941508][bookmark: _Toc134717582]10.11	Monitor	Comment by Großmann, Jürgen: Don’t know what to test here? Do we really need this phase?
Purpose: Monitoring of the ML-based application and its application environment is the final phase in the MLOps cycle. It builds on the customer feedback by collecting data and providing analysis on customer behaviour, application performance, and defects. Regarding the ML-models, monitoring includes the predictive quality, the inference performance, the occurrence of special kinds of failure, and certain kinds of drift. Especially in highly automated MLOps processes, this includes not only data about the application and the model, but also data about the entire infrastructure, i.e. the compute environment, the data and modelling pipelines, trying to identify bottlenecks in the process of continuous training and the provision of new models and application updates. The monitoring data is used to take automated decisions like e.g., retraining and is fed back to the product manager and the development team in a structured and preferably automated way.

[bookmark: _Toc451532678][bookmark: _Toc487531437][bookmark: _Toc527986740][bookmark: _Toc67666495][bookmark: _Toc67667102][bookmark: _Toc134717583]Annex A:
Title of annex

[bookmark: _Toc451532679][bookmark: _Toc487531438][bookmark: _Toc527986741][bookmark: _Toc67666496][bookmark: _Toc67667103][bookmark: _Toc134717584]Annex:
Bibliography
[1] [bookmark: _Ref98235851]Zhang, J. M., Harman, M., Ma, L. & Liu, Y. Machine Learning Testing: Survey, Landscapes and Horizons. arXiv:1906.10742 [cs, stat] (2019).
[2] Humbatova, N. et al. Taxonomy of real faults in deep learning systems. in Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering 1110–1121 (ACM, 2020). doi:10.1145/3377811.3380395.
[3] Poddey, A., Brade, T., Stellet, J. E. & Branz, W. On the validation of complex systems operating in open contexts. arXiv:1902.10517 [cs] (2019).
[4] [bookmark: _Ref134778575]M. Pol, T. Koomen, und A. Spillner, Management und Optimierung des Testprozesses: ein praktischer Leitfaden für erfolgreiches Testen von Software mit TPI und TMap, 2., Aktualisierte Aufl. Heidelberg: dpunkt-Verl, 2002.
[5] [bookmark: _Ref98235999]V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, und P. Tonella, „Testing machine learning based systems: a systematic mapping“, Empir Software Eng, Bd. 25, Nr. 6, S. 5193–5254, Nov. 2020, doi: 10.1007/s10664-020-09881-0.
[6] L. Myllyaho, M. Raatikainen, T. Männistö, T. Mikkonen, und J. K. Nurminen, „Systematic literature review of validation methods for AI systems“, Journal of Systems and Software, Bd. 181, S. 111050, Nov. 2021, doi: 10.1016/j.jss.2021.111050.
[7] [bookmark: _Ref134778512]Gal, Yarin. Uncertainty in Deep Learning, University of Camebridge, October 13th, 2016 
[8] M. Borg, „The AIQ Meta-Testbed: Pragmatically Bridging Academic AI Testing and Industrial Q Needs“, arXiv:2009.05260 [cs], Sep. 2020, Zugegriffen: Okt. 13, 2021. [Online]. Verfügbar unter: http://arxiv.org/abs/2009.05260
[9] Jörn Müller-Quade et al., Sichere KI-Systeme für die Medizin, https://www.plattform-lernende-systeme.de/files/Downloads/Publikationen/AG3_6_Whitepaper_07042020.pdf
[10] Paul Schwerdtner et.al., Risk Assessment for Machine Learning Models, arXiv:2011.04328v1
[11] Michael Felderer et. al., A taxonomy of risk-based testing, arXiv:1912.11519v1
[12] Vladimir Vapnik et.al, Measuring the vc-dimension of a learning machine, Neural computation 1994.
[13] Matthias Grochtmann, et. al., Classification Trees for Partition Testing, Software Testing, Verification & Reliability. 3, Nr. 2, 1993
[14] Ian J. Goodfellow et. al., Generative Adversarial Nets, arXiv:1406.2661v1
[15] [bookmark: _Ref134778538]Madry et.al. Adversarial Examples Are Not Bugs, They Are Features, arXiv:1905.02175v4
[16] Arniban Charkroboty et. al., Adversarial Attacks and Defences: A Survey Xiv:1810.00069v1
[17] [bookmark: _Ref90030608]Steidl, Monika, Ruth Breu, und Benedikt Hupfauf. 2020. „Challenges in Testing Big Data Systems: An Exploratory Survey“. In Software Quality: Quality Intelligence in Software and Systems Engineering, herausgegeben von Dietmar Winkler, Stefan Biffl, Daniel Mendez, und Johannes Bergsmann, 371:13–27. Lecture Notes in Business Information Processing. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-35510-4_2.
[18] [bookmark: _Ref90030619]Felderer, Michael, Barbara Russo, und Florian Auer. 2019. „On Testing Data-Intensive Software Systems“. arXiv:1903.09413 [cs], April. http://arxiv.org/abs/1903.09413.
[19] [bookmark: _Ref90032537]English, L.P. Improving Data Warehouse and Business Information Quality: Methods for Reducing Costs and Increasing Profits; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999.
[20] [bookmark: _Ref51599576]Wang, Richard Y., und Diane M. Strong. 1996. „Beyond Accuracy: What Data Quality Means to Data Consumers“. Journal of Management Information Systems 12 (4): 5–33. https://doi.org/10.1080/07421222.1996.11518099.
[21] [bookmark: _Ref98170844]Huang, Xiaowei, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min Wu, und Xinping Yi. 2020. „A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing, Adversarial Attack and Defence, and Interpretability“. arXiv:1812.08342 [cs], Mai. http://arxiv.org/abs/1812.08342.
[22] [bookmark: _Ref98170803]Kim, Jinhan, Robert Feldt, und Shin Yoo. 2018. „Guiding Deep Learning System Testing using Surprise Adequacy“. arXiv:1808.08444 [cs], August. http://arxiv.org/abs/1808.08444.
[23] [bookmark: _Ref98170553]Ma, Lei, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, u. a. 2018. „DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems“. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, 120–31. Montpellier France: ACM. https://doi.org/10.1145/3238147.3238202.
[24] [bookmark: _Ref98170541]Pei, Kexin, Yinzhi Cao, Junfeng Yang, und Suman Jana. 2017. „DeepXplore: Automated Whitebox Testing of Deep Learning Systems“. In Proceedings of the 26th Symposium on Operating Systems Principles, 1–18. Shanghai China: ACM. https://doi.org/10.1145/3132747.3132785.
[25] [bookmark: _Ref98170742]Sun, Youcheng, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, und Rob Ashmore. 2019. „Structural Test Coverage Criteria for Deep Neural Networks“. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), 320–21. Montreal, QC, Canada: IEEE. https://doi.org/10.1109/ICSE-Companion.2019.00134.
[26] [bookmark: _Ref98170778]Wicker, Matthew, Xiaowei Huang, und Marta Kwiatkowska. 2018. „Feature-Guided Black-Box Safety Testing of Deep Neural Networks“. arXiv:1710.07859 [cs], Februar. http://arxiv.org/abs/1710.07859.
[27] [bookmark: _Ref98170789]Cheng, Chih-Hong, Georg Nührenberg, Chung-Hao Huang, Harald Ruess, und Hirotoshi Yasuoka. 2018. „Towards Dependability Metrics for Neural Networks“. arXiv:1806.02338 [cs, stat], Juni. http://arxiv.org/abs/1806.02338.
[28] [bookmark: _Ref98170862]Dong, Yizhen, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao, Xinyu Wang, Li Wang, Jin Song Dong, und Dai Ting. 2019. „There is Limited Correlation between Coverage and Robustness for Deep Neural Networks“. arXiv:1911.05904 [cs, stat], November. http://arxiv.org/abs/1911.05904.
[29] Huang, X., Kwiatkowska, M., Wang, S., & Wu, M. (2017, July). Safety verification of deep neural networks. In International Conference on Computer Aided Verification (pp. 3-29). Springer, Cham. (e.g. Huang et al., 2017; Ehlers, 2017; Cheng et al., 2017; Tjeng et al., 2018)
[30] [bookmark: _Ref98235266]Ribeiro, Marco Tulio, Sameer Singh, und Carlos Guestrin. 2016. „‚Why Should I Trust You?‘: Explaining the Predictions of Any Classifier“. arXiv:1602.04938 [cs, stat], August. http://arxiv.org/abs/1602.04938.
[31] [bookmark: _Ref98235271]Bansal, Aayush, Ali Farhadi, und Devi Parikh. 2014. „Towards Transparent Systems: Semantic Characterization of Failure Modes“. In Computer Vision – ECCV 2014, herausgegeben von David Fleet, Tomas Pajdla, Bernt Schiele, und Tinne Tuytelaars, 8694:366–81. Lecture Notes in Computer Science. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-10599-4_24.
[32] [bookmark: _Ref98235280]Miller, Tim. 2018. „Explanation in Artificial Intelligence: Insights from the Social
[33] [bookmark: _Ref98422941]Chen, T. Y., S. C. Cheung, und S. M. Yiu. 2020. „Metamorphic Testing: A New Approach for Generating Next Test Cases“. https://doi.org/10.48550/ARXIV.2002.12543.
[34] [bookmark: _Ref62489259]Gerrard, P. and Thompson, N. (2002) Risk-based e-business testing, Artech House Publishers.
[35] [bookmark: _Ref62489261]Großmann, Jürgen; Felderer, Michael; Viehmann, Johannes; Schieferdecker, Ina: A taxonomy to assess and tailor risk-based testing in recent testing standards In: IEEE Software, Vol.37 (2020), No.1, pp.40-49
[36] [bookmark: _Ref128682619]Felderer, Michael; Großmann, Jürgen; Schieferdecker, Ina: Recent advances in classifying risk-based testing approaches In: Ruggeri, Fabrizio (Ed.): Analytic Methods in Systems and Software Testing. New York: Wiley-Blackwell, 2018, pp. 1-25
[37] [bookmark: _Ref62489344][bookmark: _Ref516130057]Felderer, M. and Ramler, R. (2016) Risk orientation in software testing processes of small and medium enterprises: an exploratory and comparative study. Software Quality Journal, 24 (3), 519–548.
[38] [bookmark: _Ref62489787]Erdogan, G; Li, Y.; Runde, R.; Seehusen, F.; Stølen, K.: Approaches for the combined use of risk analysis and testing: A systematic literature review. In International Journal on Software Tools for Technology Transfer, volume 16, pages 627-642, 2014
[39] [bookmark: _Ref135641617]ETSI EG 203 251: Methods for Testing & Specification; Risk-based Security Assessment and Testing Methodologies, 2016
[40] [bookmark: _Ref135646805]D. Xiao, M. Dianati, W. G. Geiger and R. Woodman, "Review of Graph-Based Hazardous Event Detection Methods for Autonomous Driving Systems," in IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 5, pp. 4697-4715, May 2023, doi: 10.1109/TITS.2023.3240104.
[41] [bookmark: _Ref135647348]Harald Foidl and Michael Felderer. 2019. Risk-based data validation in machine learning-based software systems. In Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE 2019). Association for Computing Machinery, New York, NY, USA, 13–18. https://doi.org/10.1145/3340482.3342743
[42] [bookmark: _Ref135667934]C. Gladisch, C. Heinzemann, M. Herrmann and M. Woehrle, "Leveraging combinatorial testing for safety-critical computer vision datasets," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 2020, pp. 1314-1321, doi: 10.1109/CVPRW50498.2020.00170.

[bookmark: _Toc451532680][bookmark: _Toc487531439][bookmark: _Toc527986742][bookmark: _Toc67666497][bookmark: _Toc67667104][bookmark: _Toc134717585]Annex:
Change History
	Date
	Version
	Information about changes

	<Month year>
	<#>
	<Changes made are listed in this cell>

	
	
	

	
	
	

	
	
	

[bookmark: _Toc451532681][bookmark: _Toc487531440][bookmark: _Toc527986743][bookmark: _Toc67666498][bookmark: _Toc67667105][bookmark: _Toc134717586]History
	Document history

	<Version>
	<Date>
	<Milestone>

	0.0.1
	2022-11-30
	Early draft

	0.0.2
	2023-03-06
	 Restructuring paragraphs 4 and 5

	
	
	

	
	
	

Latest changes made on 2022-03-14
ETSI
image2.jpg

image3.png

image4.png

image1.jpeg

