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In the present document “should”, “should not”, “may”, “need not”, “will”, “will not”, “can” and “cannot” are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
“must” and “must not” are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc451532666][bookmark: _Toc487531425][bookmark: _Toc527986728][bookmark: _Toc67666483][bookmark: _Toc67667090][bookmark: _Toc155695809]Executive summary
The document covers testing of AI-enabled systems for the purpose of haracterizeon and elaborates on test methodologies and methods for test specification.
It identifies requirements for testing and comes forward with proposals to tackle the technical aspects of certifying trustworthiness of AI in haracterizeon contexts. 
[bookmark: _Toc451532667][bookmark: _Toc487531426][bookmark: _Toc527986729][bookmark: _Toc67666484][bookmark: _Toc67667091][bookmark: _Toc155695810]Introduction
Machine Learning (ML) and especially the application of neural networks (NN) has been able to achieve amazing successes in recent years due to the availability of large amounts of data as well as the increase in computing capacity. These successes include applications from image recognition, which now achieve better results than humans in many areas, the almost human-like abilities of speech recognition and conversation, which were finally demonstrated convincingly by the NLP model GPT3, or the massive superiority of algorithmic decision systems in learning and playing strategic games such as Go, demonstrated by the Google subsidiary DeepMind. 
With the increasing success of ML and NNs, the need to integrate ML models and NNs into software systems that are developed to accomplish critical tasks and operate in critical environments is growing. At this point at the latest, the question arises as to how ML, NN as well as their integration into systems can be rigorously tested and quality assured. This document describes methods and approaches for testing ML-based applications. 
We intentionally focus on ML as the currently most widely spread method in the field of artificial intelligence (AI). Other methods, such as Symbolic AI, have their justification, but are not used to the same extent as is currently the case with ML. 
The document provides an introduction into the topic of testing ML-based systems. It presents principles and challenges for testing ML-based systems, quality attributes and test itemives as well as suitable test methods and their integration into the life cycle of typical ML-based applications for industry.
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The present document …
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Normative references are not applicable in the present document.
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[bookmark: _Toc451532925][bookmark: _Toc527986734][bookmark: _Toc67666489][bookmark: _Toc67667096][bookmark: _Toc155695815]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc451532926][bookmark: _Toc527986735][bookmark: _Toc67666490][bookmark: _Toc67667097][bookmark: _Toc155695816]3.1	Terms
For the purposes of the present document, the following terms apply:
Decision-making process –	 A process, that selects a course of action among several possible alternative options. A decision is based on assumptions of the target environment and a set of data that represent a concrete state of the target environment, and a goal to be achieved.
Deep Neural Network – 
ML-model –	Software artifact, that has been trained to fulfil a certain task or functionality.  During training it processes a set of inputs to learn expectations on its output. ML-models are used for different tasks. In general terms, they are used to support decision-making processes based on input data and a previously learned state. Typical tasks are regression, classification, clustering, dimensionality reduction and control tasks (Zhang et. al. 2019). They are statistic in nature, i.e., solutions based on them are based on statistical inference.	Comment by Hans-Werner Wiesbrock: They are statistic in nature, i.e., solutions based on them are based on statistical inference.	Comment by Großmann, Jürgen: Done.
Neural Network (NN) –Define an ML approach that uses a layered network of mathematically modelled neurons. If an NN has more than one internal layer (so called hidden layer), it is referred to as a Deep Neural Network (DNN).	Comment by Gerhard Runze: Question: Is there a need to define "neuron" as well - as long as we don't have normative references?
Test data sets are used after training to test the generalizability of the ML model. They are selected independently of the training data but should have the same probability distribution as the training data set. 
Training datasets are datasets with examples used for learning the patterns and relationships in the data and are used to train the weights of the ML model. 
Training infrastructure –	A software-based infrastructure that enables an efficient training process. It consists of software that supports data selection, data preparation and the compilation of suitable data sets. It also provides algorithms and software to realize different model architectures and operationalizes the training process so that different candidate models can be generated and compared. 	Comment by Gerhard Runze: I'm not experienced in the definition of the term "infrastructure"…
My association with this term contradicts with the described use. In my opinion an 'infrastructure' is less a particular applications (like "software that does something special"), but more general in its use (like "software that allows to store an operate on large amount of data and allows high data throughput...").	Comment by Großmann, Jürgen: Explain by a picture in the follow up text (see later comment)	Comment by Großmann, Jürgen: Done
Training process –	A process for building an ML model using a specific training infrastructure and a set of input data or scenarios. It consists of activities that select and prepare the training input in order to tune the model so that it is able to generalizes beyond the training inputs. 
Validation datasets are used to tune the hyperparameters of a model. In particular, they are used to prevent overfitting of the model to the training data.

[bookmark: _Toc451532674][bookmark: _Toc487531433][bookmark: _Toc527986736][bookmark: _Toc67666491][bookmark: _Toc67667098][bookmark: _Toc155695817]3.2	Symbols
For the purposes of the present document, the [following] symbols [given I... and the following] apply:

[bookmark: _Toc451532675][bookmark: _Toc487531434][bookmark: _Toc527986737][bookmark: _Toc67666492][bookmark: _Toc67667099][bookmark: _Toc155695818]3.3	Abbreviations
For the purposes of the present document, the [following] abbreviations [givIin ... and the following] apply:
DNN	Deep Neural Network
ML	Machine Learning
NN	Neural Network 
GPU	Graphics Processing Unit
MLOps	Machine Learning and Operations
DevOps	Development and Operations
SVM	Support Vector Machines
<ACRONYM1>	<Explanation>



[bookmark: _Toc101941458][bookmark: _Toc155695819]4	General conditions of testing ML-based systems 
[bookmark: _Toc155695820]4.1	Machine Learning
Machine Learning is used as generic term for a sub-field of artificial intelligence, whereby a software system is supposed to find solutions to problems on its own.  Based on the information made available to it, such a software system learns to subsequently apply what it has learned to new data. Examples of ML algorithms are neural networks, regression models, decision trees, Bayesian inference and kernel-based methods. 
Typically, a differentiation is made between supervised learning, unsupervised learning, and reinforcement learning. Typical areas of application for the latter are real-time decisions, navigation for robots, game playing, and all areas in which the independent acquisition of knowledge and skills is involved [19]. Supervised and unsupervised learning can in turn be divided into two sub-parts, each of which has its own characteristic applications. The two paradigms classification and regression can be assigned to supervised learning. Typical applications for classification are fraud identification, image recognition, customer behaviour analysis and diagnosis. Regression is more typically used for popularity prediction in advertising, weather forecasting, market prediction, lifetime estimation and population growth prediction. Unsupervised learning can again be divided into two sub-paradigms: dimensionality reduction and clustering. Typical applications for the former are big data visualization, compression, structural analysis, feature minimization. Characteristic of clustering are recommendation systems, targeted marketing, segmentation.

[image: ]
[bookmark: _Ref129879924]Figure 1 – Different areas in ML and their fields of application
While the functionality of classical software is the result of a design process that addresses the structural set-up of the software, an ML model is built differently. ML is conceptually related to the idea of optimization and to some extent, this has a major impact on testing and quality assurance. 
An ML model could be considered as a piece of software with certain structural characteristics. These characteristics, however, describe how parameters are related to each other or algorithms are applied. However, in comparison with classical software, the structural set up of an ML model has only little effect on the actual functionality of the model, probably however on other characteristics like the ability of the model to learn, its robustness, the comprehensibility of the decision-making and other sort of non-functional characteristics. 
If we look at NNs, for example, the structural design is quite simple compared to classical software. It consists of a certain arrangement of parameters and algorithms in a graph structure. Parameters and algorithms are arranged in such a way that they are able to approximate the function desired by the user as accurately as possible within the framework of an optimization process based on data.  In particular, it is the data, the architecture of the network, the hyperparameters and the way how the training is carried out that are critical to the success of the optimization process. This dependence on data and architecture and the lack of function specific software code has both a major impact on quality assurance in general and testing. 
The software code of an ML model is generic and can be considered quite simple. Thus, it usually does not show the same error probability that classical software has.
On the other hand, the parameter settings that result from the training process and their interaction during inference are extremely complex and usually not comprehensible to humans. They can be considered as a major origin of failures, but they are nearly impossible to test on a systematic basis. 
The result of an optimization process is to find the most optimal solution possible. For more complex problems, however, these solutions are not error-free. Stochastic deviations and errors are intrinsic properties of ML since it is based on statistical inference.	Comment by Hans-Werner Wiesbrock: as being based on statisitical inference	Comment by Großmann, Jürgen: Aspect integrated.
As a result, a much broader scope has to be set for testing and quality assurance. In addition to the typical white and black box procedure, data and the training process must become the subject of more intensive testing. 
[bookmark: _Toc155695821]4.2	ML-based systems and its integration
In the context of quality assurance and testing, we cannot consider ML models in isolation. ML-models are trained, integrated, and applied within a particular technical and often physical environment. Following this, we distinguish the technical environment of an ML model and the application environment. While we usually have influence on the technical environment, the application environment can only be controlled to a limited extent. An ML model in its technical environment can be considered as an ML-based system that has a specific architecture. This architecture implements a typical data processing pipeline. In addition to the ML model, such a system usually contains components for data acquisition and preprocessing as well as components for decision postprocessing and presentation. Since there is an extremely strong binding between the ML model and its environment, the model must especially be tested with the software that is used data acquisition and preprocessing as well as for decision postprocessing and presentation. Unlike classical software, the dependency between the model and its surrounding components is often more difficult to characterize than integration relevant characteristics of classical software. 
ML models are dependent on the input data and their pre-processing. The collection and pre-processing process is done by hard- and software components that thus has a major impact on the performance of the model.
ML models provide complex output that must be carefully interpreted to lead to a reliable prediction or decision. This is usually done by additional software components that post-process the inference result.
ML models might be safeguarded and monitored by dedicated software components to ensure a reliable performance over time. 
ML models are trained for a specific purpose, targeting a dedicated operational environment. Deviations between the environment (i.e., the data) used for training process and the operational environment might have crucial effects on the performance of the ML model in operation. Thus, especially the training process must be subject to quality assurance.
ML models and their properties are often so complex that they are usually not understood.	Comment by Großmann, Jürgen: Expanding towards organization aspects.	Comment by Großmann, Jürgen: Done: See last sentence. not sure if this covers the intent of the comment.
Finally, the development of high-quality models requires collaboration from different disciplines. The coordination effort and communication requirements are correspondingly high and must be sufficiently taken into account in the organization of quality assurance.
[bookmark: _Toc101941463][bookmark: _Toc155695822]4.3	Testing ML-based systems
Primarily, software testing is an activity that tries to find faults. This can improve the overall quality of the system and reduce the likelihood of undetected failures occurring. Testing, among other things, serves to build confidence in the functionality of a system. In addition to finding errors, this also includes systematic testing, which at least attempts to formulate arguments for the absence of bugs and faults under certain conditions. In analogy to software testing “Machine Learning Testing (ML testing) refers to any activity designed to reveal machine learning bugs.” (Zhang et al., 2019)
On the one hand, this definition shows that testing ML is about quite different and diverse approaches. Testing is not limited to dynamic testing of the model, but also includes testing of the data, hyperparameters and learning algorithms. For this purpose, various methods and approaches can be used, whether they are static like such as review and other forms of analysis, or dynamic in nature. In particular, data is usually not directly testable via a dynamic test and must be quality assured and tested using more suitable analysis procedures.
However, Zhang et al. limit their definition to testing machine learning and do not explicitly address testing ML-based systems. In contrast to that, we want to emphasize that testing ML is always also about testing the software surrounding the ML model. It is therefore not sufficient to ensure that an ML model works as intended as a single component, but always as part of an integrated system. 
Thus, “testing techniques should not solely expose misclassifications and prediction errors at the ML model level, but rather look at the side-effects of such inaccuracies at the overall system level. Individual misclassifications (or individual mis-predictions) are suboptimal definitions of failures if the whole MLS is considered, because they may have no consequences, or, on the contrary, may lead the overall system to deviate significantly from its requirements and result in a failure.” (Riccio et al., 2019)
In the course of this document, we will work out which test approaches, test itemives and principles can be usefully applied to the testing of ML-based systems. We will investigate which methods of software testing can be directly adopted for ML-based systems and which are difficult to transfer and what needs to be considered additionally. Among many other topics, we will address what role the stochastic nature of ML plays for testing, what and how can be considered a bug in this context, how to deal with specific technical shortcomings of current ML approaches, and which quality properties are relevant, how they propagate through an ML-based system and how they are addressed by different testing approaches. 
Testing ML-based systems is the process of planning, preparation, and measurement with the aim of determining the properties of ML-based systems and showing the difference between the actual and the aimed state. (Pol et. al. 2002).



[bookmark: _Toc155695823][bookmark: _Toc101941464]5	Challenges and specifics of testing ML-based systems
[bookmark: _Toc155695824]5.1	Open context and technology
ML-based systems are usually used for tasks that cannot be efficiently solved by classical programming. These include problems that are too huge or too complex to be completely specified. This applies, for example, to applications that perform object detection in an uncontrolled environment such as road traffic or the surveillance of a railway line. In this case, the Operational Design Domain (ODD) of such a software is considered as an open context problem. Open context problems are called ¥-complex and cannot be specified correctly in all details (Podey et. al, 2019). Any specification is subject to assumptions that lead to an incomplete or unreliable deduction of the purpose (i.e. what we may consider as useful service that is to accomplished by a system), context (i.e. the technical and societal environment of a system) and realization of a based system. In addition, state of the art specification processes lack adequate specification means to model this kind of uncertainty in a meaningful way.	Comment by Großmann, Jürgen: Needs to be explained.	Comment by Großmann, Jürgen: General aspects as well as relation to ML
This has serious consequences for testing. Given that we cannot fully determine the context of a system, nor, consequently, its purpose, we lack an objective basis for testing the system. Missing specification means to express uncertainty in knowledge during specification puts additional burden on required deductions like deriving test specifications and test implementations that refer to and respect uncertainties in the overall system specification.
Finally model representations of the problem (including the ML-model and thus the ML-based system) are necessarily incomplete, since they are gained by an optimization process that is based on a selected set of examples.
Without exactly knowing the purpose and context of a problem there is no way to specify completeness with respect to the representativeness of data that are used for training and testing, nor would it be possible to address possible corner cases in a systematic manner.
[bookmark: _Toc155695825]5.2	Stochastic solution approach and deep learning
ML is considered to be a stochastic solution that is often applied to problems, that are intrinsically non-stochastic problems. The recognition of objects, for example, is in principle a deterministic and not a stochastic problem. Stochasticity comes into play because, as already said above, the available knowledge about the purpose and the context of the solution is limited.  A stochastic and data-based approach is considered to overcome some of the problems that are associated with the given knowledge gap, but leads to new problems in testing and quality assurance, In particular, the evaluation and treatment of failures must take into account the statistical set-up of the solution approach. Among other things, this includes the fact that failures cannot simply be eliminated and must be accepted within statistical boundaries. 
It is assumed that the lack of explicit knowledge about the variety of objects to be recognized can be compensated for by the availability of a sufficient number of examples that implicitly allow this knowledge to be extracted from the examples in the course of a training process. However, this comes at cost. Since no one knows the original distribution of the problem space, examples can only be selected ba“ed on a "b”st guess" about the configuration of the problem space. Moreover, deviations and errors are intrinsic to a stochastic solution approach. Since ML is based on statistical inference, a single failure in a test run cannot be directly counted as an indication to a fault. Thus, it therefore always has to be assumed that a stochastic solution cannot be completely correct in the deterministic sense. There will always be a “natural” error rate that must be accepted. The aim of the optimization process is to reduce this error rate to an acceptable level. 	Comment by Hans-Werner Wiesbrock: As being statistical inference a singular failure in a test run cannot directly be read as a bug. 	Comment by Großmann, Jürgen: Done: Text revised.
In ordinary test processes, one has a set of test cases and after execution gets the subset of failed ones. To derive a statistical quantity from this, one might look at the relative frequency of failed runs, i.e. the number of failed divided by the number of all test cases.This measure could also be taken in the case of ML systems. But this is not correct, because one expects, due to the statistical nature of SW, that some of the tests will statistically fail. Instead of the relative frequency, one has to weight the individual test cases with their empirical probability, i.e. specify the probability of occurrence to each test case, not only for the failing. Then the total probability for the occurrence of all executed test cases must be calculated and also for the failings. Their quotient gives the correct quality measure for ML system one can derive by dynamical testing.Moreover, approximation methods are only partially reliable, and the generalization capability of any ML solution is limited and susceptible to distribution shifts. 
Last but not least, ML models are integrated to form ML-based systems that may consist of a complex interplay between ML-Models and classical software. Considering the tolerances, errors and uncertainties that underlie the processing of data in ML models, the combination of several ML models and their interconnection results in a degree of complexity that far exceeds the complexity of classical software.
ML models cannot be easily fixed or reoptimized at any point, i.e. models may have to be completely rebuilt if deviations occur. Improving the one side can disimprove the other without control.
[bookmark: _Toc155695826]5.3 	Robustness issue and missing transparency of neural networks
In contrast to other forms of ML (e.g., linear or logistic regression, the k-nearest neighbour algorithm, Bayesian classifiers, SVM) specifically deep neural networks lack transparency and stability. While interpretable models allow a human user to understand at least parts of the decision-making process, deep neural networks often show a better performance but in the same time the inference procedure lacks interpretability and statistical evaluability.  This means that for a human observer, even if he or she has access to the internals of the model, it is not comprehensible on the basis of which parameters and properties in the ML model a particular decision is made. 
Furthermore, especially neural networks lack reliable information on the quality of a decision. Although classification or regression models provide prediction probabilities at the end of the pipeline (e.g., by softmax output), these may unfortunately be often misinterpreted as model confidence. However, a model can be uncertain in its predictions even if its softmax output is high [7].  The provision of reliable statements on the uncertainty of a model decision, on the other hand, would make it possible to also design safety-critical applications more reliably. If reliable information on the decision uncertainty is provided in addition to the results, results with high uncertainty could be handled separately by higher-level systems or the user. Moreover, neural networks are not necessarily robust and are vulnerable to intentional and random perturbations. This has been shown in multiple examples through so called Adversarial Examples and the vulnerability of deep learning in the presence of noise. Overall, there seems to be a trade off between robustness and generalizability [15].	Comment by Großmann, Jürgen: add more information about different methods for prediction.	Comment by Hans-Werner Wiesbrock: There seems to be a trade off between generalizabilty and robustness

Adversarial Examples Are Not Bugs, They Are Features, Madry et.al. arXiv:1905.02175v4 	Comment by Großmann, Jürgen: Done.
[bookmark: _Toc155695827]5.4 	Need for fair decision making	Comment by Großmann, Jürgen: Needs update
ML and ML-based systems are increasingly being used to make decisions that can significantly impact people's lives and wellbeing, such as in lending, hiring, criminal justice, and healthcare. Ensuring fair decision making is essential to prevent discrimination, bias, and unfair treatment of individuals or groups based on sensitive attributes like race, gender, or socioeconomic status. Fairness promotes ethical and just decision-making.
Several metrics have been developed to measure and ensure fairness [48]. Statistical metrics like statistical parity, predictive parity, equal opportunity etc. focus on balancing outcomes across groups based on observed data. They are easy to compute but may not capture complex fairness issues. Similarity-based metrics emphasize on treating similar individuals similarly. This is requiring a clear definition of similarity by means of e.g. distinct distance metrics. Causal reasoning like counterfactual fairness and causal diagrams aims to understand and adjust for underlying causal relationships, offering a deeper insight into fairness but requires detailed causal knowledge.
Each of these approaches has its strengths and limitations. In practice, the choice of approach depends on the specific context, the available data and the respective fairness requirements. Often, a combination of different metrics can be used to comprehensively consider fairness in machine learning systems. However, the results of the individual fairness metrics often contradict each other, leading to complex trade-offs that need to be considered in practice. Due to the complex constraints in the definition of fairness and the size of the topic, we will not be able to cover the topic comprehensively even though we now, that fairness is critical for acceptance and compliance regarding existing EU regulations..
[bookmark: _Toc155695828]5.4	Fault and failure model for testing ML-based systems
In classical software testing, a distinction is made between the terms failure, fault and error. While the term failure describes the perceived manifestation of a fault, the term fault describes the internal state of the program that has led to the failure and the term error describes the human cause that led to the fault. The ISTQB distinguishes the terms as follows:
Fault (or defect): a flaw in a component or system that can cause the component or system to fail to perform its required function, e.g., an incorrect statement or data definition. A defect, if encountered during execution, may cause a failure of the component or system.
Failure: deviation of the component or system from its expected delivery, service, or result.
Error: a human action that produces an incorrect result. 
The existence of a failure shows that a system does not work as expected. However, not every fault in a software system shows up by a failure. Faults may have no effect because of the way the software is used, or their effect may be reduced by the shielding or corrective intervention of other software functions so that they do not become apparent. Moreover, failures are not only the result of software errors, but can also be caused by environmental conditions. 
Even if the above terms and concepts can be applied to ML, it remains fundamentally necessary to extend them in such a way that the specifics of ML are addressed more strongly. 
Zang et al. (Zhang et al. 19) extend the notion of defect to ML by defining that an ML bug (or ML defect) refers to any imperfection in a machine learning item that causes a discordance between the existing and the required conditions. Compared to the definition of a fault, which refers to flaws in components or systems, the definition of Zang et al. extends to so-called ML items, which, in addition to the components and systems, also allow other items from the ML process (eg. data) as carriers of a fault. 
The Same thing is addressed and extended by Borg et. al. by introducing the terms snug “nd dug. "Bug is not a suitable term to cover all functional insufficiencies, given its strong connotation to source code defects. Still, we need a new similarly succinct term in the context of MLware. We propose snag to refer to the difference between existing and required behaviours of MLware interwoven of data and source code. The root cause of a snag can be a bug either in the learning code or the infrastructure [36], but it is often related to inadequate training data – we call the latter phenomenon a dug.” (Borg 2020)
Finally, Humbatova et al. (Humbatova et al. 2019) created a taxonomy of ML-faults based on interviews with academics and practitioners in the area of ML. At the high-level, the taxonomy differentiates between ML faults in the various artifacts or work products that are developed during an ML lifecycle. Thus, a distinction is made between faults in the ML model, the API (e.g., to access the GPU or other computation related service routines), the data processing chain (e.g., tensors and input data), and in the different artifacts of the training process (data, hyperparameter).
Failures are usually identified as a deviation between the specification of a system and the actual behaviour of a system. As a prerequisite for such an approach, the specification of a system must be a reliable reference for the expected behaviour. Considering again the application of a system in an open context environment, the specification is not necessarily complete nor completely correct.  In the automotive industry, for example, ISO 21448 (SOTIF) is concerned with ensuring the safety of intended functionality (SOTIF) in the absence of a failure. ISO 21448 applies to systems and applications that require adequate situational awareness to be considered safe and the term “absence of failures” is meant to characterize a system to act insufficiently even if it does not get into a specified failure situation. In addition to the absence of failures, such a system is expected to recognize potentially unknown and unsafe conditions and reduce the associated risks by itself. If it is not able to do so, the functionality or behaviour is considered not sufficient for the aimed purpose.
Podey et al. (Podey et al. 2019) distinguish between the so-called 
aimed purpose of a system, which is implicitly expected and necessarily vague, and the 
intended purpose of a system, relating to explicitly expressed expectations that is for example given by a specification. 
Podey et al. use the term intended in the same manner than explicitly expressed and as applied in the context of ISO26262 & SOTIF in the terms intended functionality and intended behaviour. 
Finally, it must be asked whether a stochastic approach, as we find it in machine learning, is not by definition subject to deviations and failures. This can be traced back to two reasons. 
On the one hand side, ML is an optimization process that tries to approximate an aimed purpose by adapting a set of parameters to best fit with a given set of data. Separating the data in training, test and validation data sets helps detecting overfitting and allows to measure the generalization capabilities. However, the overall optimization process is a trade-off between different model characteristics and ensures that, on average, a model works as expected. This always implies that situations can be found in which a model decision does not represent an optimum or could even be considered as wrong. On the other hand side the mode of operation of a ML system is statistical reasoning, often according to Bayes. Uncertainties and deviations stem from the statistical nature of the inference process. It is precisely the latter that necessitates the use of statistical criteria to define deviations from expectations.
Thus, a single counterexample may not immediately be considered a violation of the intended purpose. Rather, the failure must be statistically proven as statistical relevant. Whether and which kind of statistical deviations need to be considered as individual failures or not is currently not defined sufficiently.
[bookmark: _Toc155695829]5.5	Verification vs. validation of ML-based systems
The purpose of software verification is to ensure that a software product, service, or system meets a set of design specifications while software validation aims to determine whether such a product, service, or system can accomplish its intended use, goals and objectives [i.1]. Software testing is the process of planning, preparation, and measurement with the aim of determining the properties of a software system and showing the difference between the actual and the required state [4]. In this context, validation testing is considered as an activity that aims to collect evidence that for an end product the stakeholder’s true needs and expectations are met while verification testing checks that all specified requirements at a particular stage of the development of a product are met. 
In ML, validation and test have a slightly different meaning. Validation and testing are dedicated activities in the training process of a model. They are often bound to dedicated data sets. Validation datasets are used to tune the hyperparameters of a model. In particular, they are used to prevent overfitting of the model to the training data. Test data sets are used after training to test the generalizability of the ML model. They are selected independently of the training data but should have the same probability distribution as the training data set. Validation and test data sets belong to the training process and thus are intrinsically bound to the training activities. This is to be distinguished in principle from the analytical activities of testing and quality assurance as normally carried out for software systems. Firstly, the analytical activities are much more far-reaching than just testing the basic performance criteria such as over fitting and generalization. They typically address all the quality attributes that are relevant for a stakeholder. Moreover, they span over a bigger portion of the system life cycle and address all activities that may give rise to quality. Secondly, software validation requires organizational independence in order to achieve trustworthy results. In fact, it is now common practice to have tests performed by somewhat independent departments or teams to prevent bias on the part of the developers.
[bookmark: _Toc155630262][bookmark: _Toc155695830]	Comment by Hans-Werner Wiesbrock: Possible approaches to verification in ML:
- Statistical Learning Using the Vapnik-Chervonenkis capacity, one can determine how large the training data set wanted to be in order to be able to achieve a certain goodness.
- Using Lipschitz criteria, the stability (robustness) of a network can be determined 
- SMT Solver Certified Control: An Architecture for Verifiable
Safety of Autonomous Vehicles, arXiv:2104.06178v1	Comment by Großmann, Jürgen: TODO: add reference to verification technologies.	Comment by Großmann, Jürgen: Will be done by HWW	Comment by Taras.Holoyad: Should that term include a subsection on Explainability?	Comment by Großmann, Jürgen: capabilities?	Comment by Großmann, Jürgen: Do we need to explain capabilities and abilities and functionality?	Comment by Großmann, Jürgen: What is the difference between use-case related performance measures and the realisability of tasks. Aren’t the performance measures not exactly the measures to measure the degree of task realization?
 	Comment by Großmann, Jürgen: do we need data-driven here?	Comment by Großmann, Jürgen: stakeholder requirements (e.g. user, customer, legislation …)
[bookmark: _Toc155695831]6         Quality attributes addressed by testing ML-based systems (Taras)
ML-based systems can be designed depending on the fulfilment of quality requirements by ML models during tests. The test results allow, for example, to understand the applicability of an ML model and to identify needs to improve the functional features, to ensure functional reliability through and to improve the ML system's results, e.g. in terms of accuracy. While the test characteristics at a high level of abstraction can be similar for ML models in general, the quality assessment of the processing of an ML model may depend on the ML method used to create the model if a high depth of testing is targeted. Different methods to build models characterise the methodological spectrum of machine learning, e.g. supervised, unsupervised, semi-supervised, reinforcement or adversarial learning. In the methodological spectrum each ML method has an own specificity, for instance, compared to purely rule-based methods and within the machine learning spectrum in general, supervised machine learning enables to build AI models on the basis of data. 
The international standard ISO/IEC 25059:2023 - Software engineering already provides a comprehensive overview of AI-related quality attributes. While the document ISO/IEC 25059 depicts an AI quality models in a generic way, this Clause enlightens quality attributes that are of particular importance for testing ML-based systems. This clause focuses on causes and indicators that negatively affect quality characteristics of ML models to provide guidance for test procedures with sufficient test depth. With regard to the following quality characteristics, causes of negative impacts on ml models, measures to understand the negative impacts and countermeasures to avoid the negative impacts are presented:
Model relevance;
Correctness;
Robustness; 
Avoidance of unwanted bias;
Information security;
Security from adversarial attacks;
Explainability.
[bookmark: _Toc155695832]6.1 Model relevance
Model relevance refers to the extent to which a machine learning (ML) model is applicable for a specific task and encompasses data, algorithms, application context, realisable capabilities, adaptability as well as accountability. Understanding the model relevance enables to assess the algorithm choice, the model' adaptability to different contexts, the deployability of the model under specific conditions and accountability of interested parties throughout the model's life cycle. 
[bookmark: _Toc155695833]6.1.1 Criteria for model relevance
In combination, the following points depict the relevance of  MLthe models:
General for ML models
ML methods: During inference via ML models in general, the choice of algorithms impacts the quality of meaningful pattern extraction from data. The relevance of an algorithm is determined by its suitability for the particular task as some algorithms excel in certain areas while underperforming in others what requires the choice of an appropriated ML method for a specific task.
ML capabilities which are realisable on the basis of an ML model are essential to understand which abilities and functionalities are realisable on the basis of ML methods embedded.
Intended use: refers to the specific purpose or application for which the model is inter alia designed and deployed.
Application context adaptability describes the context in which a model operates and plays a crucial role in determining its relevance. In general, in case of changing conditions like the environmental dynamism models must adapt to changing circumstances and remain applicable within specific contexts to retain their relevance. Moreover, the model's predictions should align with an applicant’s objectives to be relevant.
Accountability: The chain of responsible links should be clear so that there is unambiguity during the life cycle of an AI system, especially with regard to liability issues.
Supervised learning procedures 
· Training data: In supervised learning, model relevance heavily depends on the quality of training data. 
 
[bookmark: _Toc155695834]6.1.2 Assessing model relevance
The understanding of relationship between ML methods and capabilities enables to identify unambiguous quality requirements, ensuring conformity assessment, and defining deployment guidelines. Proceeding from clarity in the underlying technical basis, application context adaptability as well as accountability play a significant role in legislative as well as functional issues.
Implemented ML Methods
The methods of an ML model can be assessed according to its compliance with the intended use-related quality characteristics as well as the realisability of capabilities for the execution of specific tasks. Such assessment can include:
data-driven processing of data in case of learning;
correlations between sensitive entities in output; 
measures and metrics related to quality characteristics; 
measures and metrics related to specific capabilities and tasks; 
rule-based relationships (e.g., in case of hybrid AI).
Implemented basic capabilities 
The assessment of ML model's capabilities enables to understand the realisable abilities and functionalities based on the embedded ML methods for an intended use case. Such abilities and functionalities can encompass perception, processing action and communication.
While focusing on capabilities, a model can be assessed while providing diverse inputs to understand whether use case-related abilities and functionalities can be realized in terms of the intended use and demonstrate the fulfillment of specific quality requirements.
Executability of tasks
On the basis of methods used to build ML models and capabilities realisable on those basis, tasks can be executed to achieve a specific goal. When assessing the relevance of an ML model to achieve a specific goal through the execution of a task, the suitability, quality characteristics and limitations for the realisation of a specific task can be assumed on the basis of methods and capabilities. 
For example, executing the tasks “text summarisation” by an ML model involves the utilisation of specific ML methods alongside ML capabilities enabling the processing of knowledge. To execute the task, some supervised learning models can be used in distinct steps involving capabilities like the selection of text and keywords, recognition of context, patterns, and user intent, followed by classification, differentiation, and assessment of various elements. Contrary, specific supervised learning models can be used to execute the same task, but in a single step. 
While having the ability to describe the task execution by separate ML method and capability pairs, interested parties can gain insights into a model’s quality characteristics for each pair. Analysing separate ML methods and capability pairs in terms of a task execution enables the following aspects:
Comparison of ML models: the assessment of multiple execution steps by several models against a single-step approach of a completely different model to compare quality and performance characteristics;
Analysis of resource efficiency: understanding the specific methods and capabilities utilized for task execution allows for the identification of potential optimisations. Interested parties can assess whether the chosen ML methods and capabilities are the most efficient for the task, contributing efficient resource utilisation. Such analysis provides insights into the resource requirements associated with different methods and capabilities, enabling efficient resource allocation. The efficient resource allocation enables organisations to optimise computational power, memory, and other resources based on the specific demands of the task;
Assessment of adaptability to varied tasks: By examining how ML models execute tasks across different methods and capabilities, stakeholders can gauge the model's adaptability to a variety of tasks. This adaptability assessment informs decisions about the model's versatility and suitability for a broader range of applications.
Model assessment by capability analysis: understanding the adaptability of capabilities enables to understand the effectiveness behind changes/adaptions with regard to ML models;    
 
Identification of model limitations: The analysis sheds light on the limitations of the model in terms of specific tasks and the corresponding methods and capabilities. Identifying these limitations is crucial for managing expectations, refining model development strategies, and addressing potential challenges.
Annex A provides an exemplary overview of the tasks with the corresponding subgroups that can be performed by AI systems.
Application context adaptability 
Application context adaptability is fundamental for model relevance due to its role in ensuring that the ML model remains effective across diverse scenarios. In general, to assess the model’s adaptability to different application contexts, sensitive entities in input data can be varied to assess corresponding changes in the ML model’s output. By assessing the model's adaptability to different application contexts, where sensitive entities in input data are varied, parties involved gain insights into the following two dimensions: 
The assessment of an ML model’s adaptability allows an understanding of how well the model adjusts to different contexts in terms of the intended use. Models that can seamlessly adapt to varying circumstances align more closely with the specific needs and objectives of their intended applications, enhancing their overall relevance;
The application context adaptability enables an assessment of how well the model aligns with legislative requirements and standardization. Different application contexts often come with distinct regulatory frameworks and industry standards. Ensuring that the model can adapt while still adhering to these requirements is vital for maintaining compliance and relevance.
Accountability 
By clarifying the chain of responsibility and liability duties surrounding the model's commissioning and inference results, interested parties can ensure responsible use of AI systems. With a view to ML models, accountability assessments rely on various criteria, including unambiguous legislative requirements and standardisation documents. Additionally, clarity regarding the obligations of the parties involved, coupled with an understanding of the causal links between the causes and impacts of AI enables an understanding of liability issues as well responsibilities throughout the ML model’s lifecycle. Accountability assessments can be carried out on the basis of 
unambiguous legislative requirements;
standardisation documents;
clarity regarding the obligations of the parties involved and the causal links between the causes and impacts of AI.
[bookmark: _Toc155695835]6.2 Correctness, robustness, avoidance of unwanted bias, information security and security from adversarial attacks
The quality of ML models can be evaluated according to different measures, depending on which objectives are decisive in the description of quality. In the case of AI models, 
correctness is aimed at assessing the quality of predictions; 
robustness at the quality of stability;
avoidance unwanted bias at the assessment of imbalances;
information security at the protection of information; and 
security against adversarial attacks at the avoidance of adversarial influences. 
 
In the realm of machine learning model assessment, factors influencing correctness, robustness, unwanted bias, information security and security from adversarial attacks share a substantial degree of commonality, which is outlined in Clauses X to Y. 
[bookmark: _Toc155695836]6.2.1 Criteria for correctness
Connecting accuracy, precision, recall, and the F1 score is essential to provide a comprehensive and well-rounded assessment of correctness in the context of machine learning. These metrics enable the caracterisation of model performance, offering a holistic view of how well a model's predictions align with expected outcomes.
Accuracy depicts overall correctness by assessing the proportion of correct predictions in all predictions. It provides a high-level overview of a model's performance but may be misleading in cases of imbalanced datasets.
Precision depicts the correctness of positive predictions. It quantifies the proportion of true positive predictions among all positive predictions, emphasizing the minimization of false positives. Thereby, precision can be of decisive importance if false positives are costly.
Recall or sensitivity represents a model's ability to identify all actual positive instances by measuring the proportion of true positive predictions among all actual positives. High recall reduces the risk of missing important cases, making it vital in scenarios where false negatives are costly.
F1 Score combines precision and recall into a single metric, providing a balanced measure of correctness. It considers both false positives and false negatives, making it suitable for imbalanced datasets where a trade-off exists between precision and recall.
[bookmark: _Toc155695837]6.2.2 Criteria for robustness
Robustness represents the ability of a model to maintain its operational characteristics like performance and correctness when faced with variations of impact on sensitive entities, noise as well as intentional and randomly expected perturbations.
Model operation stability depicts a model’s resilience against variations in training data as well as during inference. In this context, a robust model maintains consistent operational characteristics, e.g. correctness, across variations. Additionally, implementing load balancing mechanisms distributes the computational load across multiple servers, preventing any individual server from becoming a bottleneck and ensuring consistent availability. Furthermore, building fault-tolerant ML models and systems enables them to continue functioning even in the presence of hardware failures, software errors, or other unexpected issues.
Generalisability depicts a model's ability to perform well on unseen or new data with no significant drop in operational characteristics.
Sensitivity to outliers and missing data depicts a model's susceptibility as well as resilience to outliers, noise as well as missing values while processing data. 
Hyperparameter robustness represents a model's consistency of operational characteristics in dependence of various hyperparameter settings. 
Robustness towards adversarial attack depicts a model's resilience against adversarial inputs or intentional manipulations, while resisting adversarial attacks.
Robustness in bias handling describes a model's susceptibility to biases in the data and its capability to mitigate biases in predictions while aiming for fairness and impartial predictions across different demographic groups.
[bookmark: _Toc155695838]6.2.3 Criteria for security from adversarial attacks
In machine learning, criteria of security from adversarial attacks ensure that models not only perform effectively but also withstand intentional manipulations, resist malicious behaviors like malicious enforcements to extract sensitive information, and remain stable across exploit attacks.
Adversarial robustness depicts a model's ability to resist and recover from adversarial attacks, including intentional manipulations of input data to mislead the model;
Resilience to inference attacks involves safeguarding against attempts to extract information about the training data by observing the model's outputs;
Robustness against exploit attacks ensures that models are resistant to attempts to inject malicious behaviors through specific trigger patterns or inputs;
Secure ML model configuration resilience involves maintaining the consistency of parameters to avoid any negative impact on the model characteristics during the AI system’s intended use. 
[bookmark: _Toc155695839]6.2.4 Criteria for avoidance of unwanted bias
Unwanted bias in the context of machine learning refers to the presence of unintended disparities, prejudices, or imbalances in the data as well as algorithmic model characteristics. Unwanted bias can lead to imbalanced outcomes, exacerbating inequalities of sensitive entities. Efforts to mitigate unwanted bias involve careful selection and preprocessing of training data, implementing algorithms, carrying out unbiased assessment and techniques designed to reduce or eliminate bias in model predictions. Key criteria to avoid unwanted bias include: 
High-quality training data (e.g., diverse, representative, consistent, correctly annotated): Unwanted bias is often introduced during the model training phase, where the algorithm learns patterns and relationships from historical data. If the training data contains biases, the model may learn and perpetuate those biases;
Equally represented sensitive entities: Bias can disproportionately affect underrepresented or marginalised entities. If certain sensitive entities are underrepresented in the training data, the model may exhibit poorer performance for those groups or produce biased predictions;
Ethical considerations: Biased models may contribute to unfair treatment or discrimination against sensitive entities, e.g. with regard to fairness;
Avoidance of inappropriate ML-based decisions: Without awareness, trusting biased models can enable biased decision-making in various applications, including hiring processes, loan approvals, criminal justice, and other areas where especially machine learning methods can be applied to classify, predict and forecast.
[bookmark: _Toc155695840]6.2.5 Criteria for information security
Leaning on ISO/IEC 27000:2022-series as well as ISO/IEC 15408-01:2022 “Common Criteria for Information Technology Security Evaluation”, the following criteria are significant to depict information security of ML models:
Data Privacy: sensitive data used to train and test machine learning models is handled and stored with strict privacy controls: 
Model Confidentiality: safeguard the model parameters and architecture to prevent information leakages to protect intellectual property and proprietary algorithms;
Integrity of data and model depicts unauthorised access to data and ML model;
Authentication and access controls: implementing strong authentication and access controls ensures that only authorized users or systems can interact with the ML model, reducing the risk of malicious actions that could impact availability;
Encryption: using encryption to protect data both in transit and at rest is essential. This ensures that even if unauthorized access occurs, the data remains unreadable without the appropriate decryption keys;
Secure deployment environment: Avoidance of negative environmental impacts by implementing firewalls and other network security measures;
Physical security: protecting physical access to information technology assets, such as servers, data centers, and network infrastructure, is crucial to prevent unauthorized tampering or theft.
[bookmark: _Toc155695841]6.2.6 Assessing robustness, correctness, unwanted bias, information security and security from adversarial attacks
The assessment of operational characteristics in ML models is based on shared causes that can have adverse effects on robustness, correctness, and security from adversarial attacks. Consequently, the assessment of security from adversarial attacks, robustness, avoidance of unwanted bias and correctness regarding ML models can be determined by common causes that negatively influence those quality characteristics. Within this framework, information security exceptionally stands out as the sole origin that does not fall under the umbrella of robustness, correctness and unwanted bias but is specifically addressed under the broader domain of security from adversarial attacks.
[bookmark: _Toc155695842]6.2.6.1 Causes negatively affecting ML models
The framework to assessing robustness, correctness, unwanted bias and security from adversarial attacks. encompasses common causes with the objective of negatively influencing characteristics of ML models, affecting:
behavioural stability to perturbations (robustness);
quality of predictions/classification (correctness);
unwanted contextual focus during knowledge processing (unwanted bias);
availability, integrity and confidentiality of model and data;
the model’s security, depicting the susceptibility to threats and vulnerabilities 
(security from adversarial attacks).
Annex B gives an overview of causes that negatively influence ML models, separated for supervised, unsupervised and reinforcement learning components of ML systems.
[bookmark: _Toc155695843]6.2.4.2 Metrics and measures for negative causes
In the context of ML model assessment, the development of a comprehensive set of metrics and measures is essential for understanding and mitigating negative effects on the unwanted bias, information security, robustness, correctness, and security from adversarial attacks of ML models. A proper understanding of causes enables to select appropriate metrics and measures to comprehensively assess and address potential negative impacts on robustness, correctness, and security vulnerabilities in ML models. 
Annex C gives an overview of metrics to detect causes that negatively influence ML models, separated for supervised, unsupervised and reinforcement learning components of ML systems.
[bookmark: _Toc155695844]6.2.4.3 Countermeasures to avoid negative causes
In the context of ML model assessment, the understanding of countermeasures is essential to avoid negative effects on the avoidance of unwanted bias, information security, robustness, correctness, and security from adversarial attacks of ML models. 
Annex D gives an overview of countermeasures to mitigate or prevent causes that negatively influence ML models, separated for supervised, unsupervised and reinforcement learning components of ML systems.
[bookmark: _Toc155695845]6.3 Explainability
Testing the explainability of machine learning (ML) models involves clarity and understandability regarding ML model‘s operations. After describing the criteria for explainability (consistency of information, human understandability, temporal adaptability of explanations and clarity about mechanisms behind an ML model) a questionnaire is presented to guide the assessment of an ML model with regard to explainability.
[bookmark: _Toc155695846]6.3.1 Criteria for explainability
[bookmark: _Toc155695847]6.3.1.1 Consistency of information, including information on: 
rationale of using the ML model
impact of ML model on 
interacting components;
overall system.
risk characteristics, for instance the damage potential on 
data; 
finance; 
behaviour (e.g., nudging, sludging, context manipulation);
physical and mental well-being. 
conformity assessment procedures; 
sensitive entities involved into the model’s building;
model relevance, e.g.,
application context;
bias;
intended use; 
implemented methods and realisable capabilities; 
AI system tasks to be realised; 
depiction of ML model’s processing;
adaptability;
quality and performance characteristics.
uncertainty quantification of sensitive entities in inference results; 
statistical distribution of sensitive entities in training data set; 
overall system around the integrated model;
constraints of model deployment during intended-use;
interaction with overall system components.

[bookmark: _Toc155695848]6.3.1.2 Clarity about mechanisms behind ml models:
Understanding the processes in machine learning (ML) around ML models is crucial for explaining their functional as well as non-functional characteristics and corresponding impacts. The following tables show exemplary how the conceptual rationale, the processing during model deployment and the model building process of ML models can be explained.
Supervised learning models
Within the landscape of supervised learning, where models are explicitly trained on labelled datasets, the significance of explainability takes on a decisive character, as labelled training data serves as a basis for the model, allowing it to discern patterns and relationships between input features and corresponding target labels. Understanding the journey from labelled data to model deployment becomes crucial for parties involved seeking to comprehend not only the predictive capabilities of the model but also the interpretability of its decisions.
	Supervised learning model: 
rationale, building & deployment
	Explanation 

	Conceptual Rationale:
	Model training: The model learns patterns and relationships between input features and target labels from the labelled training data.
Inference: The explicit supervision provided by labelled examples guides the model to make predictions on unseen data.

	Processing during deployment:
 
	Feature extraction: Identify relevant features from input data.
Model training: Utilize labeled examples to train the model, adjusting parameters to minimize the difference between predicted and actual labels.
Model evaluation: Improve the model’s performance using a validation dataset.
Prediction: Deploy the trained model to make predictions on new, unseen data.

	Model Building Procedure:
	Algorithm selection: Choose a supervised learning algorithm suitable for the task (e.g., decision trees, support vector machines, neural networks).
Data preprocessing: Handle missing values, scale features, and encode categorical variables if needed.
Model training: Use the selected algorithm to fit the model to the training data.
Hyperparameter tuning: Optimise model parameters for better performance.
Model evaluation: Assess model performance on validation data.
Model deployment: Deploy the trained model for making predictions on new data.
Training dataset: Labeled data consisting of input features and corresponding target labels.
Validation dataset: Model evaluation during training.


 
Unsupervised learning models
In the domain of unsupervised learning, the distinctive characteristic lies in the absence of labelled examples, challenging the model to autonomously identify inherent patterns, structures, or relationships within the input data. This autonomous pattern discovery forms the core of the conceptual rationale, model building procedure, and deployment process for unsupervised learning models.
	Unsupervised learning model: 
rationale, building & deployment
	Explanation

	Conceptual Rationale:
	Pattern discovery: The model identifies inherent patterns, structures, or relationships within the input data without guidance from labeled examples.
Clustering or dimensionality reduction: Grouping similar instances (clustering) or reducing the dimensionality of the data.

	Processing during deployment:
 
	Feature extraction: Identify relevant features from input data.

	Model Building Procedure:
	Algorithm selection: Choose an unsupervised learning algorithm based on the goals (e.g., k-means clustering, PCA, hierarchical clustering).
Data preprocessing: Standardise or normalise features.
Model training: Apply the selected algorithm to learn patterns from the unlabelled data.
Interpretation: Analyse and interpret the results to gain insights into the data structure.


 
Reinforcement learning models
In reinforcement learning, models are designed to learn through interaction with an environment, receiving feedback in the form of rewards or penalties. This distinctive learning paradigm focuses on sequential decision-making, where the model aims to make a series of decisions over time to maximize cumulative rewards. The conceptual rationale, model building procedure, and deployment process in reinforcement learning are intricately tied to these fundamental principles.
	 Reinforcement learning model: 
rationale, building & deployment
	Explanation

	Conceptual Rationale:
	Learning from interaction: The model learns by interacting with the environment, receiving feedback in the form of rewards or penalties.
Sequential decision-making: Focus on making a sequence of decisions over time to maximize cumulative rewards.

	Processing during deployment:
 
	State representation: Represent the current state of the environment.
Action selection: Choose actions based on the current state, informed by learned policies or value functions.
Reward feedback: Receive rewards or penalties based on actions taken.
Policy/Value update: Adjust the policy or value function based on received rewards to improve decision-making over time.

	Model building procedure:
	Algorithm selection: Choose a reinforcement learning algorithm (e.g., Q-learning, Deep Q Networks, policy gradient methods).
Environment sodeling: Define the states, actions, and rewards in the environment.
Policy or value function Initialization: Initialize the policy or value function.
Learning iterations: Interact with the environment, receive rewards, and update the policy or value function through iterative learning.
Fine-tuning: Fine-tune parameters to improve performance.
Policy deployment: Deploy the learned policy for decision-making in the environment


Human understandability: the ability to grasp the intricacies, implications, and context surrounding AI systems enables stakeholders to explain AI systems on the basis of clear information, effectively interpret outcomes, and navigate the complexities associated with AI systems. In this context, human understandability enables explaining and take decisions from explanations:
For explaining AI systems, human understanding complements clarity, transforming information from a mere foundation into actionable and meaningful knowledge;
Comprehensibility for the addressee is of crucial importance during the explanation, so that a clear understanding of the ML system can be achieved as part of the explanation process.
Temporal adaptability of explanations over time, to enable consistent explainability across different periods or versions of an ML method.
[bookmark: _Toc155695849]6.3.2 Assessing explainability
While the focus is on the explainability of ML systems, the description of the effects of the implemented ML model on the functionality of the AI system is the linchpin for obtaining information and thus enabling explainability. Assessing the model relevance according to Clause XX enables to clarify the underlying technical composition of an ML system and specify requirements to assess explainability criteria.
The following questionnaire has been designed to serve as a guideline for understanding and explaining machine learning (ML) models. This comprehensive set of questions aims to provide clarity and insights into the intricacies of ML models, aiding in the development of clear and accessible explanations. The questions are structured to cover various aspects, allowing stakeholders to evaluate and articulate critical components associated with the ML model's impact, risks, conformity with standards, sensitivity considerations, relevance, uncertainty quantification, statistical distribution, system architecture, deployment constraints, and adaptability. 
	Characteristic to be assessed
	Question

	1. The AI system’s impact
	

	- Impact on Interacting Components:
	How does the AI model's behaviour impact other components in the system, and is there a consistent and reliable flow of information between them?

	- Impact on Overall System:
	Can you articulate the broader impact of the AI model on the overall system's functionality and performance, ensuring coherence and synergy?

	2. Risk Characteristics:
	

	- Damage Potential on Data:
	What are the potential risks associated with the AI model's impact on data, and how is data integrity and security maintained?

	- Damage Potential on Finance:
	How are the financial risks associated with the AI model's predictions or decisions communicated, and what are the potential economic implications?

	- Damage Potential on Behaviour:
	Are there any risks related to behavioural aspects, such as nudging, sludging, or context manipulation, and how are ethical considerations and user well-being addressed?

	- Damage Potential on Physical and Mental Well-being:
	How are potential risks to the physical and mental well-being of users addressed, considering any adverse effects the model's outputs may have?

	3. Conformity Assessment Procedures:
	Can you outline the procedures followed to assess conformity with established standards and regulations, and how does the AI system demonstrate compliance with legal and ethical frameworks?

	4. Sensitive Entities Involved in Model Building:
	Is there transparency about the involvement of sensitive entities in the model's training data, and how are potential biases addressed?

	5. Model Relevance:
	

	- Application Context:
	How is the AI model relevant to the specific application context, and does it align with the intended purpose and domain?

	- Intended Use:
	Can you clearly state the intended use of the model, specifying the scenarios and tasks for which it is designed?

	- Implemented Methods and Capabilities:
	How are the implemented methods and capabilities within the AI system communicated, providing a clear understanding of its functionalities?

	- Tasks to be Realized:
	What tasks is the AI system intended to accomplish, and how are its capabilities communicated to stakeholders?

	- Quality and Performance Characteristics:
	Can you highlight the quality and performance characteristics of the AI system, enabling users to gauge its reliability and effectiveness?

	6. Uncertainty Quantification of Sensitive Entities in Inference Results:
	How is the uncertainty associated with sensitive entities in the model's inference results quantified, and does it provide users with a nuanced understanding of predictions?

	7. Statistical Distribution of Sensitive Entities in Training Data Set:
	Is the statistical distribution of sensitive entities within the training dataset disclosed, and how are potential biases addressed?

	8. Overall System around the Integrated Model:
	How is the broader system architecture around the integrated model explained, and do stakeholders have a clear understanding of the ecosystem in which the AI system operates?

	9. Constraints of Model Deployment during Intended Use:
	Can you articulate any constraints or limitations on deploying the model during its intended use, and how are expectations managed to guide appropriate usage?

	10. Interaction with Overall System Components:
	How does the AI model interact with other components in the overall system, and is there a clear understanding of how it integrates and interoperates?

	11. ML system‘s adapatability
	Which characteristics of the ML system change over time?


 



[bookmark: _Toc155695850][bookmark: _Toc146715230][bookmark: _Toc139270294][bookmark: _Toc146549526][bookmark: _Toc101941471][bookmark: _Toc101941476]7	Workflow integration, test methods and definition of test items	Comment by Großmann, Jürgen: Old or new? The structure above seems more elaborated.
	Comment by Großmann, Jürgen: ML-method mainly determines the location where a risk is occurring in the ML-process	Comment by Großmann, Jürgen: This section is more about the ability to generalize and bias and does not really address robustness. We may start with the ML method part and then come to the training data. This might help understanding since  our main focus is the robustness of the model.	Comment by Großmann, Jürgen: You may start with a sentence explaining how robustness is understood in supervised learning and then report on potential causes.	Comment by Großmann, Jürgen: Are these factors influential in robustness or the assessment of robustness?
	Comment by Hans-Werner Wiesbrock: that is generalizability. robustness refers to perubations (adverarial attacks, metamorphic transformations...) and the robsutness against them	Comment by Großmann, Jürgen: What about data poisoning?	Comment by Großmann, Jürgen: This is more about countermeasures than about security vulnerabilities.	Comment by Großmann, Jürgen: Discuss general structure of contributions to Section 6. Do we distinguish between unsupervised, supervised and reinforcement in general and for all the QA? 	Comment by Großmann, Jürgen: Mover definition or requirement on fairness to section 5 and leave here the more technical related definitions.	Comment by Großmann, Jürgen: We should explain fairness and its technical background. We may just explain something like unwanted bias here, since fairness is something non-technical and highly related to societal values.	Comment by Großmann, Jürgen: In ISO 25059 Fairness is an aspect of societal and ethical risk as new QC of the quality in use criteria.
In industry, there are a lot of established workflows that describe activities for software development and machine learning. In the context of software development, workflows range from the classic waterfall model to agile variants and DevOps. In the area of machine learning and data science, workflows have been established that focus on data preparation and training. For example (Akkiraju 2017) describe a reinterpretation of the Software Capability Maturity Model (CMM) for the machine learning model development process. (Akkiraju 2017) describe a reinterpretation of the Software Capability Maturity Model (CMM) for the machine learning model development process. (Amershi et al. 2019) summarizes the experiences of several Microsoft software development teams into a nine-step workflow for integrating machine learning into application and platform development. Based on CRISP-ML, Studer et al. (Studer et al. 2020) propose CRISP-ML (Q), a process model for the development of machine learning applications extended by quality assurance activities. It defines tasks that span the entire life cycle of an ML application. For each task, a quality assurance methodology is presented that is based on practical experience as well as scientific literature and provides a solid foundation for holistic quality assurance. Combining workflows and ideas from software engineering and machine learning can provide a solid foundation for developing AI-based applications.
[bookmark: _Toc155695851]7.1		A workflow perspective for developing and operating ML-based systems
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[bookmark: _Ref138940469]Figure 2 – Development and training workflow to develop, train and deploy ML-based systems or applications
In the context of identifying and locating important quality assurance activities, this document introduces a workflow model that encompasses both the perspective of classical software engineering and the data science activities of machine learning. When defining the workflow model, design activities for the overall system and individual components were not mapped. Instead, software development activities that are required for the provision of highly automated training infrastructures are considered. Figure 2 shows the abstract definition of the workflow including classical software development activities, as well as typical data science activities like data preparation, training, and validation. The workflow is based on the activities known from the established workflow models for traditional software development and data science mentioned above. It describes the main activities and artifacts from both domains and as such describes the development, integration and operation of an ML-based application as an integrated software product consisting of ML models and traditional software. 
On the high-level the workflow distinguishes four different phases that are differentiated and detailed in Figure 2 and explained below. Each of these phases are defined by a set of activities that are roughly assigned to the field of data science (blue), software development (grey), and integration (orange).
1. Business understanding and inception aims to derive a basic understanding of the overall objectives and requirements of the ML-based system. For this purpose, it is necessary to understand the business and technical context of the system and to obtain a basic understanding of the data available for modelling. 	Comment by Makedonski, Philip: Align in Figure above (& -> and)	Comment by Großmann, Jürgen: Done
2. Experimentation and training pipeline development aims to evaluate the data and modelling approach and to build a modelling infrastructure. In this phase, PoC systems are developed and evaluated for their basic applicability. Depending on the modelling approach, the training and data preparation pipeline is developed and integrated.   
3. Training aims to create new models based on the modelling approach and with the help of the training pipeline. Depending on the degree of automation available, activities for data preparation, training including the tuning of hyperparameters, validation and quality assurance of the model are executed more or less automatically.
4. System development and integration aims to integrate the ML model into a software environment. The complexity of the integration depends on the application context and ranges from the simple provision of a user interface to complex integration with other models, sensor systems and complex control software, such as in automated driving.
5. Operation and monitoring is finally the phase in which the integrated ML-based system is being executed and monitored in its operating environment. Depending on the application context, various operating environments are possible, ranging from a simple cloud deployment to a distributed edge deployment.
Most of the phases end with a dedicated integration activity (depicted in orange), integrating the key work products and as such defines the main artifact that is propagated or deployed to the next phases (green arrow).
[bookmark: _Toc155695852]7.2		Overview on test methods for testing ML-based systems
The work products of a given workflow phase and their systematic integration are usually the subject of systematic testing. Testing is considered here as the process of evaluating a software system or component to determine deviations between expected and actual behaviour. The main objectives of testing are to detect bugs, verify functionality, and ensure that the software meets the specified requirements. 
Testing is usually performed during the development phase or as a special quality assurance measure prior to deployment (Phase 1 – 4 in Figure 2), but can also be performed during operation (Phase 5 in Figure 2). The latter becomes necessary especially for systems with strong dynamics or for systems with a high dependency on the environment. Basically, a distinction can be made between dynamic and static testing methods. 
1. In dynamic testing, the system is executed. Specific inputs or test cases are applied as inputs to the running system and the observed results are compared with the expected results. 
2. In static testing, the system is not executed or artifacts that cannot be executed are examined. These include specifications, architectures as well as data. Static testing can be done automatically with the help of dedicated analysis tools or manually through review.
3. Monitoring is a testing method that does continuous observation and measurement of a software system during its runtime. It involves the collection and analysis of real-time data about the system's performance, behavior, and various operational metrics. Monitoring helps identify potential problems, bottlenecks, or anomalies that may affect the availability, performance, safety, security of the system. It provides insights into system health, usage patterns, resource utilization, and other relevant aspects. 
In summary, review, analysis, dynamic testing and monitoring are all considered as useful testing methods to test ML-based systems. Static and dynamic testing often focuses on assessing the correctness, functionality, and compliance of software systems before deployment, while monitoring concentrates on real-time observation, measurement, and analysis of the system's performance during runtime. All these activities are considered crucial for maintaining software quality, reliability, and overall system health for classical software systems as well as for ML-based systems.
[bookmark: _Toc155695853]7.3	Considerations in defining adequate test items for testing ML-based systems 
The term test item describes the item to be tested by a particular test method. In the case of dynamic testing, this is normally referred to as System Under Test (SUT), which somehow highlights the dynamic nature of the test item. However, analogous to the ISTQB, we use the concept of a test item in the following, which includes any work product in the life cycle of an ML-based system, in order to clarify that we deal with both static and dynamic test procedures.	Comment by Gerhard Runze: "test item" is a potential deviation to ISTQB.
According to ISTQB a test object is the "The work product to be tested" - I would associate this with the SUT. The test item however is "A part of a test object used in the test process".
Although our primary test item, as the name of this report suggests, is the ML-based system, we obtain several other test items that can be tested individually or partially integrated considering the development of an ML-based System as well as its systematic integration from individual components. 
Due to the high importance of the data and/or the training process, the literature explicitly distinguishes between test items of the training phase, which are crucial for the quality and properties of an ML model, and the development and runtime artifacts, which are relevant for the composition and integration of an ML-based system based on individual components. Zhang et al., 2019 for example distinguishes on a high-level between testing data, testing the learning program (i.e., the training infrastructure) and testing the ML-framework (i.e., the libraries and building blocks that are used to define models). 	Comment by Gerhard Runze: I'm still not sure if there is an explicit need to distinguish between "infrastructure" and "ML Framework".	Comment by Gerhard Runze: Potential reference to ISTQB CT-AI Syllabus:
"ML Framework - A tool or library that supports the creation of an ML model"
“Thus, when conducting ML testing, developers may need to try to find bugs in every component including the data, the learning program, and the framework.“ (Zhang et al., 2019). 
In Section 8 we, the different test items are systematically derived along the workflow defined in Figure 2. As already mentioned before, test items are normally the work products of  a given workflow activity or phase. At this place we will start with a more general overview on considerable relevant test items.
Test items are:
1. Specifications, requirements and planning documents: Before a system can be meaningfully constructed or optimized, it is necessary to determine what the system is to accomplish, how it is to be structured, and how the necessary processes are to be planned. Testing these specifications, requirements and planning documents is mainly done by reviews and has to consider the different view points and terminologies in software engineering and data science.
2. Data: Unlike in traditional software development, data and its provision as datasets for training, testing and validation are one of the most important artifacts in machine learning. Testing of the data can be realized via different methods. These include reviews, static and statistical analysis, directed data testing by operationalizing the data through test and analysis models.    This involves testing the data structure, its markup and metadata, as well as its meaning.
3. Development, modeling and training infrastructure: Especially with regard to the automation of particularly complex processes such as data preparation and the tuning of relevant hyperparameters, as well as training, automation and tool support are usually relied on. Nowadays, we speak of pipelines when there is a tool chain that automates more complex processes. Since these infrastructures have a high impact on the quality of an application or a product and usually have to be rebuilt and tuned for new products and applications, the testing of these infrastructures is a necessary requirement. 
4. Models: Models are the main result of the training phase. The testing of models ensures that a model meets the requirements placed on it. Requirements are usually formulated by KPIs along various quality dimensions. Testing of a model is usually done dynamically by feeding a variety of test data into the model and comparing the actual results with the current results. Errors are usually quantified and qualified using statistical measures. 	Comment by Großmann, Jürgen: Proposal to introduce Acceptance Criteria or DOD	Comment by Hans-Werner Wiesbrock: After an analysis of the problem area and the data... a rough concept is to be designed: Should one use a convnet, a transformer or gated recurrent nets (LSTM..)  or must one  use a reinforcement model ...
This is not a matter of hyper parameter but basic architecture and done before any training and testing. It should be part of phase 2.	Comment by Großmann, Jürgen: Done. Please have a look at the phase 2 description below. 	Comment by Makedonski, Philip: Align in Figure above (& -> and)	Comment by Großmann, Jürgen: Done	Comment by Makedonski, Philip: Does it really have to be in production?	Comment by Großmann, Jürgen: Done
5. The ML-based system: Finally, the resulting software system must be tested across its integration stages. This includes the individual software components, their partial integration, and the integrated system in the various execution environments. In view of the fact that this is an ML-based system, ML components such as the model or the integration of the model with its pre- and post-processing components (prediction pipeline) are mentioned separately. For testing, a variety of test methods are used, i.e. dynamic testing, static analysis, reviews as well as various monitoring activities at runtime.


[bookmark: _Toc155695854]8	Detailed test item identification and definition of test activities within the workflow perspective 
Test activities range from testing the individual test items and their integration to larger items in the integration phases. Near all phases of the workflow depicted in Figure 2 end with a dedicated integration phase having work products associated that are subject to dedicated testing activities. However, also intermediate work product are of interest for testing. Figure 3 shows the development and training workflow specified in Figure 2 extended by dedicated testing and monitoring activities. 
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[bookmark: _Ref138956004]Figure 3 – Development and training workflow extended by testing and monitoring activites
Testing activates are denoted in green and monitoring activities are denoted in light blue.  Please note, that also typical data science activities like Data Validation, Model Evaluation, and Model Validation include dedicated testing activities. These activities will be discussed in relation to the general testing activities denoted in green, since there are sometimes the same and show a larger amount of overlap in approaches, methods and results. 
The rest of the text identifies the key work products and acceptance criteria for each phase of the workflow. Each work product can then be considered as an independent test item to which suitable test methods and objectives are assigned. Finally, each combination of test item, acceptance criteria and test method can then be assigned to the testing acivities in Figure 3.
[bookmark: _Toc155695855]8.1	Test items of the business understanding and inception phase
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Figure 4 - Testing activities in the phase of business understanding and inceoption.
The Business understanding and inception phase aims for deriving and integrating the major KPIs and requirements of the application, service or system. Major work products are the business related KPIs, the technical KPIs and the overall requirements and quality criteria. The activity Planning and Requirements address general requirements management and planning activities while the activity KPIs and Requirements Integration addresses in particular the harmonization of KPIs and requirements with regard to completeness consistency, absence of contradictions and other cross-cutting concerns. Considering the iterative character of ML, KPIs and requirements need to be adapted in the following phases. 
KPIs and Requirements Review is considered a testing activity that checks individual KPIs and requirements for correctness, realizability, completeness, etc. and sets of KPIs and requirements completeness, consistency and absence of contradictions and other cross-cutting concerns.
Table 1 provides an overview on the major work products of the business understanding and inception phase, the related acceptance criteria and items.
[bookmark: _Ref134435254]Table 1 Work products, acceptance criteria and test types for the business understanding and inception phase.
	Work product/test item
	Acceptance criteria
	Test method/test objective

	Business KPIs
	· Business KPI are correct, complete, consistent, unambiguous, measurable, traceable, feasible and validated.
	· Review of business KPIs	Comment by Großmann, Jürgen: Discuss where to provide details for the individual test objectives/test types

	Training KPIs and acceptance criteria for training
	· Training KPIs and acceptance criteria for training are correct, complete, consistent, unambiguous, measurable, traceable, feasible and validated.
	· Review of training KPIs	Comment by Makedonski, Philip: training KPIs?

	Requirements and quality criteria
	· Requirements and quality criteria are atomic, correct, complete, consistent, unambiguous, verifiable, traceable and validated.
	· Review of data quality criteria 




[bookmark: _Toc155695856]8.2	Test items of experimentation and training pipeline development phase
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Figure 4 - Test activities in the phase of experimentation and training pipeline development.
The experimentation and training pipeline development phase consists of extensive activities in the area of Data Analysis and Model Analysis. The purpose of these activities is to identify suitable modelling approaches and data preparation procedures that can be used to meet the KPIs and requirements derived from the first phase for the given data set. In the course of the activities, a suitable model architecture including layers and model code will be realized and the necessary software components for data preparation and training will be implemented and integrated into a functional pipeline. Major work products of this phase include the adequate data format for training data, samples of the training data, feature definitions and feature selection criteria, the model architecture and code as well as all algorithms, libraries and components required for the training. 
Data Structure Testing and Feature Testing: Data structure testing is a test activity in which syntactic properties of data and data sets are checked. These include the correctness and properties of data formats and data types, the metadata and its availability, and annotation formats for labels and other data annotations. Feature testing includes testing of feature relevance, compliance, ranges as well as tests for the general availability and costs for certain features.
ML-Framework Testing: ML-Framework Testing is considered an activity that tests the functionality, reliability and scalability of the training environment. This includes testing of libraries that provides training algorithms like loss functions and optimizers as well as the code that allows to compose models out of predefined building blocks.
Model Structure and Unit Testing: Includes the test of the synthesized model structures and model code. This includes the code of the individual layers including their functions, the integration of the layers and the data flows and data type compatibilities between the layers as well as the integration of the model into the ML framework.
Training Pipeline Testing: This testing activity includes testing of all components that are part of the training process. This includes testing the relevant components for data gathering, data preparation, and feature generation/extraction, testing the the ML-Framework and the model structure and code as mentioned above, and testing the monitoring and validation components, that are meant to safeguard the training process in the training phase. Testing covers all integration stages, starting with unit/component testing, through integration of individual components, to testing of the entire pipeline. 
Experiment Monitoring: Experiment monitoring is used to capture information gained during data and model analysis to ensure systematic decision making and traceability in the transition of POC models and infrastructures towards an efficient production environment.
Table 2 provides an overview on the major work products of the experimentation and training pipeline development phase, the related acceptance criteria and testing types.
[bookmark: _Ref134436986]Table 2 Work products, acceptance criteria and test types of the experimentation and training pipeline development phase
	Work product/test item
	Acceptance criteria
	Test type/test objective

	Training data format and samples.
	· Quality criteria for data quality are completely defined.
· Training data are suitable for purpose (training and inference)
· Training data are available. 
· Training data are processable
	· Review of data quality criteria 
· Testing initial samples of training data for major data quality attributes
· Review of data sources and their availability
· Testing training data formats and meta data

	Features and feature selection criteria
	· Features are identified.
· Features are sufficient to allow for reliable inference.
· Features are available in training and inference data
	· Redundancy?
· Ranking? / Usefulness?

	Label structure and label adequacy

	· Labels are identified.
· Label structure and format is adequate?
	· Review label structure and format
· Testing label completeness
· Testing label adequacy

	Model architecture, layers and algorithms
	· The basic model architecture, layers and algorithms are defined and evaluated with the data that are available for training and inference
	· Review of architecture and layer interfaces.

	Training algorithms (Loss Function, Optimizer), libraries and interfaces

	· Algorithm used for training are working correctly.
· Test the libraries and interfaces used for training and model set up are compatible with each other and the machine learning model being developed
	· Review of algorithms
· Code review 
· Functional testing of algorithms and libraries 
· Compatibility reviews and tests of training and library interfaces

	Model Code
	· Model code is sufficiently tested with respect to training and inference capabilities and layer integration.
	· Code review of model code
· Layer and submodel testing (unit testing)
· Functional testing of model software behavior during training and inference
· Metamorphic / Differential?	Comment by Großmann, Jürgen: Not clear if this belongs here or in the next row.



	Hyperparameters
	· Major hyperparameters are defined and tuned for the given data and model architecture
	· Cross Validation to test the performance of the model on different subsets of the data and with different hyperparameters.

	Basic model performance
	· ML-Model performance is sufficient as a candidate model for exhaustive training.
· ML-Model is robust and generalizes well.
· The ML-model is free of unwanted bias
	· Model performance testing and evaluation
· Model robustness testing
· Model bias testing

	Training pipeline components
	· Functionality of the pipeline components
· Integration of the pipeline components
· Software-hardware embedding of the training pipeline
	· Unit/component testing of pipeline components (classical software testing).
· Integration testing of pipeline components (classical software testing).
· System testing of the training pipeline (classical software testing).
· Testing of Software-hardware embedding (e.g. GPU integration) of the pipeline.
· Test the API of the pipeline to ensure that it is easy to use and integrates well with other systems.


[bookmark: _Toc155695857]8.3	Test items of the training phase
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Figure 6 - Test activities in the phase of model training
The training phase is responsible for training ML models for production based on the modelling approaches and data preparation activities identified in the experimentation phase. If possible, this is done in an automated way and with the help of a predefined training pipeline. In the pipeline, all necessary activities from data validation and extraction, data preparation, model training, model evaluation, and model validation are performed. The dinal result is the delivery of an ML model that best meets the requirements and KPIs from phase 1. 
Data Testing: Data testing is an activity to detect errors in the data, the composition of the data sets, and the distributions of properties, features, or other characteristics in the data. Data testing can be very diverse and includes tests with different data compositions, statistical and structural analysis of the data, and monitoring of predefined KPIs for different quality characteristics of data.
Model Testing: Model Testing is the activity to identify deviations of the actual model performance from the expected model performance as well as to identify systematic errors in the model. This includes activities like measuring the accuracy and robustness by train/test split, cross validation, and other methods. Often there is an overlap in methods and approaches with the model evaluation and model validation phases. However, the latter are meant to select the best models and architectures from a given set of models, while model testing tries to check of the acceptance criteria for a given model is met.
Training Monitoring: Is the activity to collect data during data preparation and training. These data are used to track dependencies (traceability) between data, hyperparameter settings and the resulting models. Moreover, these data can be used to continuously track quality related data and thus serves as a data source for localizing errors and track the state of certain quality attributes (e.g. number of training data failures an deviations etc.)   
Table 3 provides an overview on the major work products of the training phase, the related acceptance criteria and testing types and test objectives.
Table 1 Work products, acceptance criteria and test types of the training phase
	Work product/test item
	Acceptance criteria
	Test type/test objective

	Training data
	· Data and data sets are correct, 
· Data distribution and data splits are defined correctly.
· Data are free of unwanted bias
	· Test data format and type correctness
· Test data correctness and consistency
· Test data sets for missing data, duplicates, outliers, inconsistencies
· Test data set distribution and data skewness (e.g., any kind of imbalance regarding features and labels)
· Test for correlated features
· Test data for unwanted bias

	Hyperparameters

	· Hyperparameters are fine-tuned
	· Cross Validation to test the performance of the model on different subsets of the data and with different hyperparameters (e.g., different learning rates, batch sizes, regularizations, etc.).

	ML-Model

	· ML-Model performance is sufficient for production.
· ML-Model is robust and generalizes well.
· The ML-model is free of unwanted bias
	· Model performance testing and evaluation (i.e., evaluating various performance measures such as accuracy, precision, recall, F1-score, AUC-ROC, mean average precision, or any other relevant metrics specific to the problem domain)
· Model robustness testing
· Bias and Fairness Assessment

	Evaluation concepts and criteria

	· The evaluation concept and criteria are sufficient to ensure an adequate selection and evaluation of the candidate models.
	· Review of evaluation concept and criteria


[bookmark: _Toc155695858]8.4	Test items of the system development and integration
[image: ]
Figure 7 - Test activities in the phase of system development and integration.
In the system development and integration phase, the ML model is successively integrated into the software environment required for operation in production. As the first integration stage, we consider the integration of the model with software components that have a direct impact on the quality and performance of the model inference. This includes the integration of the model with the data sources for the inference (databases, user interfaces, sensors, etc), the data preprocessing components for the inference, and components that plausibilize or contextualize the result of the inference. We call the result of this integration the prediction pipeline. The model is then integrated with other system components until a complete system is available. The testing and quality assurance activities in this phase largely follow the established best practices of classical software testing. 
Prediction Pipeline Testing (Unit & Integration): The prediction pipeline consists of the ML model, the software components that acquire, process, and feed data to the model, and the software components that directly interpret the model's prediction results. It can be assumed that especially the components of the prediction pipeline have a high degree of dependencies to each other. The test of these components takes place according to the strategies of the classical software testing by test of the individual components and the test of the integration as complete pipeline.

Integration Testing & System Testing: This activity aims to test all system components and its integration. Dependent on the definition of the system this varies from testing the prediction pipeline as mentioned above to arbirtrary integrations of the prediction pipeline as part of a complex ML-based system (e.g. an automated car or train). Integration and system testing is carried out based on a given integration strategy based on best practices and approaches well known in software engineering.
Table 4 provides an overview on the major work products of the system development and integration phase, the related acceptance criteria and testing types and test objectives.
Table 1 Work products, acceptance criteria and test types of the system development and integration phase
	Work product/test item
	Acceptance criteria
	Test type/test objective

	Prediction pipeline
	· ML model is correctly integrated in the prediction pipeline.
· The prediction pipeline is correctly integrated with additional components e.g. safety mechanisms (safety cage, redundant models, plausibility checker etc.)
	· Integration test (i.e., classical software testing)

	ML-based system or component 
	· Prediction pipeline is integrated with the rest of the ML-based system.
· Software-hardware embedding of the prediction pipeline and the ML-based system (model and data pre-processing or result preparation, GPU integration)

	· Integration test (i.e., classical software testing)
· System test (i.e., classical software testing)
· Performance test for inference

	Acceptance testing
	· The ML-based system complies with stakeholder requirements
	· Performance and stakeholder requirements testing
· Testing the compliance with given rules and regulations



[bookmark: _Toc155695859]8.5	The test items of the operation and monitoring phase
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Figure 8 - Test activities in the phase of operation and monitoring.
For the operation and monitoring phase, the model is executed in its operating environment. Testing and monitoring activities must ensure that the model functions safely in the application context and is not outdated. Depending on the assessed risk of the ML-based system during runtime, it is necessary to implement the execution of online testing (monitoring) of the system in operation. These tests go hand in hand with dedicated security and monitoring components that are supposed to identify corner cases and potential distribution shifts. As part of the system testing also the effectiveness of the online testing (monitoring) measures shall be verified.
Acceptance Testing: Acceptance testing for ML-based systems refers to the process of evaluating a trained machine learning model's performance when integrated within its software environment. Acceptance testing aims for determining whether an ML-based application meets the desired criteria and requirements established by stakeholders.
Data Monitoring: By monitoring the incoming data, it is possible to identify anomalies in the data stream, shifts in the data distribution and to detect concept drift. This allows to initiate special treatment of outliers and other anomalies and to re-evaluate assumptions on the data, update the model if needed, or trigger alerts for manual intervention. 
Prediction Monitoring: Prediction monitoring enables you to track the performance of the model over time, detect any degradation in its predictive capabilities, and identify when it may need retraining or recalibration. By monitoring the technical model’s performance, it can be ensured that the ML-based application remains effective and allows to initiate timely adjustments if necessary. 
Business Monitoring: Business monitoring aims to assess how well the ML-based applications are aligned with the business objectives and compliance rules. By monitoring business based key performance indicators (KPIs), it is possible to track the model’s performance in context of the associated business or application environment and allows to evaluate evaluating the economic impact and value generated by the ML-based applications. Moreover, it allows for proactive risk management, ensuring compliance with legal and ethical standards and maintaining trust among stakeholders and customers.
Table 5 provides an overview on the major work products relevant in the operations phase, the related acceptance criteria and testing types and test objectives.
Table 1 Work products, acceptance criteria and test types of the operation and monitoring phase
	Work product/test item
	Acceptance criteria
	Test type/test objective

	ML-based system or component
	End user accepts the model in production
	· User Acceptance testing (e.g. A/B testing, 

	ML-model
	Model is free from drift
	· Monitor data drift between the training and testing sets to ensure that the model is still accurate and reliable over time.
· Monitor inference skew and bias



[bookmark: _Toc101941477][bookmark: _Toc155695860]9	Detailed test methods for testing ML-based systems (Uni Göttingen)	Comment by Großmann, Jürgen: Align with 29119 and ISTQB AI-Testing Syllabus	Comment by Makedonski, Philip: Does it make sense to associate the methods also to the test items and/or quality attributes from the previous two clauses? E.g. suitability for specific items/attributes?	Comment by Makedonski, Philip: The ISTQB Syllabus only partially addresses that, generally focusing more on the association to the testing challenges
In this section, each test method is described according to the following structure:	Comment by Makedonski, Philip: Add separate overview section (required by template)
General definition of the test method
How the test method works
The type of issues the test method addresses (i.e., functional or non-functional issues) 
[bookmark: _Toc101941478][bookmark: _Toc155695861]9.1	Requirements-based testing (Gerhard)	Comment by Makedonski, Philip: All sections to be updated according to template
The standard norm for testing is the fulfilled proof of all requirements in a requirement specification. ML-based systems, however, usually operate in open context, see chapter 2.2. An even approximately complete list of requirements will not exist. Therefore, explicit requirements are usually insufficient as a basis for testing. Nevertheless, a detailed analysis of the requirements specification should be the starting point for testing. Because in it the delimitation of the ML-based system is to be found, what it should do and where it is not responsible, and above all, in which environment it is to be used. Very helpful, if available, are detailed use cases [9], which narratively describe requirements and the possible interactions of the system with their intended environment.
Based on the requirements in the specifications, test cases must be systematically derived that can provide evidence of their fulfilment. The guiding question here is what can go wrong and will the identified, possible errors be completely covered up by tests.
Since ML-based systems usually infer probabilistically, an error cannot be proven by one counterexample, e.g. one wrong face recognition. Rather, it has to be checked during testing whether statistically the number of false results is significant. Only then is there a case of misbehaviour. This means, in particular, that in the case of ML-based systems, a single proof of an erroneous inference is not sufficient. If necessary, many similar tests must be defined and performed for a requirement so that a statistical evaluation of their results is possible.
[bookmark: _Toc101941481][bookmark: _Toc155695862]9.2	Risk-based testing (FhG)
General definition: Testing of safety-critical, security-critical or mission-critical software faces the problem of determining those tests that cover the essential properties of the software and have the ability to unveil those software failures that harm the critical functionality of the software. Even for "normal", less critical software, testing is usually done with severely limited resources and tight timelines, which means that testing efforts must be focused. This also involves more detailed testing of the functionality of a software, which are associated with a higher business risk. Both decision problems can adequately be addressed by risk-based testing which consider risks of the software product as the guiding factor to steer all phases of a test process, i.e., test planning, design, implementation, execution, and evaluation [33],[34], [35]. 
How it works: Risk-based testing is a pragmatic and often intuitively used approach [36] to focus test activities on those scenarios that trigger the most critical situations of a software system. It has become quite popular, and several approaches were developed in different context and application domain. See Erdogan et al. [37] for a comprehensive survey of risk-based testing approaches and [39] for with a systematic compilation of different approaches to risk-based testing in the context of IT security. In general, a number of different approaches exist for risk-based testing, with different emphases. A rough distinction can be made between risk-based test selection and risk-based test evaluation. Risk-based test selection addresses the problem that only a limited number of test cases can be realized or executed and that these test cases cover the use cases, functions or components to which the greatest risk is associated. A risk-based test evaluation, on the other hand, addresses the problem that the errors found during testing must be evaluated and, if necessary, a release can be made even with existing errors if these do not affect the critical functionality. The prerequisite for both approaches is a risk analysis. This can be formalized to varying degrees and ranges from an intuitive risk assessment by the tester to formalized and formal procedures with which an attempt can be made to describe risks qualitatively and quantitatively.	Comment by Großmann, Jürgen: Rethink the wording to be more concise
Types of issues addressed: Machine learning systems are systems that often operate in open environments, where it is fundamentally difficult to completely specify and delimit the often very extensive application environment. Strategies for risk-based test selection help to identify areas of the application environment that needs more extensive testing than others. Various factors influence the estimation of ML technology-related risks. Among others this includes risk exposure in the environment, severity of the hazard and statistical behavior of the ML-based component. Furthermore, machine learning is a stochastic approach with the consequence that the occurrence of errors usually cannot be completely avoided, and errors cannot be easily fixed. Therefore, ML-based systems enforce a paradigm shift that no longer focuses solely on the avoidance of individual software errors but consider functional deficiencies and their relation to mission and business criticality. Thus, methods for risk-based test evaluation are 	Comment by Hans-Werner Wiesbrock: in the original paper [10] a risk indicator tensor is defined depending on the family of pertubations considered. An analysis of all potential pertubations and their extent is therefore necessary here!	Comment by Großmann, Jürgen: Done. Hope the revised text does cover all the open issues.
	Comment by Hans-Werner Wiesbrock: meets my remark :-)	Comment by Hans-Werner Wiesbrock: ??? incomplete sentence
Currently, there are only a limited number of risk-based testing approaches that specifically address machine learning. Some of the approaches are motivated by safety-critical applications in the field of mobility. Especially in the area of autonomous driving, there are a number of methods that deal with the identification and quantification of hazardous scenarios using various methods [40]. However, even though ISO 21448 recommends the combination of risk assessment and testing no systematic approach is yet described. In [41] Foidl and Felderer propose a risk-based data validation approach that tries to identify the risk of poor data quality for each feature used in training ML-based software systems. The risk of low data quality is calculated considering the importance of the feature for the overall system performance and the probability that feature is badly represented by the data. The latter is determined by assessing the data source quality, the data pipeline quality, and the occurrence of specific context-independent anomalies in the data.  Schwerdner et. Al. [10] propose a risk-based approach to evaluate compare models for their robustness in a standardized way. The basis for the evaluation are so-called key risk indicators, which describe for concrete scenarios the probability of the occurrence of noise or corruptions as well as the errors resulting from these disturbances. The approach allows to compare models considering the errors weighted in terms of probability of occurrence and effect considering the special properties of the deployment environment.

[bookmark: _Toc101941484][bookmark: _Toc155695863]9.3	Search-based testing (Großmann)	Comment by Großmann, Jürgen: Tailor towards testing and not towards optimization of model properties.
General definition: Search-Based Testing (SBT) is the application of optimizing search techniques to solve software testing problems. capabilities. Among others SBT is used to generate test data, prioritize test cases, minimize test suites, optimize test oracles, increase test coverage, and validate real-time properties of software. The search algorithms can be guided by different criteria, such as code coverage, requirements coverage, or fault-detection. In general this may include random search, to randomly generates test inputs and evaluates their effectiveness in revealing faults, genetic algorithms that  generate a population of test cases, evaluate their fitness (based on a defined objective function), and use selection, crossover, and mutation operations to evolve the population over multiple generations, particle swarm optimization, where swarm of particles moving through the input space and the swarm collectively explores the space to find promising solutions. The effectiveness of search-based testing depends on factors such as the quality of the search algorithm, the representation of test inputs, and the defined objective functions. It is often used in combination with other testing techniques to complement and enhance the overall test coverage and fault detection capabilities.
How it works: The key idea of SBT in ML is to leverage search algorithms to explore and navigate the various spaces associated with machine learning models, parameters, data, and configurations to identify potential model performance issues, robustness issues, and efficiency issues. SBT can be applied as long a continuous optimization function could be found. It supports activities like data preparation, feature selection and extraction, model evaluation, adversarial testing and in reinforcement learning.	Comment by Großmann, Jürgen: Cleary separate testing from model construction related 
activities.
Types of issues addressed: Since both training an ML model and search-based testing are optimisation processes, SBT can be used in various ways for testing and validating ML models or other artefacts in the ML lifecycle. For example, search-based algorithms are suitable for generating diverse and comprehensive input data sets for testing ML models.  This applies to the generation of synthetic test data, data augmentation for testing and exploration of the test data space to ensure better coverage of input variations. The goal can be to uncover potential decision boundaries or identify parts of the ML system, such as certain features or dataset characteristics, that are most responsible for poor performance. [14]. This is crucial to assess how well the model performs in different scenarios, including selected borderline cases. In addition, SBT can be used to efficiently search for such negative examples [15] to identify weaknesses and improve the robustness of the model. In load and performance testing, searching for test cases that push the ML model to its limits, such as processing very large inputs or inputs with extreme values, can be used to evaluate its performance under stress or to determine how a model performs under different amounts of data and speeds. Finally, SBT techniques can also be applied to reinforcement learning settings e.g., to optimize the agent's behavior or policy. 
[bookmark: _Toc101941485][bookmark: _Toc155695864]9.4	Combinatorial testing (Jürgen)
General definition:  The principle behind combinatorial testing is based on the observation that many defects or failures in software systems are caused by interactions between different input parameters rather than by individual parameters in isolation. By testing a range of parameter combinations, i.e., combinations that each include two, three, or some other number of parameters, the technique can effectively detect a large portion of the errors arising from interaction effects. The choice of the appropriate value of for parameter combinations depends on factors such as the complexity of the system, the number of input parameters, and the available resources. Pairwise testing (2-wise) is often used as a starting point, as it provides a good balance between coverage and efficiency. It covers interactions between pairs of parameters, which tend to be the most critical in terms of defect detection. However, higher values of "n" can be chosen when there are specific concerns about interactions involving more than two parameters.
How it works: To generate test cases for n-wise testing, various algorithms and tools are available that employ combinatorial design theory or optimization techniques. These tools generate a minimized set of test cases that cover all possible combinations of n parameters with minimum redundancy, ensuring comprehensive coverage while minimizing the testing effort. However, the application of combinatorial testing in ML is even for small input spaces challenging since the number and possible valuations of the individual input parameters are too large. 

However, there is a number of potential application scenarios when the input space is subdivided by a systematic classification approach that reflects for example typical situations, risk areas, possible sources of noise and other influences at first, and different aspects thereof in a concise refinement, leading to model or ontology that covers an abstract representation of the input space by covering various viewpoints. Based on such a model, combinatorial testing provides a means to get a systematic test coverage following an equal distribution over the different aspects represented by the model. Providing a weighted model that, besides the manifestation of the object and features of the domain, also specifies the frequency of their occurrence, the associated risk, etc., combinatorial testing could even provide a good estimation of the required distribution of the training and test data.
Types of issues addressed: Combinatorial testing could be used to select and generate test and training data for model testing. In [42] Gladisch et al show how combinatorial testing can be used to generate test, training and validation sets based on a domain model. In particular, this approach is considered useful for systematic generation of synthetic data. However, the relative frequency of failed vs. passed runs is not an appropriate quality measure. It must be weighted by the (Radon-Nikodym) derivative relating the uniform distribution behind the combinatorics and the empirical one.	Comment by Makedonski, Philip: Remove specific part
	Comment by Hans-Werner Wiesbrock: One has to take care in deriving quality criteria from combinatorical testing, see remarks in chap. 52. The relative frequency of failed vs. passed runs is not an approriate quality measure. It must be weightened by the (Radon-Nikodym) derivative relating the uniform distribution behind the combinatorics and the empirical one!
[bookmark: _Toc101941486][bookmark: _Toc155695865]9.5	Metamorphic testing (UNI Göttingen)
General definition: Metamorphic Testing (MT) is a property-based software testing approach which offers the possibility of alleviating the oracle problem and thus can be used to test non-testable systems. The general idea of MT is to apply a set of predefined Metamorphic Relations (transformations or metamorphisms) to a source test case in order to generate follow up test cases which are tested against the system. If the output of the follow-up test cases violates the defined metamorphic relation, then the system can be considered as defective. 	Comment by Makedonski, Philip: Move to the start of the section. Remove specific part, e.g. reduce to “Definition”	Comment by Großmann, Jürgen: Is this a know term for systems where the oracle problem appllies. May be underspecified systems?	Comment by dapaah: to the best of my knowledge, it is a known term in the literature.
How it works:	Comment by Makedonski, Philip: Remove specific part.
Definition of Metamorphic Relations: In MT, the first step is to identify Metamorphic Relations (MR) that define how the input and output of the system should change in response to a specific transformation. For example, if the ML model is trained to recognize handwritten digits, an MR could be that flipping the image horizontally or vertically should not change the predicted digit.
Generation of Test Cases: the next step is to apply the defined MRs to the original input data in order to generate new test cases (transformed version of the original input data)
Comparison of Outputs: In this step, we compare the output of the original input data and the transformed versions. If the output of the system is consistent for all versions of the transformed input data, then the system passes the test. However, if the output of the system is found to be inconsistent for any of the transformed versions of the input data, then the test fails, indicating that the system has a bug or a number of problems. For example, if an ML model train to recognize handwritten digits is unable to classify correctly a flipped handwritten digit, then this is an indication of a potential problem [2].
Types of issues addressed: 	Comment by Makedonski, Philip: Remove specific part	Comment by Großmann, Jürgen: Types of issues addressed: Should refer directly to typical issues in testing ML	Comment by Hans-Werner Wiesbrock: The risk tensor [10] is a good way for pushing this to operational domain.	Comment by dapaah: could you please elaborate further on this?	Comment by Hans-Werner Wiesbrock: Metamorphic transformations also allow for a more sophisticated consideration of risk.
Given a family of pertubations Pert(t) with parameter t, e.g. weak/strong rain or blurring of images, rotation, noise...
Depending on the noise, an AI system e.g. an image recognition SW, will weaken in its functionality.
These data can be summarized in a tensor, see [10],rsik tensor, which contains the concrete image in one index and the parameter of the pertubation in another.
Depending on the intended ODD of the system and the associated potential pertubations (Per(t)) expected with some probability therein, 
the quality of the system can be assessed in a more differentiated way.
Metamorphic testing is primarily a useful technique for addressing functional issues. However, it may also be useful for the detection of non-functional issues such as reliability and performance-related issues.
It is worth noting that a passed MT does not necessarily guarantee the correctness of the system. For instance,   a metamorphic relation applied to a mislabeled image will pass a Metamorphic Test without exposing the mislabeling.	Comment by Makedonski, Philip: Revise example
[1] M. D. Davis and E. J. Weyuker, “Pseudo-oracles for non-testable programs,” Proceedings of the ACM ’81 conference on  - ACM 81, 1981. doi:10.1145/800175.809889
[2] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes, “A survey on metamorphic testing,” IEEE Transactions on Software Engineering, vol. 42, no. 9, pp. 805–824, 2016. doi:10.1109/tse.2016.2532875
	Comment by Makedonski, Philip: Use proper citation style, e.g. IEEE (everywhere). Integrate with main list of references once finalised.
[bookmark: _Toc155695866]9.6	Differential testing (Universität Göttingen)
General definition:
Differential Testing also known as “Back-to-Back Testing” is a testing technique used in software development that involves comparing the output of two versions of a program that ought to produce the same results. The purpose of Differential Testing is to detect differences or discrepancies between the two versions of the program, which can be indicative of bugs or unusual behaviour [1].	Comment by Makedonski, Philip: …also known as “Back-to-Back Testing” 
How it works:
In the context of machine learning, Differential Testing involves comparing the output of multiple implementations of the same learning algorithm which have also been trained on the same training data[2].  If there is a difference between the results, then presumably one or both implementations have a bug. For instance, if a Graph Neural Network (GNN) model with the same network and weights behaves differently when running on two different GNN implementations (such as PyTorch and TensorFlow), it is likely that one of the implementations is incorrect, even if the expected output is unknown. 	Comment by Makedonski, Philip: Need to make clear that we mean running already available models on different platforms (potentially with necessary conversion), rather than constructing/training models that use the same algorithm but implemented on different platforms (non-determinism)	Comment by Makedonski, Philip: Need to make sure that there are no reused components which may exhibit the same faults.
A drawback of Differential Testing is its resource inefficiency due to the multiple system runs, and its susceptibility to errors as the same errors may occur in various implementations of the system under test [3].
Types of issues addressed:
Differential Testing may be used to address both functional and non-functional issues. Functional issues may include cases where one implementation of the model produces incorrect predictions compared to the other implementation, while non-functional issues may include cases where one implementation of the model takes longer to produce results or uses more resources than the other (i.e., this may be difficult to compare across platforms, scaling may need to be applied).	Comment by Makedonski, Philip: This may be difficult to compare across platforms, scaling may need to be applied.
In conclusion, Differential Testing is an important technique in machine learning testing that can help detect bugs and unexpected behaviour in an ML model by using one implementation of the ML model as a pseudo-oracle for the other.
[1] W. M. McKeeman, “Differential Testing for Software,” Digit. Tech. J., pp. 100–107, 1998.
[2] C. Murphy, G. E. Kaiser, and M. Arias, “An Approach to Software Testing of Machine Learning Applications,” International Conference on Software Engineering and Knowledge Engineering, 2007.
[3] D. Marijan and A. Gotlieb, “Software testing for Machine Learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 09, pp. 13576–13582, 2020. doi:10.1609/aaai.v34i09.7084

[bookmark: _Toc155695867]9.7	Adversarial Attacks (Universität Göttingen)
General definition:
Adversarial Attacks refer to the subtle modification of original inputs to a trained machine learning model to cause it to make incorrect predictions or decisions. These attacks are typically carried out by adding small, carefully crafted perturbations to input data that are almost imperceptible to human observers but can significantly affect the output of the model. Adversarial Attacks are a growing concern in the field of machine learning, as they can potentially compromise the security and reliability of machine learning systems.
How it works:
In the context of image classification, Adversarial Attacks work by discovering a slight modification that when applied to an original image, leads the model to inaccurately classify it, while still being correctly classified by the human eye [1]. For instance, for a given input image x, the objective is to find the smallest possible modification η such that the resulting altered image (i.e., adversarial example) x’ = x + η is misclassified. Adversarial attacks can be categorized as either targeted or untargeted. In a targeted attack, the adversary aims for the modified image x’ to be classified as a specific class t, whereas in an untargeted attack, the adversary’s objective is for the modified image x’ to be classified as any class other than its correct class [2]. To mitigate this risk, Adversarial testing otherwise known as adversarial training is performed by incorporating identified adversarial examples and the corresponding ground truth labels into the training data in order to ensure that the model is trained to correctly identify them [3].
Types of issues addressed:
Adversarial Attacks can address both functional and non-functional issues in machine learning models. Functionally, these attacks can expose weaknesses in a model's decision-making process, revealing its vulnerabilities to malicious inputs. Non-functionally, Adversarial Attacks can also help to evaluate the robustness and reliability of machine learning models, as well as to identify potential areas for improvement in their design and implementation.
[1] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting Adversarial Samples from Artifacts,” ArXiv, 2017.
[2] J. Lin, L. L. Njilla, and K. Xiong, “Secure machine learning against adversarial samples at Test Time,” EURASIP Journal on Information Security, vol. 2022, no. 1, 2022. doi:10.1186/s13635-021-00125-2
[3] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing Adversarial Examples,” CoRR, 2014.

[bookmark: _Toc101941491][bookmark: _Toc155695868]9.8	Reviews	Comment by Großmann, Jürgen: Discuss in Mainz which of them methods are to be included.
General definition:
Reviews, as a software quality assurance method, involve a systematic examination and assessment of software artifacts or deliverables by a group of individuals with relevant expertise. The goal of reviews is to identify defects, improve the quality of the software, and ensure compliance with standards, guidelines, and requirements. 
How it works:
Selection of Reviewers: In machine learning development, reviewers are typically individuals with expertise in machine learning, data science, and domain-specific knowledge relevant to the project. Reviewers may include data scientists, machine learning engineers, domain experts, and ethicists who can assess the model from various angles.	Comment by Großmann, Jürgen: Is of different style than all the others. We may adapt it to a less procedural description.
Preparation: Before the review begins, the necessary materials for review should be prepared. This includes the machine learning model, training data, evaluation metrics, hyperparameters, and documentation outlining the model's architecture and data preprocessing steps.
Review Meeting or Process: Reviews can be conducted through various means, including collaborative meetings or asynchronous online reviews. During the review, participants thoroughly evaluate the machine learning model and related artifacts. Reviewers assess various aspects, including model accuracy, fairness, robustness, transparency, and compliance with ethical and legal standards.
Documentation and Feedback: Reviewers document their findings, observations, and concerns regarding the machine learning model. They provide feedback on issues such as bias and fairness, model explainability, and potential ethical concerns. This feedback is essential for tracking issues and ensuring that they are addressed appropriately.
Resolution of Issues: The development team is responsible for addressing the issues identified during the review. This may involve adjusting the model's architecture, fine-tuning hyperparameters, re-evaluating data preprocessing steps, or enhancing the model's fairness and transparency. The goal is to improve the model's quality and ensure that it aligns with ethical and legal requirements.
Approval and Sign-Off: Once the reviewers are satisfied that the machine learning model meets the required quality and ethical standards, they approve the model for further development or deployment.
Types of issues addressed:
In traditional software engineering requirements, design, code, user interface  
In machine learning reviews can address diverse ml artifacts like data, labels, hyperparameters and the model itself as well as documentation of data, model and the trainings process. Morevoer reviews can target different quality attributes like performance, bias and fairness, Explainability and interpretability, compliance
In general, reviews help identify defects or issues early in the development process, reducing the cost and effort required to fix them later. Reviewers can share their expertise and knowledge, improving the overall quality of the software and enhancing the team's understanding of the project. promote collaboration and foster a learning culture within the development team, leading to continuous improvement and knowledge transfer. Finally, reviews help ensure that the software artifacts comply with industry standards, guidelines, and regulatory requirements.

[bookmark: _Toc101941492][bookmark: _Toc155695869]9.9	Static analysis
Static analysis refers to the examination of code, models and data without actually running the system. This technique can be particularly useful for testing in the context of machine learning (ML) systems to ensure the reliability, safety robustness and efficiency of ML systems. There are several ways in which static analysis can be used to test ML-based systems.
How it works: 
In contrast to Reveiw, static analysis is an automated process in which the code, model and data of the ML system are analysed with the help of tools without being executed. The basis for the analysis is formed by predefined test rules and algorithms that can be executed as often as required to analyse the test object. Static analysis is therefore well suited for integration into automated pipelines and can be conducted with less specialised knowledge, as it relies on automated tools and predefined rules. The results are easily comparable but may show a larger number of false positive issues. Incorporating static analysis into the development and maintenance process of ML-based systems can significantly improve their quality, security, and reliability. However, it's important to note that static analysis is just one part of a comprehensive verification strategy and should be complemented with dynamic analysis, testing, and other quality assurance practices.
Types of issues addressed:
Static analysis tools can be used to examine the source code of ML-based systems and the model code for common programming errors, adherence to coding standards, and potential security vulnerabilities. This includes checking for buffer overflows, memory leaks, and other issues that are common in software development. It can help identify outdated or vulnerable liberaries and other dependencies that might pose security risks or compatibility issues. It can also be applied to the datasets used for training and testing ML models. This might involve checking for imbalanced data, missing values, outliers, or other issues that could affect the performance or fairness of the model.
For ML systems used in regulated industries, static analysis can help ensure that the system complies with relevant standards and regulations. This includes checks for data privacy, security, and other regulatory requirements. Finally, by examining the data and model structure, static analysis can help in identifying potential ethical issues and biases in ML models, ensuring that the systems are fair and do not discriminate against certain groups.
[bookmark: _Toc155695870]9.10 A/B Testing
General definition:
A/B testing, also known as random controlled experiment, is statistical method used to compare two variants (A and B) of a specific element or feature in a controlled environment with the purpose to determine the most effective variant among the options being tested.
How it works:
Define the Hypothesis: before starting the test, a hypothesis must be formulated. This hypothesis often takes the form of predicting the expected impact of a particular change. For example, in ML-based systems, the hypothesis might be that a change in the underlying learning algorithm will increase the overlall system performance and user satisfaction.
Create Variations: two or more variants (A, B, C, etc.) are created, each representing a different version of the element being tested. In machine learning, this could mean different learning algorithms.
Conduct the Test: first of all, participants, users, or data points are randomly assigned to each variant. The randomization helps ensure that the samples are statistically representative and reduces biases. The test is then run for a specific period, during which the system collects data on performance metrics, or any other relevant measurements.
Analyze Results and Draw Conclusions: after the test period, the collected data (ml performance metric) is analyzed using statistical methods to determine the significance of any observed differences between the variants. Based on the anlaysis, conclusions are drawn regarding which variants performed better or worse in achieving the desired outcome. The results may support or reject the initial hypothesis.
Types of issues addressed:
A/B testing may be used to address both functional and non-functional issues. For example, in machine learning, functional issues might involve determining which underlying learning algorithm improves the system's predictive accuracy. While non-functional issues may include evaluating the computational efficiency of different learning algorithms or comparing their inference time.

[bookmark: _Toc155695871]10	Mapping between test activites and test methods
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	X
	X
	X
	X
	X
	X
	X
	X
	X
	

	Integration Testing & System Testing
	X
	X
	X
	X
	X
	X
	X
	X
	X
	

	Acceptance Testing
	X
	X
	
	X
	
	X
	
	
	
	X

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	







[bookmark: _Toc155695872][bookmark: _Toc101941493]11	Challenges in testing ML-based systems from the perspective of the test process 
[bookmark: _Toc155695873][bookmark: _Toc101941494]11.1	Test Management for testing ML-based systems
TBD.
Test management for ML applications requires a shift in focus from traditional software testing methods. It demands a deeper understanding of data science principles, a flexible and adaptive testing approach, continuous monitoring, and a strong emphasis on ethical and fairness considerations.


[bookmark: _Toc155695874]11.2	Dynamic test process for testing ML-based systems
[bookmark: _Toc155695875]11.2.1	Test planning phase
Roughly speaking, the test planning phase serves to define the quality objectives, determine the test items and set up a test strategy that serves to test the desired quality objectives in a meaningful way. Afterwards the entire test process is planned in its technical, temporal, and monetary aspects, taking into account the available resources.
A test strategy describes which parts of the system are to be tested with which intensity, using which test methods and techniques, using which test infrastructure and in which order.
Testing ML-based systems places some special challenges on the test planning phase. 
Challenge 1: Selection of appropriate quality and test items
Since ML-based system slightly differ in terms of engineering as well as operation, the test process must address additional test itemives, that are often not addressed in classical software testing. Besides coverage of the relevant functional aspects of the application context including standard cases/scenarios, all critical corner cases/scenarios as well as all defined non-functional properties like security, robustness, performance etc., testing ML-based systems need to reveal 
data and labelling errors that lead to critical functional failures
software failures that undermine critical functionality during model training and model inference
unused or unintended decision capabilities of a model 
bias and noise in decision processes
known vulnerabilities and failure modes of the technology used eg. in DNNs/CNNs 
Challenge 2: Determining all relevant test items and the corresponding test procedures
To comprehensively test ML-based software systems, several new test items must be considered that are given little to no attention in classic software. These test items are:
data and labels
hyperparameters 
loss function
optimiser
training KPIs and acceptance criteria
network architecture and additional design decision defining basic model properties
the ML-Model including the software implementation of the models’ internal behaviour and all parameter settings
the ML-Framework including the used libraries and algorithms
data pre-processing software during engineering
additional components that serve a proper integration of the ML-model including safety mechanisms (safety cage, redundant models), model and data pre-processing or result preparation, GPU integration.
Challenge 3 Definition of an appropriate integration and test procedure.
ML-based systems are complex entities with high dependencies. Thus, the quality of an ML-based decision system is not only based on the performance of the ML model, but also on 
the performance of the data pre-processing chain including all the required sensors and data fusion components, 
the software that interprets the output of the ML model, processes it for humans and/or translates it into actions, and 
the seamless interaction of all these components. 
In addition, the quality of the target system is dependent on the training data, data preparation, and training infrastructure. Thus, a systematic test approach does not only target the system and its integration, but also the entire data acquisition and training infrastructure. If we take this into account, the test levels of classical software testing can be extended as follows.
data pipeline testing
training pipeline testing
data and data integration testing:
component testing: ML-Model, data pre-processing, decision making
integration testing:  Model in data pre-processing chain, Model in data pre-processing chain + decision making, ML-model subsystem with safeguarding
system testing:  Entire system in test environment
acceptance testing: Entire system in operational environment
runtime testing 
[bookmark: _Toc101941495][bookmark: _Toc155695876]11.2.2	Test design & analysis phase
The test design and analysis phase serve to implement the test items defined in the strategy in a meaningful way. This includes the identification of the abstract tests, the definition of suitable coverage and completeness measures and the specification of suitable procedures and frameworks for the automation of the tests.
Challenge 1: Identification of appropriate data testing procedures
Due to the high importance of data for the performance of a ML model, both the data, its origin, its storage, and preparation must be systematically tested and reviewed. In this context we distinguish between testing the data acquisition, preparation and storage infrastructures and testing the data and data quality itself.
Testing the data acquisition, preparation and storage infrastructures mainly addresses aspects of infrastructure testing like data base testing, testing the underlying communication and computation platforms regarding performance and availability, and the data processing infrastructures that allow for data preparation and refinement. The test approach must consider that these infrastructures are often dealing with big data that is, most of the processes are highly automated and require a high degree of availability and scalability that poses special requirements on hardware and software solutions with corresponding challenges for testing (see [16][17]).
According to L.P. English [18] data quality can be subdivided into three aspects, which can be considered independently of each other.
Data definition and information architecture quality describes the quality of the data specification based on the application context. 
Data content quality describes the inherent quality characteristics of the data such as correctness of data values, completeness, unambiguity, freedom from errors, etc.
Data presentation quality describes how the data can be made available appropriately quickly, in a suitable format, and with a reasonable amount of effort.
Data quality dimensions are attributes of data quality that, if measured correctly, can describe the overall level of data quality. The identification of relevant quality dimensions forms the basis for the assessment and subsequent improvement of data quality. The quality dimensions are usually highly context-dependent, and their relevance and importance can vary depending on the organization and data type. The most common, i.e., the most frequently cited dimensions in the literature, are completeness, timeliness, and accuracy, followed by consistency and accessibility [19].
Overall, assessing data quality for ML applications is a complex task. Current best practices suggest that more data and better models provide better results. 
Poor data quality can cause significant problems in both ML model building and big data applications. 
Certain systematic preprocessing operations on the data help these models achieve higher effectiveness.
While traditionally data quality is assessed before the data is used, in the machine learning context quality can be assessed both before and after the model is built. 
Data quality can be assessed before the learning process along the data and its compilation processes and after the learning process along the performance of the ML model.
The data quality is evaluated along different quality attributes, so that systematic evaluation criteria for the data quality can be established.
To date there are no testing approaches that directly address the issues from above in a systematic and automated manner.
Challenge 2: Identification and selection of appropriate tests for complex/open world scenarios
Testing machine learning suffers from a particularly difficult form of the oracle problem.  While classical systems are usually fully specified, machine learning systems are designed to provide meaningful answers to questions for which there is not yet an answer known [1] (Zhang et al.). Training ML models typically aims to achieve good performance on training data while being able to generalize well to unseen, new data. For the models to learn the underlying function from the data provided to them, that data must sufficiently capture the features of the real-world problem. If incomplete, outdated, or irrelevant data are provided to the model, the model will not generalize towards unseen data.
The problem for testing then consists of defining suitable criteria for defining the completeness of the data for a partially unknown range and to generate test cases that systematically represent the entire input range. In addition, the test cases must be stored with suitable expected values that allow a systematic evaluation of a test run. This special form of the Oracle problem known from testing prevents a scalable test data generation. Solution approaches, such as metamorphic testing [32], are not yet able to realize the necessary scalability and efficiency required for a comprehensive testing approach.   
Challenge 3: Dealing with ML-specific failure modes
Since ML and ML-based systems show significant differences to classical software engineering, testing processes may fail if they do not address failure modes that are specific for ML-based systems. These failure modes include bias, non-determinism, lack of robustness, and lack of transparency and understandability.
Decision bias: Bias in machine learning is a type of error in which certain elements of a dataset are weighted and/or represented more heavily than others. A biased dataset does not accurately represent the intended use case of a model, leading to biased results, low accuracy, and analytical errors. Bias can occur in several different areas, from human reporting and selection bias to algorithmic and interpretation bias. Sampling bias, for example, occurs when a dataset selected for training does not reflect the realities of the use case (e.g., when facial recognition relies significantly on data from only one population group e.g., men, women, Europeans). Exclusion bias most often occurs in the pre-processing phase of the data. It is often caused by the deletion of valuable information that is considered unimportant e.g., the deletion of a relevant feature that has not been recognized or that has been considered as unimportant. Measurement bias occurs when the data collected for training is different from the data collected in the real world, for example, when different sensors are used to record the training data as with the production data. Measurement bias can also result from inconsistent label assignment during the data labelling phase of a project. Finally, observer bias also known as confirmation bias, is the effect of seeing what you expect or want to see in the data during manual data selection and labelling processes.
Probabilistic nature and non-determinism: ML-based software, even if it has some fundamentally deterministic properties, is not necessarily stable with respect to the environment and environmental changes. Moreover, the training process itself is often nondeterministic and thus difficult to reproduce. Non-determinism in the training phase arises from the random initialization of model parameters, the stochastic selection of training data (e.g.  mini batch sampling), and the use of stochastic functions in the optimization process. Non-determinism in the operation phase may arise using stochastic activation and weight functions. Moreover, neural networks are typically trained on graphics processing units (GPUs), which, under certain experimental conditions, yield nondeterministic outcomes for floating point operations. 
Missing robustness: Robustness is the ability of a computer system to deal with erroneous input and to handle errors during execution. An ML model is considered robust if small perturbations in the input space yield only small perturbations in the output space. Since ML has been shown to be especially vulnerable against so called adversarial examples and against distributional shift, it can only be considered robust under certain circumstances.  
An adversarial example is an input to a neural network that has been modified in such a way that it alters the output of the neural network, even though a human would still recognize the original class. In the extreme case, the modified input is indistinguishable from the original input for a human. Distributional shift describes a difference between the test and training environments [Ref 1]. Such distributional differences can be considered as gaps in the representation of reality and are a general problem in designing ML applications to be used in real-world applications. If the perceptual or heuristic inference processes of such a model have not been adequately trained to the correct distribution or the distribution of the environment changes in operation, the risk of unintended and harmful behaviour increases significantly. 
Lack of transparency and understandability:  Neural networks function as black box systems. Instead of humans explicitly coding the system behaviour with conventional programming, in ML the computer program learns based on many examples that represent the mapping of the input data to the desired output. Transparency in AI is generally referred to as explainability, which includes both interpretability and confidence in the system and its genesis[29][30]. While interpretability is the degree to which a human can understand the cause of a decision [31], confidence in a system is gained by understanding the system itself, its operational environment as well as the development of the system.  
A challenge regarding testing arises from the dependence on a system that not even the developers and testers really understand. To gain confidence and certainty regarding elemental quality properties of neural networks, it is essential to enable at least a certain degree of human interpretability and understandability. 
Challenge 4: Definition of appropriate coverage and completeness criteria
Due to the lack of logical structures and system specification, it is still unclear how evidence regarding test completeness could be provided for ML-based systems especially for those with DNN components. To date, there are several proposals that combine systematic testing of ML-based systems with coverage criteria related to the structure of DNNs. These include simple neuron coverage by Pei et al. [23], which considers the activation of individual neurons in a network as a variant of statement coverage. Ma et al. [22] define additional coverage criteria that follow a similar logic to neuron coverage and focus on the relative strength of the activation of a neuron in its neighborhood. Motivated by the MC/DC tests for traditional software, Sun et al. [24] proposes an MC/DC variant for DNNs, which establishes a causal relationship between neurons clustering i.e., the features in DNNs. The core idea is to ensure that not only the presence of a feature, but also the combination of complex features from simple feature needs to be tested. Wicker et al.  [25] and Cheng et al. [26] refer to partitions of the input space as coverage items, so that coverage measures are defined considering essential properties of the input data distribution. While Wicker et al. discretizes the input data space into a set of hyper-rectangles, in Cheng al. it is assumed that the input data space can be partitioned along a set of weighted criteria to describe the operating conditions. Finally, Kim et al. [21] evaluate the relative novelty of the test data with respect to the training dataset by measuring the difference in activation patterns in the DNN between each input. A good summary of the current state of the art regarding coverage criteria for testing DNNs can be found in [20]. In addition, the work of Dong et al [27] claims that there is only a limited correlation between the degree of different kinds of neuron coverage and the robustness of a DNN, i.e., improving the degree of simple neuron coverage measures does not significantly contribute to improving the robustness. However, in their study, Dong et al. did not analyse the effect of more complex coverage approaches (e.g., feature coverage and the MC/DC variant for DNNs) as well as coverage approaches that address the partitioning of the input data space.  
[bookmark: _Toc101941496][bookmark: _Toc155695877]11.2.3	Test Implementation & execution phase
During the implementation and execution phase test cases are created and executed. Test cases should be based on the objectives and requirements identified during the planning and analysis phase. During the execution, the test team performs all tests. The deviations are logged, and defects are identified. Deviations are measured as the difference between actual and expected test results.
Challenge 1: Synthetic test data generation 
ML systems process a wide variety of data. These range from simple tabular data to complex data streams (images, movies, radar or lidar data), such as those processed in ML-based perception systems. To be able to test such systems and to make the necessary large amounts of data available in sufficient diversity, data will have to be synthetically generated. The more complex the input data, the more complex is the process of data generation. For example, the creation of synthetic film sequences is significantly more complex and resource-intensive than the provision of simple numerical quantities.
Challenge 2: Achieving the necessary degree of automation and scalability. 
The complexity and uninterpretability of DNNs lead to the fact that manual testing approaches are not sufficient to perform a comprehensive quality assurance of a DNN.
To cope with the complexity of the applications and to achieve consistent results in repeated tests a high degree of automation is required. Automation should encompass all necessary activities of the testing process, starting with test case identification, test data generation, test execution, and final test evaluation. Similar, to the training of an ML model, such an automated testing approach relies on a larger technical infrastructure that realizes automation in a in a trustworthy and reliable manner.
However, generating test cases automatically is still a challenge. For instance, studies [85, 86] claimed that the test cases generated by an automated testing tool may not cover all real-world cases. (Zhang 2020)
[bookmark: _Toc101941497][bookmark: _Toc155695878]11.2.4	Evaluating exit criteria and reporting phase
The test evaluation and reporting phase is used to evaluate the test execution against the defined and agreed exit criteria. Based on this evaluation, a decision can be made as to whether enough tests have been performed to achieve the quality objectives defined in the planning phase. The result of the test evaluation is then documented and summarized in a form that can be understood by all relevant stakeholders.
Challenge 1: Define and apply appropriate end-of-test criteria and validation metrics.
The interpretation, aggregation and evaluation of individual test results and the evaluation of the entire test process for ML-based systems can differ greatly from the procedures that are established for classical software systems. On the one hand, completely new test procedures have to be taken into account due to the consideration of data as a decisive quality factor, and on the other hand, the specific characteristics of an ML-based system, especially with regard to its failure characteristics, lead to different evaluation approaches.
On the one hand, DNNs in particular feature a complexity that is not reached by classic software. While it is possible to trace failure modes back to individual errors in classical software systems, this is much more difficult in ML-based systems. The high number of parameters, hyperparameters and optimization decisions makes it almost impossible to identify wrong parameters as the cause of a concrete failure mode.
Additionally, when considering different quality properties, it is important to keep in mind that there are dependencies between these properties, so that improving the KPIs for one property will worsen the KPIs of another property.
Risk-based testing approaches are basically able to relate variable quality properties of a system to the risks to the financial and fundamental risks of an application. An end-to-end approach on how to comprehensively apply risk-based testing in the context of ML systems has been sparsely explored.  
Challenge 2: Communicate test status and evidence on quality in a comprehensible and trustworthy way
Test reports are designed to enable managers and users of software products to assess and understand the quality and risks of a software product in its application. To this end, the tests, their results, and the metrics used to demonstrate the performance of an ML-based system must be expressed in terms of their impact on the application domain in an understandable way. This is particularly important when it comes to assessing interconnected quality properties between 



[bookmark: _Toc155695879]Annex A: Tasks of Machine Learning

	Task (Supergroup)
	Task (Subgroup)

	Image Processing
	Depth Estimation
Image Classification
Image Segmentation
Image-to-Image
Mask Generation
Object Detection
Video Classification
Unconditional Image Generation
Zero-Shot Image Classification
Zero-Shot Object Detection

	Natural Language Processing
	Conversational
Fill-Mask
Question Answering
Sentence Similarity
Text Summarization
Table Question Answering
Text Classification
Text Generation
Token Classification
Translation
Zero-Shot Classification

	Audio Processing
	Audio Classification
Audio-to-Audio
Automatic Speech Recognition
Text-to-Speech

	Tabular Data Processing
	Tabular Classification
Tabular Regression

	Multimodal Processing
	Document Question Answering
Feature Extraction
Image-to-Text
Text-to-Image
Text-to-Video
Visual Question Answering
Text-to-3D
Image-to-3D
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	Security from adversarial attacks
	 

	
	 
	Correctness, robustness, 
avoidance of unwanted bias
	Information security
	 

	SL
	UL
	RL
	
	Causes related to ML model specificity
	Causes related to information security
	

	x
	x
	x
	
	Noise and outliers 
in inferred/explored data;
Curse of dimensionality;
Disadvantageous configuration of hyperparameters; 
unwanted variability;
inadequate choices.
Over-reliance on local patterns;
	Lack of model integrity;
Lack of output data integrity;
Lack of encryption;
Insecure transmission channels;
Unauthorised access 
to deployed models;
Insecure deployment environments;
	

	x
	 
	 
	
	The developer’s preferences/incomplete understanding of task/domain;
Inadequate data preprocessing stages such as normalization, scaling, or imputation;
Training data;
Insufficient representation of   diverse instances; 
historical inequalities, cultural prejudices, and systemic  disparities.
Erroneous feedback loop; 
Intended context-dependency of model characteristics;
	Lack of training data integrity;
Traceability from inference to training data.
	

	 
	 
	x
	
	Reward deviation;
Inadequate exploration-exploitation trade-off.
	 
	

	SL
	UL
	RL
	
	Causes related to adversarial actions
	
	

	x
	x
	x
	
	Model inference manipulation;
Tampered/poisoned input data for inference/exploration;
General exploiting (e.g. Denial-of-Service attacks and brute forcing).
	
	

	x
	 
	 
	
	Tampered/poisoned training data;
	
	

	 
	 



[bookmark: _Toc155695881]
Annex C: Metrics and Measures to Detect Negative Causes
Causes related to ML model specificity
The following tables list metrics and measures to understand causes, responsible for a negative impact on correctness, robustness, avoidance of unwanted bias and security from adversarial attacks. While the table lists causes related to ML model specificity, the formulated metrics and measures to understand the causes are allocated to a specific ML method. A negative impact on information security is not discussed in the tables.
	Causes 
related to ML model specificity (1/3)
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Correctness, robustness, avoidance of unwanted bias
	 

	
	SL
	UL
	RL
	
	Metrics/measures to understand causes
	 

	Noise and outliers in inferred/explored data
	x
	x
	 
	
	Cluster Stability: The stability of clusters can be assessed using metrics like the Jaccard index, adjusted rand index (ARI) or adjusted mutual information (AMI): These metrics compare the clustering result against some ground truth, helping to identify if outliers are affecting the overall agreement with the expected clustering;  
DBSCAN Density-based clustering can identify noise as points that do not belong to any cluster; 
Silhouette Score: Measures how well-separated clusters are. A lower score might indicate the presence of noise or outliers affecting cluster formation.   
	

	
	 
	 
	x
	
	Examining the sensitivity of the policy to small perturbations or noise in the environment.  
	

	Curse of dimensionality
	x
	x
	 
	·  
	Variance Ratio: Metrics like the explained variance ratio in PCA (Principal Component Analysis) can help understand how much information is retainable by a model after changing the data space dimension. Changing dimensions without significantly impacting the correctness of a model can indicate an increase in robustness.  
Manifold Learning Techniques: Metrics such as t-SNE (t-distributed Stochastic Neighbour Embedding) or UMAP (Uniform Manifold Approximation and Projection) may reveal by visualisations if high dimensionality is affecting the separability of clusters or patterns in the data.  
	 

	Poor configuration of hyperparameters
unwanted variability;
inadequate choices.
	x
	·  
	Analyse how sensitive the model is to changes in hyperparameter values, identifying critical parameters that significantly affect performance and result in vulnerabilities;
Assess the model's response to intentionally manipulated inputs that target potential bias for different hyperparamter choices. For each hyperparameter choice, introduce adversarial examples specifically designed to exploit or reveal bias in the model. These examples may involve perturbations in the input data that highlight vulnerabilities related to sensitive entities.
	 

	 
	 



 
	Causes 
related to ML model specificity (2/3)
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Correctness, robustness, avoidance of unwanted bias
	 

	
	SL
	UL
	RL
	
	Metrics/measures to understand causes
	 

	Over-reliance 
on local patterns
	 
x
 
	
	Assess the generalisation gap to identify instances where the model relies too heavily on local patterns without effectively generalising, what can be exploit by adversarial inputs;
Identify instances where the model overfits to specific local patterns in the data, compromising its ability to make accurate predictions on unseen data.
	

	Inadequate sampling of diverse data points; 
 
	x
	
	Measure the ratio of favourable outcomes for different entities. Evaluate the difference in true positive rates across different entities.
	

	Inadequate data preprocessing stages such as normalization, scaling, or imputation
	x
	 
	 
	
	Examining the sensitivity of the policy to small perturbations or noise in the environment;
Kolmogorov-Smirnov statistic: examine the cumulative distribution functions of predictions for sensitive entities to identify differences;
Correlation analyses between the same sensitive entities in the pre-processed and original data set. 
	

	The developer’s preferences/incomplete understanding of task/domain
	x
	 
	 
	·  
	Involve stakeholders, including end-users and domain experts, in the development process. Regular feedback from diverse perspectives helps refine the model and ensures a more accurate representation of the task or domain.
Calculations of disparate impact, statistical parity, and equalized odds help measure biases in model predictions across different sensitive entities to highlight disparities.
Confusion/matching Matrix Analysis to: Examining the confusion matrix can reveal biases in the model's predictions across different sensitive entities. In this context, disproportionate misclassifications might indicate bias in predictions.
	 

	Reward deviation
	 
	 
	x
	·  
	Measurements of deviations from expected reward pattern. For instance, using the Bayesian control rule, deviations can be quantified and assessed in relevance according to the model’s beliefs.
	 

	Inadequate exploration-exploitation trade-off
	 
	 
	x
	·  
	Measuring the entropy can be depicted the information gain or uncertainty. Higher entropy can indicate that the model is exploring multiple possibilities, but it can also suggest randomness, impacting model correctness.  
	 

	 
	 


  
 
	Causes 
related to ML model specificity (3/3)
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Correctness, robustness, avoidance of unwanted bias
	 

	
	SL
	UL
	RL
	
	Metrics/measures to understand causes
	 

	Intended context-dependency of model characteristics;
	x
	 
	 
	
	Assess the correlation of sensitive entities with a ground truth dataset in different contexts to understand whether the model's inference varies.
	

	Erroneous feedback loop
	x
	 
	 
	
	Deliberately alter model outputs and observing the consequences on the feedback loop.
	

	Training data
Insufficient representation of diverse instances;
historical inequalities, cultural prejudices, and systemic disparities
Errors in labelling
 
	x
	 
	 
	·  
	Missing Values Rate: Quantifies the percentage of missing values in the dataset, affecting  the model's ability to learn from incomplete data.
Outliers Detection: Metrics like Z-Score, IQR, or Mahalanobis distance help identify anomalies or outliers. Outliers can skew the learning process and impact the model's generalisation.
Class discrepancy: Statistical measures such as Kolmogorov-Smirnov test or Kullback-Leibler divergence can be used to assess differences in data distributions. Existing discrepancies could affect the model's assumptions and lead to incorrect predictions. For instance, high imbalance in data can lead to bias or poor generalisation towards the minority class. Moreover, while measuring the amount of information or uncertainty in the dataset, e.g., high entropy can indicate a lack of clear patterns which might affect the ML model’s prediction performance. 
Involve human annotators to identify errors in labels, particularly for instances where automated labeling may be prone to errors.
Statistical parity might assess whether the overall probability of a positive outcome is equal across different entities in dependence of their sensitive characteristics by measuring the distribution of positive predictions.
Assess sampling bias using metrics such as the Wasserstein distance or the Kolmogorov-Smirnov statistic to quantify differences in data distributions.
Consistency regarding sensitive entities can be measured by assessing the degree of agreement via Cohen’s kappa between different labels or annotations for the same data point. Using a ground truth dataset allows a correlation comparison of consistent data points to determine the impact on bias.
	 

	 
	 


 
Causes related to adversarial actions 
The following table focuses on causes related to adversarial actions. It depicts metrics and measures to understand causes, responsible for a negative impact on correctness, robustness, avoidance of unwanted bias and security from adversarial attacks. The formulated metrics and measures to understand the causes are allocated to a specific ML method. A negative impact on information security is not discussed in the table.
	Causes related to adversarial actions
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Correctness, robustness, avoidance of unwanted bias
	 

	
	SL
	UL
	RL
	
	Metrics/measures to understand causes
	 

	Model inference/exploration manipulation with tampered/poisoned input data;
 
	x
	
	Adversarial testing with malicious inputs to guess the model's gradient information to craft adversarial perturbations that 
induce misclassifications; 
make inputs fall outside the model’s training distribution;
initiate inadequate Regularisation; overfitting to anomalies.
	

	
	 
	 
	x
	
	Analyse how sensitive the model is to changes in reward values, identifying areas where small adjustments may lead to unwanted consequences;
Manipulate the reward signals received by RL agent, manipulate input states or observations to mislead the RL model's policy;
Adversarial testing to identify potential exploits in the reward structure and assess the model's resilience.
	

	Tampered/poisoned training data.
	x
	 
	 
	·  
	Compare the hash values of the original training data with the current state of the dataset to identify any tampering.
Assess the statistical properties of the training data distribution. Any significant deviation may indicate tampering.
Evaluate the trained model's performance on a dataset known to be untampered. A drop in accuracy may indicate tampering.
	 

	 
	 



Causes related to information security
The following table focuses on causes related to information security. It depicts metrics and measures to understand causes, responsible for a negative impact on information security as well as security from adversarial attacks. The formulated metrics and measures to understand the causes are allocated to a specific ML method. 
	
Causes 
related to information security
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Information security
	 

	
	SL
	UL
	RL
	
	Metrics/measures to understand causes
	 

	Lack of model integrity
	 
x
 
	
	Implement version control for machine learning models to track changes and ensure model integrity.
Use hashing or checksums to verify the integrity of deployed models.
Penetration testing to assess unauthorised accessibility of e.g., databases, model information as well as the backend in general
Attempt to reconstruct or replicate the model architecture
	

	Lack of data authenticity and integrity
training data;
output data.
	x
	
	Implement checks to verify the integrity of data used for training/ generated by the model during deployment;
Penetration testing to assess unauthorised accessibility.
	

	Lack of encryption
	x
	
	Implement end-to-end encryption for data at rest, in transit, and during processing to protect it from unauthorized access;
Use robust key management practices to secure encryption keys, ensuring that only authorized entities can decrypt the data;
Use secure communication protocols such as SSL/TLS for encrypting data during transmission over networks.
	

	Insecure transmission channels
	x
	·  
	Use secure communication protocols (e.g., HTTPS) to protect data during transmission and prevent eavesdropping
Implement network-level encryption, such as VPNs, to secure data in transit.
Implement certificate pinning to validate the authenticity of SSL/TLS certificates during communication.
	 

	Unauthorised access 
to deployed models
	x
	·  
	Regularly monitor access logs to deployed models and establish alerts for suspicious activities;
Assess the strength of user authentication mechanisms, including multi-factor authentication, to prevent unauthorized access.
	 

	Insecure deployment environments
	x
	·  
	Use containerisation technologies like Docker to encapsulate models and their dependencies. This ensures consistent and secure deployment across various environments.
	 

	Traceability from inference to training data.
	x
	 
	 
	·  
	Implement logic filtering to block vulnerable requests.
	 

	 
	 





[bookmark: _Toc155695882]Annex D: Countermeasures to Mitigate Negative Causes
Countermeasures related to ML model specificity
The following tables list countermeasures to avoid negative impact on correctness, robustness, avoidance of unwanted bias and security from adversarial attacks. While the table list causes related to ML model specificity, the formulated metrics and measures to understand the causes are allocated to a specific ML method. Countermeasures avoiding netagive impact on information security are not discussed in those tables.
	Causes 
related to ML model specificity (1/4)
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Correctness, robustness, avoidance of unwanted bias
	 

	
	SL
	UL
	RL
	
	Countermeasures to avoid causes
	 

	Noise and outliers in inferred/explored data
	x
	
	Data cleaning and preprocessing: 
Identifying and removing outliers as well as noise-specific data points before applying the clustering algorithm can improve the silhouette score. 
Try algorithms less sensitive to noise and outliers, e.g., like DBSCAN in UL, which explicitly identifies noise points.
Apply noise reduction techniques, such as filtering or smoothing, to enhance the robustness of the model against noisy data during inference;
Employ effective data preprocessing steps, including cleaning and normalization, to minimize the influence of noise on model training and inference.
Use of regularisation techniques, such as L1/L2 regularisation, or ensemble methods to increase the model's resilience against unexpected or outlier data. 
	

	
	 
	 
	x
	
	Use of RL methods that are less sensitive to environmental noise or perturbations and handle noise more effectively, e.g., Dueling DQN or Noisy Nets. 
Noise can be filtered out from state inputs, using smoothing as well as filtering mechanisms for state inputs to reduce the impact of noisy observations, e.g., via Kalman filters or moving averages. 
Incorporation of multiple policies to aggregate decisions from multiple policies can reduce the relative impact of noise.
	

	 
	 


 
 

 
	Causes 
related to ML model specificity (2/4)
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Correctness, robustness, avoidance of unwanted bias
	 

	
	SL
	UL
	RL
	
	Countermeasures to avoid causes
	 

	Curse of dimensionality
	x
	x
	 
	·  
	Choice of resilient clustering algorithms designed to be less sensitive to variations in sensitive entities, such as DBSCAN or OPTICS that can handle varying densities and shapes of clusters.
Sensity entity-specific feature engineering to reduce the impact of variations in sensitive entities on the clustering process. This can be achieved via removing noisy or irrelevant features or including synthetic data for underscoring specific patterns.
General data pre-processing techniques as normalisation and standardisation to reduce the impact of variations in the data. Standardising features, feature importance in three-based systems and data transformation to lower-dimensional spaces can help in reducing the influence of entities with high variances.
	 

	Poor configuration of hyperparameters
· unwanted variability;
· inadequate choices.
	x
	·  
	Use systematic hyperparameter tuning procedures such as grid search, random search or Bayesian optimization to identify optimal hyperparameter configurations;
Implement automated hyperparameter tuning tools or frameworks to systematically explore the hyperparameter space and optimize model performance.
Conduct sensitivity analysis to understand how changes in hyperparameter values impact model predictions and fairness metrics. This information can guide the selection of hyperparameters that minimize bias.
	 

	 
	 



 
	Causes 
related to ML model specificity (3/4)
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Correctness, robustness, avoidance of unwanted bias
	 

	
	SL
	UL
	RL
	
	Countermeasures to avoid causes
	 

	Over-reliance 
on local patterns
	 
x
 
	
	Use cross-validation to assess model performance across different subsets of data, preventing overfitting to local patterns;
Periodically assess model performance and behaviour on the basis of adversarial assessments to identify instances of overfitting or over-reliance on specific patterns. Adjust the model or training process accordingly;
Flagging removal during data pre-processing enables to remove anomalies in the dataset to reduce the impact on sensitive entities;
	

	Inadequate sampling of diverse data points; 
 
	x
	
	Balance classes of sensitive entities by stratified sampling/adding synthetic data points to ensure that each subgroup in the dataset is represented proportionally.
Use oversampling for underrepresented groups and undersampling for overrepresented groups to balance the dataset
	

	Inadequate data preprocessing stages such as normalization, scaling, or imputation
	x
	 
	 
	
	Utilise cross-validation techniques to assess the impact of different preprocessing choices on model performance.
	

	The developer’s preferences/incomplete understanding of task/domain
	x
	·  
	Involve stakeholders, including end-users and domain experts, in the development process. Regular feedback from diverse perspectives helps refine the model and ensures a more accurate representation of the task or domain.
	 

	
	 
	 
	x
	·  
	Use synthetic data points to augment the data set to increase the task/domain-dependent representativeness and consistency of the sensitive entities;
	 

	Reward deviation
	 
	 
	x
	·  
	Reward distributions can be smoothened and constrained via regularisation, while mitigating extreme rewards that deviate from expected patterns. 
Normalisation of rewards or customisation of reward functions can prevent extreme deviations or inconsistencies in reward patterns. Techniques like min-max scaling can ensure rewards are within specific bounds.
	 

	Inadequate exploration-exploitation trade-off
	 
	 
	x
	·  
	Balancing of exploration and exploitation. 
Adaptation of context-dependently statistic criteria, like ε-greedy or UCB algorithms to adjust the level of exploration as the model learns.  
	 

	 
	 


 

 
 
	Causes 
related to ML model specificity (4/4)
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Correctness, robustness, avoidance of unwanted bias
	 

	
	SL
	UL
	RL
	
	Countermeasures to avoid causes
	 

	Intended context-dependency of model characteristics;
	x
	 
	 
	
	Introduce constraints for biased outcomes that are sensitive to different contexts. This ensures that model decisions are consistent and fair across various situations.
	

	Erroneous feedback loop
	x
	 
	 
	
	Incorporate bias constraints directly into the learning as well as inference process to guide the model's output towards more equitable outcomes.
	

	Training data
· Insufficient representation of diverse instances;
 
· historical inequalities, cultural prejudices, and systemic disparities.
 
· Errors in labelling
 
	x
	 
	 
	·  
	Use stratified sampling to ensure proportional representation of different demographic groups in the training data. This helps prevent underrepresentation or overrepresentation of certain groups;
Employ data augmentation techniques to artificially increase the diversity of the training data. This is especially useful when sensitive entities are underrepresented.
Identifying and removing sensitive characteristics which might foster bias. Due to changes in environmental conditions as well as tendencies in multifactorial development of forecasted parameters, supervised learning models may need to be retrained or updated to ensure unbiased results.
Include human annotators in the validation and correction of labels, especially for ambiguous or sensitive instances to control the quality of labels;
Missing values can be handled via imputation like mean/mode imputation, regression imputation, or using algorithms like K-Nearest Neighbors (KNN). 
Outliers can be removed via removing, trimming and winsorising. 
Analysing model performance before and after removing anomalies helps understand the impact on model correctness. Moreover, introducing controlled anomalies and measuring the change in model can provide insight into how well the model handles unexpected or outlier data.
Resampling and reweighting
	 

	 
	 


 
Countermeasures related to adversarial actions
The following table focuses on countermeasures for avoiding negative impacts from adversarial actions. It depicts metrics and measures to understand causes, responsible for a negative impact on Correctness, robustness, avoidance of unwanted bias as well as security from adversarial attacks. While the countermeasures reagrding information security are not discussed in that table, the formulated metrics and measures to understand the causes are allocated to a specific ML method. 
	Causes related to adversarial actions
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Correctness, robustness, avoidance of unwanted bias
	 

	
	SL
	UL
	RL
	
	Countermeasures to avoid causes
	 

	Model inference/exploration manipulation with tampered/poisoned input data;
	x
	
	Implement robust validation and sanitization (e.g. outlier detection) procedures to detect and filter out anomalous or malicious input data.
Regularly test the model's robustness, correctness and unwanted bias using simulated attacks or adversarial testing.
Define and enforce strict input data format specifications to ensure that inputs adhere to expected patterns.
Train the model using adversarial examples, which are purposely crafted to deceive the model.
Employ explainable AI techniques to understand how the model arrives at decisions.
Implement a continuous monitoring system to detect deviations in model behaviour over time.
	

	Tampered/poisoned training data.
	x
	 
	 
	·  
	Regularly validate and audit training data to detect and prevent tampering. 
Implement anomaly detection mechanisms to identify suspicious patterns.
Encrypt training data to protect it from unauthorized modifications. This ensures that even if data is accessed, it remains secure.
	 

	 
	 



Countermeasures related to information security
The following table focuses on countermeasures for avoiding negative impacts on information security as well as security from adversarial attacks. The formulated metrics and measures to understand the causes are allocated to a specific ML method. 
 
	Causes 
related to information security
	Method originally used to create model
	 
	Security from adversarial attacks

	
	
	 
	Information security
	 

	
	SL
	UL
	RL
	
	Countermeasures to avoid causes
	 

	Lack of model integrity
	x
	
	Use encryption techniques to protect the model files stored on servers or in cloud environments, preventing unauthorized access or modifications;
	

	Lack of data authenticity and integrity
· training data;
· output data.
	x
	
	Use digital signatures to sign data, ensuring its authenticity and integrity;
Include checksums and validation mechanisms in the output data processing pipeline to detect any data corruption or tampering;
	

	Lack of encryption
	x
	
	Implement end-to-end encryption for data at rest, in transit, and during processing to protect it from unauthorized access;
Use robust key management practices to secure encryption keys, ensuring that only authorized entities can decrypt the data;
Use secure communication protocols such as SSL/TLS for encrypting data during transmission over networks.
	

	Insecure transmission channels
	x
	·  
	Use secure communication protocols (e.g., HTTPS) to protect data during transmission and prevent eavesdropping
Implement network-level encryption, such as Virtual Private Networks (VPNs), to secure data in transit.
Implement certificate pinning to validate the authenticity of SSL/TLS certificates during communication.
	 

	Unauthorised access 
to deployed models
	x
	·  
	Enforce multi-factor authentication for accessing deployed models, adding an additional layer of security beyond just usernames and passwords. 
Use role-based access controls for finer-grained authorization.
Secure APIs through which models are accessed. Use API keys, tokens, or other secure methods to control access and authenticate clients.
	 

	Insecure deployment environments
	x
	·  
	Use containerisation technologies like Docker to encapsulate models and their dependencies. This ensures consistent and secure deployment across various environments.
	 

	Traceability from inference to training data.
	x
	 
	 
	·  
	Implement logic filtering to block vulnerable requests.
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