D <>

DEG/MTS-00053 vo0.2.0 1998-07)

Methods for Testing and Specification (MTS);
Use of SDL in European Telecommunication Standards;
Guidelines for facilitating validation and the development of
conformance tests

European Telecommunications Standards Institute

Page 2
DEG/MTS-00053: Jul-1998 mts05311.doc

Reference
DEG/MTS-00053

Keywords
<keyword[, keyword]>

ETSI Secretariat

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +334 9294 42 00 Fax: +33 4 93 65 47
16
Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

X.400
c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr
http://www.etsi.fr

Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.
All rights reserved.

Page 3

mts05311.doc DEG/MTS-00053: Jul-1998
Contents

Intellectual Property RIGNTSuu ittt e e e e e e s rmnne e e e e e e eeessbbeeeeeeeee s 8
0 =110 o 8
T (oo 11 o (o T 8
S Tolo] o[OO ORT P PP PRUPTRTPPRTPPRTRPTRTN 9
B B U= (=] (=Y 1= 9
3 Definitions and abbreViationSoovvviiiiiiiiii e ———————11 10
3.1 Definitions

B T2 AN o o 1=V - 4o 1 1P 11
4 Principles and general QUIAEINES...........uuuuuueiiiicee et e e e e e e s 11
5 SDL in European Telecommunication STandardS.............eeeeiieiiiiiiiiiiiiiieieee e 11....
5.1 Introduction

5.2 Validation Of SPECIfICALIONS..........uuiiiiiiiiii et ——— et et b b e e e e e e ane 11
72 I o T 4= LY =T - U1 o o PR 12
5.3 Testing of telecommuniCation PrOTUCESiiuuiiiieiiiiiiei ettt sme e e e e eeemnee s sbbreeeee e e 12
5.3.1 CONFOMMANCE TESHING ..eeiiiiiiiiiii ettt e e ettt e e e st b et e e e e s e ettt e e s e eneeeeeeesabbeeeeeesaanbbbeeeeeeanne 12
6 Normative interfaces and reqUITEMENTSuuiiiiiiii i e e e e eeeeeeeeeenans 13
6.1 NOIMALIVE INTEITACES ...ttt ettt et ettt e e e e e e s tassansasee et e e e e e s o— 1ttt et e et e e e aeeeeeeennss 13
6.2 NOIMALIVE FEOUITEIMENTS ... iitiiiee ettt ettt ettt e e e sttt e e e e sttt e e e e et b et e e e e e aa b b et aeeeesesammeaeeeeeeeeaabbbeeaeeeanrreeas 14

7 Specification and description language concepts
4% T [o o 111 1T o USROS

7 = T T (o T | OSSP

A7 T 1= T = LN U 1= SRR
A7 T = (o= L 11 SRR
7.2.1.2 Visibility rules, names and identifiers
7.2. 1.3 INfOrMAl tEXL....eeeeiiieieeeee e e e e e e e e e e e e e e e e e e e

T.2.0.4 DRAWING FUIBS ..ttt ettt e ettt e e e e ekttt e e e o bbbttt e e e sabb et e eeammeeeeeeas e e e e e e abbbeeeeeesabbbeeaeeeans
A0 T o 0] 1= o | PO
A7 T T 1= = 1= 1 11 o o OSSO
A A =) ()] 1 1] T | TSP P TP PPRPOTPPPPPT
7.2.2 BASIC AALA CONCEPLS ...eveiiieiiiiiiiie e ettt ettt e ettt e e s sttt e e e e s bbbttt e e e e aeb b e mme e e e e e smmn s bbeeeeeeannbbbeeeesennnnrnes
7 B - = R 1] 1= o (=3] 71 1o o R
7.2.2.2 ValUES AN NEEIAISeeeiiiiiieie et e e e e e e e s e e e ettt e et e e e e e e s ommmmmmmmmmmmmsssssesseseeeeeeeeeaaaaeeeeees
Rl = o] (=21 o] L PR RPT PP
7.2.3 SYSEEIM SIIUCTUIE ...ttt et e e ettt et et e e e et e e e s e s ettt e ettt e e e e e e e sammmmmmmmeeeee e s e e s e e s e nn s nnnr e e eenne e s
7.2.3.1 Organisation of SDL SPECIfICALIONSuuvuiiiiiiiiiiiieeeee e iee st e e e e e e e e e s e s e st wemsmmammmn e e e s e e s e s e nnnnnes

T.2.3. 0.1 PACKAGE ... eete ettt ettt o ettt e e ottt e e E bbbt 4o+ ———— £ 44441 e R b bt e e e e e e nnneee
7.2.3.1.2 ReferenCed AefiNitiONcooiiii it e e e e e e e e e e e mmmem e e e ———————err ittt e e aaeaeeeeaaeeaaan
A TS 11 (=] 1 PSR
472 T TN = 1 o o3 PRSP
7.2.3.4 Process
7.2.3.5 Service
A7 X TN o o7 =To L1 - SRR
472 @ 1 1 00T o1 {o7= 11T o PSR
472 R 5 - Vg T T PR
T.2.4.2 SIQN@I FOULEeeeiee ettt e ettt e e e oo a bt et e e e e aab b e et e+ e—— 111244444111 b b bt e e e e e aebbees
7.2.4.3 Connection
A S o g - | PP PPPTO
7.2.4.5 Signal lISt AeINILION ...cceeiiiiiiiee et e e e e mmee s st bb e e e e e e abb e e e e e e e nnenes
4725 T8 2 1= T A o 1 OO PPR
A7 T Y £ 7= o] = SO
7.2.5.1.1 Variable defiNitiONcooiiiiiiii e —— 111111 n i nrrnes

Page 4

DEG/MTS-00053: Jul-1998 mts05311.doc
7.2.5.1.2 VIEW AEFINITION .ooiiiiiieieii ittt ettt e et e e e e e e e e e e s s ammmmeeeeeeeeeeaaeeaeesaaaannnnnbbnbbeseeees 20
A] - | ST O PP POPPPPRPPP 20
A TS] - | (OO PP PPPPPPTPTPPR 20
7.2.5.4 Input (ANd INVAIA STIMUITeeeeiiii e e e e e s eee s e aannnnes 20
T.2.5.5 SAVE ..ottt — ettt et e e ee e e e oo e eeeeeeeeaaaaaateteeeeeeeeaetiaaaaanaaraabrerreees 20
7.2.5.6 SPONTANEOUS trANSITION ...ttt e e e ettt e et e e e e e e e e e e s e s s ab e s memeeeemnmnmnm s e 2 e e e e e e e e eesaaaannnnnan 20
A T A - Lo 1= BT TP TP TP PPPPPP 20
T 25,8 NEXISTALE ...ttt oottt e e s e e e e e e e ettt e e e te b bbb s e e e s Smmmeeeemenfe e R Rt e e e e e eeeeeeeeernnran s 20
7.2.5.9 JOIN..iiiiieeee et e e e e e e e e e e e e aan

7.2.5.10 Stop

7. 2.5, 1L REIUIN ettt ettt et e e e e e e e e e e oo o4 oA a R ettt ¢ —— 111115 £ 25 £ £t e et e e e e e e e eeeeeeas 21
7.2.6 Action

7.2.6.1 Task

T.2.6.2 ClBALE ... ittt e oo ettt ettt et e e e e e e e e et ettt e ba b aa e oo e e mmmmmeeeeaaeeeeeeereEhan e e e e e eeeeeeeeernrranan 21
7.2.6.3 PrOCEAUIE CAIl ...ttt ettt et e e e e e oot oo e o e s o nn e e bbbt bb e et e e e e e e e aaaaaaaaeaaaaaas 21
A 1 11 o1 | TP PPPPPPPRN 21
A BT B =T ol][o TSP PPPPPPPPTN 21
A A 141 ST PP PUUP TP U TR TTRTPPIN 21
7.2.8 INtErnal INPUL BN OULPULuuiieieieiii ettt e e e e e e e e e e s e s o e e bttt e s+ ¢ o— 1115222222t 2 e e e e aaeaeeens 21
7.3 Structural Decomposition CONCEPLS IN SDLcooiiiiiiiiiiiiee et e e smmeeeeeeeeeees s anaenees 22
A 70 R == T 11T 1T 22
RS T A =] (o Tod Qo T= T 11 11T PP P TP PP RUPRPO 22
7.3.1.2 Channel PartitiONINg ... e eeeeeeeeee ettt e e oo e e oottt ettt e e ee e e e s emmmmmmmmmmnes s s bbb b bt b e e et e e et e e e aaeaaaeas 22
7.3.2 Refinement

7.4 Additional CoNCEPLS OF BASIC SDL......cooiiiiiiiiiiitt ettt ettt et e e e e e e e s smmmmmmmmnenee e s e e s e e e e nannane 22
30 R\ = T o TP PSP PPPRPPPPTPTINN 22
7.4.1.1 Macro, graphical DENAVIOU ... e e e e e e e e e e e e e eeaaees 22
A B Y - Tod o TR (U ot (] = | P PP PPPPPPPPTPUTT
A R Y = Tod o TR =) LU = OO PPPPPPTPTTP
7.4.2 Generic system definition

A R = (=14 g = LIRS V7 o])Y/ o U -

A A 1] o] ST =Y 4 o] (=171 o) o R
7.4.2.3 Optional definition (The SEIECt CONSIIUCT).......uuuuiiiiii i e mmm——— e e e senannan 23
7.4.2.4 Optional transition string

7.4.3 ASEEIISK STALEiiii i e e e e e e e e

7.4.4 Multiple appearanCe Of STALEooiiiiiiiiiiii i e e e e e e e e et e e et e te b e e mmmm————— et s a s a e e e e eas 23
A R = (=] G 0T | U 23
T.4.6 ASEEIISK SAVE ...coeiiiiiie ettt ettt e e e e e e e e e e e e s o mmmeeneem—————tetteeteeeaeeaeaeeaaaeaaaanaae 23
A S]] o 1 v = g 71 o S PRSSPN 24
7. 4.8 DASH NEXISTALEottt ettt e e e e e e e e e e e o e s e be bbb et s £ 144 R bbb b e b e e et e e e e e e s 24
A e I T 1Y 1] LU U 25
7.4.20 CONLINUOUS SIGNAL......cceiiiiiiiiiiiie i e e e e e e et e et e s e s e e e e e e et et e e taete e et seseeeee s nmmmmamsaeaesssssasnnnsaseeeaeeeeeensnnnns 25
4 350 R = g = o] T T e o 1) o OSSP 25
7.4.12 Imported and EXPOrted VAIUEouuiiiiiie i e e e e et smmmm——— 1 1111 n e a e e e e 25
7.4.13 REMOLE PrOCEAUIES ...uuuiiiei e e e eeieeeee ettt e e et e e e e e eeee e e ee et ata et eeaeeeaeeeeee s e s testasaaaseaeaaeaeeensssssnnnnnsaseeaaaeeeeennnns 25
FAG DL L= 1o] B PP PUUTPPPPTPPP 25
AT R N L= P = W T 1= = T o U = Vo T 25
N0 I R = = B o =T 0 1= 11 1o £ PSP 26
7.5.1.2 Literals and parameteriSed OPEIALOISccciceeieiiiiieeeeer e e e e e e e e ettt mmmmmmmmmmam———— e e e eeeas 26
7.5.1.3 Axioms and conditional @QUALIONSooviiiiiiiiiiii e e e e e e e e e e e e e e e e e e eenre et e eeeas 26
7.5.2 SDL exXpressSions aNd at@ LY PES.....uuuuruuu i ie e e e e ee ettt s s s e s e e e e e e e e e e e e eaa e tet e mmmmmmmmmammm———— et nn e e e e e 26
7.5.2.1 SPECIAI OPEIALOIS. .. .t eeie et e e e e et e s e e e e e e e et eeeeete e e s mm———— 11111 e e e e e e e eeeeennrnrns 26
7.5.2.2 Character string, Bit_String and Hex_String teralS. ... 27
7.5.2.3 Predefined data, equality and NOEQUAIILYccoiriiiiiiiiiiiiiis e e e e e e e e e e e e e eeeeaenens 27
7.5.2.4 Boolean axioms, conditional terms @and ©ITOI!uuuiiiiiiiiiii et e 28
A T2 ST (o 1Y T P
7.5.2.6 Syntypes and range CONILIONSoouiiiiiiiiiiiie i e e ee et e s e e e e e e e ee et e e e s e e e eeenamnmmmmmsessesnnn e eeeeeeees

7.5.2.7 Structures, SEQUENCE, SET and CHOICE
T.5.2.8 INNEIITANCE ... oottt ettt et e e et e e e e e et e e e e e aat e e e s e et s me——— 11 e e e e e 22t eeseebanseeeees
F S T G-l 01T -1 (o] £ PR

8 T 0 IS} 01 017/ 1 11 T RO PPPPPPN

Page 5

mts05311.doc DEG/MTS-00053: Jul-1998
7.5.2.11 Name class literals and literal MapPPING........ccooiiiiuiiiiii e mmmmmmmmmmmmen bbb e e e eee e 29
7.5.2.12 Operator definitions and operator apPliCALIONSeeiiiiiiiie i 29
7.5.2.13 Indexed primary and indexed Variable ... 29
7.5.2.14 Field primary and field VAriabIee ettt e e e e e e e e 29
7.5.2.15 Structure primary (aNd @rray VAIUE)eeeeiiiiiiiiiiiii et a1 30
7.5.2.16 CONAItIONA] ©XPIESSION ...ttt ittt e e e e e e ettt bbbttt e et et e e aaaeeaaa s s s s e abbabbesbeeeeeeeeeaeaaeaaaaeaaeaaasaasaaaaaans 30
7.5.2.17 Variable access

7.5.2.18 ASSIGNMENT STALEMIENL.... ..o e e e e e e e e eeeeete e et aeaeaaeeeemnennssassseseeeaeeeeeeesrnres 30
7.5.2.18.1 Default INMHIANZATION.eeiiiiii e rme e e e e se et e e e s e e e e s s eeee s 30
7.5.2.19 IMPEIALIVE OPEIALOISeeeiiiiiiiiee e e ettt ettt e et e e e e e e e e e e e s s e e b babb e b b e e e e e e e aaa e e e eeamteeeeeeeaaaaaaaaaaaaesaanas 30
7.5.2.19.1 NOW EXPIESSIONututtttteeteettteateaaeeaas e et s e aaaaatbeebe e et ettt eataeaaaaaaaasaaaaaabbbbbeebeeaeaaaaaaaasaaaaannsnnbbsbbssbeeeeeeeeaens 30
7.5.2.19.2 IMPOIT EXPIESSION ...ciiiiiiieee e ettt ettt et e e e e e e e e e e e s o s s e ah e e bebb e e ee ettt e et eeaaaaaeaesaaaaaa e annsanbbsbbesbeeaeeeeeaens 30
7.5.2.19.3 Pl @XPIESSION ...ttt ettt ettt e oottt e ettt ettt e e ee e e e e e e e e e e e e ammmmmmemeeeeeesetteeee e et e eaaaaaaaaaaaaaaaan 30
7.5.2.19.4 VIBW ©XPIESSIONeitiittttteeteeee e et e e e e e e e e e e e s e e e ba bttt bttt ettt e e eeaaaaeeeaesaa s aabb et e s 2mmmmmmmmmmmm s ssasbbebbesbeseeeeeeaeas 30
7.5.2.19.5 TIMEI GCHIVE EXPIESSION .. .uuiiiiiiitetieeete et e et e e e e e e et e e et bbbttt ettt e e e e aaaaeeaesaa e as s remeemaeeeeeaaasssseeeeeaaaeaaaaaaeeens 30
7.5.2.19.6 ANYVAIUE EXPIESSION ...ciiiiiiiiieiiei ittt et e et e e e e e e e s e e e e e bbb bbb ettt eeeetaeaeeeas s smmmmmmeaeeeeessaassssnbasbanbaeneeees 31
7.5.2.20 Value returning ProCeaUIE Call....... ...ttt e e et e e e e e e e e e e s s e s s e nnnaneenes 31
7.5.2.21 EXEEINAL TRcveeeeieiiiiiee ettt ettt e e e st e e e s st et e e e e s e eann e e e e e e e s aannrr e e e e e s aanrrreeeeeaaa 31
7.6 Structural TYPiNg CONCEPLS 1N SDLeiiiiiiiiieiiiie ettt e e et e e e e e+ s—— 11111112111 31

7.6.1 Types, instances, and gates
7.6.1.1 Type definitions
T 0 I R S} V1 (=] 0 T 1 1 TP PPPPPPPPPPPRTPTTN
7.6.1.1.2 BIOCK LY ...ttt e e e e e e e e e e e e e e e

7.6.1.0.3 PrOCESS LY ..ttt e e e e e e e e e e e e e e e

7.6.1. 1.4 SEIVICE Y P eeeieiiiiieeie ettt et e e e e e e e e e st b b e e e e e eeaeanne

7.6.1.2 Type expression
7.6.1.3 Definitions based ON LYPES ...ooiiiiiiiiiiii ittt e e e e e e e e e e s smmmmmmmmmneees
7.6.1.3.1 System definition based on SYSteM tYPE......ccceeiieeieiiiiiiieeeeee e
7.6.1.3.2 Block definition based on bIOCK tYPeuuciiiiiii i
7.6.1.3.3 Process definition based on process type
7.6.1.3.4 Service definition based on service type
T.6. 0.4 GaALEttt et e e e e e ee ettt et e e e Ea e ————————_ 114114ttt £t £ bR bR e a e e e s
A 0] (=)l 0T U= U AT= (=] GO TSP PSPPPTTRTPUP
A TR TS o 1Tt = 122 T U
7.6.3.1 Adding properties
T.6.3.2 VIITUAI LY «..ceeeeeeeiiiiiee oot e et e et e e e e ettt et s e s eeeeeeeeeeeee e s s s eom——— 112 e et e ettt e tetnn e neeas
7.6.3.3 VirtUAl trANSITION/SAVEttt ettt et e e e e e oo 4o e oo a bbb b bt be e et e e et eaaaaaaaaaeaaaaaasaaaaannnanrrnes

B CONCEPLS INIMSC ...t e e e e e e e e e e e e e e e e e e eaaaeaeaaaeeesmmmmmmmmmmmmm s eeeeeeeeeeeas
T [gh oY (U ox i o] g T (o I \Y 11 GO PP R UPTPPRR
8.2 GENEIAI TUIES ...cceti ettt ettt e ettt e e e e ettt e e e e e stt s e e e e tban e aeennmmnsssstsseeesstanaeeeesatnaeeeesrrnnss
B.2.1 LEXICAI TUIBSceeiiie ettt e e e e s e e e e et e e e e e tbaeeeeeennan

8.2.2 Visibility and naming rules
S T2 T @0 1 41 4 1T= o |

8.2.4 DIraWING FUIESuuetiiiiieiiieie ettt e e e e e e e e e e e e e

8.2.5 PAgiNg OFf IMSCS ...ceiiiiiiiiiie ittt oo oo oo oot e bttt ettt et e e e e e e e e e mmmmmmmmmneen et beste e et e e e e e e aaaaaeaaaaaas
8.3 Message SequenCe Chart OCUMIEBNTS.u i i ittt e e e et e e e et e e aaesaasesaaannnbebbeeneeeeeees 35
8.3.1 MESSAQE SEUUENCE CRAIT.ttt ettt e et e e e e e e e e e e s e s s bbbt b e tbeeeeaeaaaaaeeeasaaaannsssbasbesbesseeees 35
B.3.2 INSTANCE ...ttt ettt e e oo oot ee e et e e Smmmmmmmmmmmm= s ettt e e et e e e e e e e e
SRR TR B 1V [T (o [P PP PRPURPPPRPPIN
8.3.3.1 MeSSage OVEItAKING......cciei ittt e

8.3.3.2 Incomplete messages

8.3.3.3 Correspondence between SDL and MSC DENAVIOUNcoiiiiiiiiiiiiiiiiieeeeee e eeeeee e e e e eeenaes 35
8.3.4 ENVIFONMENT @NU QALES ...eiiiiiiiiiii i it e e e e e e ettt e e e e e e e e e e et et e e et e et e e s e e e e e e e s mmm————— ettt s £t sa i a e nee s 36
TG TR = LT = 1 o o =T 1o Vo 36
SRS N SR o] s o {1110 ISP O PP PPTPOPPPPRPRN 36
SR N A 1101 SO TP P PP OUPPRTPPP
8.3.8 Action

8.3.9 INSTANCE CIEALIONeeeiiiiiiieiee e ettt e e ettt e e e st e e e s st et e e s st et e e e s s b e e et e e e s smne e e e e s saanneeeeessanbreeeeeesanrnneeeeenn 37
LIRS T KO I [0153 =Yg (o I (o] o TSP 37
S LU [oa (0 = o] g T =T o] £ TSP PR PR PPTPPOPPP 37
S 301 R o =T o [T TP 37

Page 6
DEG/MTS-00053: Jul-1998 mts05311.doc

8.4.2 INSLANCE AECOMPOSITION. ... ittt ettt ettt e e e e e e e e e e s e 4 Smm—— 1111111411111 e e nnne 37
B.4.3 INTINE EXPIESSION ...ttt e oottt ettt et e e e e e e e e e e e o e o e aa e et ettt s+ ¢ o ——— 11155552224t 2 e e e e e e e e e e eeeaaan 37
S Y R O £ (=T =T o o = OO PP RPPR PP 37
8.4.5 HIgh-1EVEI MSC (HMSC) ...ttt ettt etttk ettt ekttt e ekt £ et s £ £+ 415441k e e e 37

Annex A: Summary of use of SDL and MSC in ETSI Standards
A.1 Selection Of SDL CONCEPLSuuueiiiiiiiiaaeeeee ettt et e e e e e e eeeeeaaaaa e

A.2 Selection Of MSC CONCEPLSuuuiiiiiiiiieiie ettt e e e e e e e e e e e e e s e nbbe b e e s smmmnae

A.3 List of supplementary QUIdEIINES..........ou et mme e e e eeeeeess e e et eeeeeaaeaaaaeeas

HiS O Y oo e — Lt —————— e ————— 1ttt et ant e anetnnnnnnns 48

Page 7
mts05311.doc DEG/MTS-00053: Jul-1998

Page 8
DEG/MTS-00053: Jul-1998 mts05311.doc

Intellectual Property Rights

This clause is always the first unnumbered clause.

If you have received any information concerning an essential IPR related to this document please indicate the
details here.

Foreword

This clause is always the second unnumbered clause.

To be drafted by the ETSI secretariat.

Introduction

This clause is optional. If it exists, it is always the third unnumbered clause.

Page 9
mts05311.doc DEG/MTS-00053: Jul-1998

1 Scope

This ETSI Guide (EG) specifies a set of guidelines for the use of the Specification and Description Language (SDL)
and Message Sequence Charts (MSC) in ETSI standards that specify services, protocols or other forms of behaviol
Furthermore, brief guidelines for the use of the Abstract Syntax Notation One (ASN.1) for the definition of data
structures in combination with SDL are included in this EG.

The purpose of the rules and guidelines is to assist rapporteurs to produce standards which it is possible to validate
using automatic tools and which contain requirements expressed in a way that facilitates the conformance testing of
products that are claimed to implement the standard.

SDL is defined in ITU-T Recommendation Z.100 [1], SDL combined with ASN.1 is specified in ITU-T Z.105 [2]
and the use of MSCs is defined in ITU-T Recommendation Z.120 [3]. ASN.1 is defined in ITU-T Recommendations
X.680 [4], X.681 [5], X.682 [6] and X.683 [7].

The technical quality criteria specified in EG 201 014[12] are relevant to all standards but the need for "clarity",
"consistency" and the "correct use of formalisms" are particularly important in the facilitation of validation and the
derivation of conformance tests. Consequently, this guide uses these three principles as the basis for the
development of its guidelines.

This guide is not a tutorial in the use of SDL and it does not offer guidelines for the validation of a standard or the
production of a conformance test suite. ETSI publications that cover these subjects are:

- the Handbook to the validation methodology for standards using SDL, EG 201 015 [13];

- the Handbook for SDL, ASN.1 and MSC development, ETR 298 [11];

- the standard for Protocol and profile conformance testing specifications, ETS 300 406 [9];
These documents should all be read in conjunction with this EG.

SDL is a large and complex language containing many features and facilities which are ideally suited to use in
protocol standards and some which are not so well suited. This guide identifies those constructs which a rapporteur
can safely use in a standard to facilitate the validation of a specification and the development of conformance tests.
It also identifies a number of constructs that should be avoided in standards.

2 References

References may be made to:

a) specific versions of publications (identified by date of publication, edition number, version number, etc.), in
which case, subsequent revisions to the referenced document do not apply; or

b) all versions up to and including the identified version (identified by "up to and including" before the version
identity); or

c) all versions subsequent to and including the identified version (identified by "onwards" following the version
identity); or

d) publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

[1] ITU-T Recommendation Z.100 (1993): "Specification and description language (SDL)".
[2] ITU-T Recommendation Z.105 (1994): "SDL combined with ASN.1 (SDL/ASN.1)".

[3] ITU-T Recommendation Z.120 (1993): "Messages sequence charts".

[4] ITU-T Recommendations X.680 (1994): "Information technology - Open Systems

Interconnection - Abstract Syntax Notation One (ASN.1): Specification of basic notation".

Page 10
DEG/MTS-00053: Jul-1998 mts05311.doc

[5] ITU-T Recommendations X.681 (1994): "Information technology - Open Systems
Interconnection - Abstract Syntax Notation One (ASN.1): Information object specification".

[6] ITU-T Recommendations X.682 (1994): "Information technology - Open Systems
Interconnection - Abstract Syntax Notation One (ASN.1): Constraints specification".

[7] ITU-T Recommendations X.683 (1994): "Information technology - Open Systems
Interconnection - Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1
specifications".

[8] ISO 9646-1 (1992): "Information technology - Open Systems Interconnection-Conformance
testing methodology and framework - General concepts".

9] ETS 300 406 (1995): "Methods for Testing and Specification (MTS); Protocol and profile
conformance testing specifications; Standardization methodology".

[10] ETR184 (1995): "Methods for Testing and Specification (MTS); Overview of validation
techniques for European Telecommunication Standards (ETSs) containing SDL".

[11] ETR298 (1996): "Methods for Testing and Specification (MTS); Specification of protocols and
services; Handbook for SDL, ASN.1 and MSC development".

[12] EG 201 014 (1997): "Methods for Testing and Specification (MTS); ETSI Standards-making;
Technical quality criteria for telecommunications standards".

[13] EG 201 015 (1997): "Methods for Testing and Specification (MTS); Specification of protocols
and Services; Validation methodology for standards using SDL; Handbook".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following definitions apply:

abstract data type:the definition of data in terms of abstract properties rather than in terms of a concrete
implementation. An abstract data type defines a collection of data types (that is Z.100 sorts), a set of operators which
are applied to the values of these data types and a set of rules defining the behaviour when the operators are applied
to the values. (see Z.100 [1] 2.3.1, 5.1, Annex C)

conformance requirement:the description of a characteristic in a standard with which a product implementing that
standard is expected to conform.

conformance testing:the process of establishing the extent to which an Implementation Under Test (IUT) satisfies
both static and dynamic conformance requirements, consistent with the capabilities stated in the implementation
conformance statement (ISO 9646-1 [8], subsections 3.4.10, and 3.5.6).

data type: a set of data values with common characteristics (equivalent to the Z.100 term sort).

NOTE: When preceded by the word "abstract” then data type is always considered as part of the term "abstract
data type" and not as the term "data type".

implementation conformance statementa document supplied by the manufacturer of a product that defines which
standards are claimed to be implemented and which implementation options in the standards are supported.

implementation option: a statement in a standard that may or may not be supported in an implementation.

normative interface: a physical or software interface of a product on which requirements are imposed by a
standard.

state spacethe collection of all states of a system that can be reached from the initial state.

validation: the process, with associated methods, procedures and tools, by which an evaluation is made that a
standard can be fully implemented, conforms to rules for standards, satisfies the purpose expressed in the record of

Page 11
mts05311.doc DEG/MTS-00053: Jul-1998

requirements on which the standard is based and that an implementation that conforms to the standard has the
functionality expressed in the record of requirements on which the standard is based.

validation model: a detailed version of a specification, possibly including parts of its environment, that is used to
perform formal validation.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation no. 1

HMSC High-level message Sequence Chart
ICS Implementation Conformance Statement
ISDN Integrated Services Digital Network
MSC Message Sequence Chart

PCO Point of Control and Observation

SDL Specification and Description Language

4 Principles and general guidelines

The use of SDL within a telecommunications standard is not the same as its use in the design of a product. Wherea:
a product design needs to specify every detail of the operation a system, a standard should specify only the minimur
requirements for interoperability. This means that an SDL specification in a standard may require modification in
order to produce a validation model that is complete enough to be executable.

The purpose of a protocol standard is to specify the observable (testable) behaviour at the external, normative
interfaces of the system. In general terms, this means the relationships between stimuli and their corresponding
responses. Thuthe specific behaviour described using SDL in a standard is indicative only of the relationship
between incoming and outgoing signals and should not be treated as binding at the language or structure level
The only strict requirements on the structure of an implementation of the standard are the relationships that are
specified between functional entities linked by normative interfaces.

5 SDL in European Telecommunication Standards

5.1 Introduction

SDL diagrams should be presented in the main body of an ETSI standard together with the textual description, table
and figures. It is possible for either the SDL or the text to be considered as the normative specification within a
standard with the other providing supporting information. Whichever one is claostamdard should make it clear
whether the SDL specification is normative or informative

It is impossible to avoid the duplication of information if both text and SDL are used to describe the normative
requirements for a protocol or service, particularly if the text is normative with supporting SDL. This is quite
acceptable as the combination of textual and graphical presentations can make the specification easier to understar

However,if the normative description of a protocol is the SDL, the duplication of information should be limited
by using the text only to bring together requirements that are distributed over several SDL diagrams

5.2 Validation of specifications
EG 201 015 [13] defines validation as follows:

"The process, with associated methods, procedures and tools, by which an evaluation is made that a standar
can be fully implemented, conforms to rules for standards, satisfies the purpose expressed in the record of
requirements on which the standard is based and that an implementation that conforms to the standard has tf
functionality expressed in the record of requirements on which the standard is based.".

Page 12
DEG/MTS-00053: Jul-1998 mts05311.doc

This is a very broad definition which covers validation approaches from structured visual inspection of the text up to
field trials of telecommunications products. The overall validation process and a range of validation techniques are
described in ETR184 [10]

One of the most frequently used techniques for early validation of a standard is a detailed review of its contents
performed by experts. ETR 184 [10] and EG 201 015 [13] have identified formal validation as an important means
of further improving the quality of protocol and service standards.

521 Formal validation

Formal validation of a standard includes the checking of both the syntactic and semantic correctness of the
specification and establishing that the known requirements of the specified system are clearly and unambiguously
expressed within the standard.

The main validation techniques implemented in automatic tools are:
- interactive simulation;
"exhaustive" state space exploration;
- random state space exploration.

All these techniques depend on the specification being executable by computer. It is, therefore, essential that the
SDL specifications included in standards should comply with the rules of syntax and semantics described for the
language in ITU-T Recommendation Z.100 [1]. Before such a specification can be formally validated it will also be
necessary to specify:

- which implementation options have been selected;

- those parts of the system that are out of the scope of the standard but which are necessary to complete the
specification such that it is executable;

5.3 Testing of telecommunication products

5.3.1 Conformance testing

The purpose of standardizing telecommunication systems, services, protocols and interfaces is to enable the
inter-working of similar or associated products made by different manufacturers. Testing the conformance of a
product to a standard is considered to be essential in ensuring that the product is able to interoperate with other
products that implement the same standard or a complementary one.

A conformance test consists of two parts (ISO 9646-1 [8]):
- the static conformance review:

- checking whether the choices between the implementation options that the manufacturer claims to have
implemented is a combination permitted by the standard.

- the dynamic conformance test:
- execution of test cases to determine whether the product has implemented the standard correctly.

The purpose of a conformance test suite is to check whether a product conforms to the standard. Each test case
within a test suite is related to one conformance requirement of the standard.

In order to facilitate the process of test suite development, an ETSI standard should be able to identify:
- the conformance requirements in the standard;
- the interfaces of the product type that can be accessed for test execution;

- how the requirements can be tested using the available interfaces in a product that claims to implement the
standard.

Page 13
mts05311.doc DEG/MTS-00053: Jul-1998

Following the guidelines in this EG when writing an SDL specification in a standard should ensure that these criteria
are met.

6 Normative interfaces and requirements

6.1 Normative interfaces

The main goal of telecommunication standards is to identify normative interfaces and to define requirements on then
such that products that implement the standards (but which may be built by different manufacturers), can be
interconnected to jointly provide a telecommunication service.

An example of a normative interface in ISDN is the user-network interface (the S reference point).

A normative interface should not be confused with a Point of Control and Observation (PCO) which is a concept in
conformance testing (ISO 9646-1 [8]). Normative interfaces can coincide with PCOs, but a PCO is not necessarily a
normative interface.

A standard specifying a communications service or protocol normally defines only a subset of the messages that ma
pass across a normative interface. In an SDL model of such a service or protocol, these message routes are referre
to as communications paths and these would be considered to be normative where they are coincident with normati
interfaces.

In an SDL specificatiomormative communications paths should be marked with the comment “Normative”.

The example in Figure 1 shows a simple system where the channel between the "Terminal" block and the "Network"
block is identified as a normative communications path.

SYSTEM Access_Protocol 1(1)
7777777 NORMATIVE
User_Interface j Network_Interface
Terminal ‘ Network
Signals_ Signals_ NetworkTo_ TerminalTo_
ToUser FromUser Terminal Network

Figure 1: A system diagram with a channel marked “Normative”

NOTE: Some SDL tools do not allow comments to be attached to communications channels directly. The
effect can only be achieved by attaching the comment to one of the blocks and then dragging the end
of the comment line so that it appears to be attached to the channel. As an alternative, it is also
possible to append the comménhormative */to the channel name

Figure 2 shows an example where all channels between blocks are marked as normative communications paths whi
the channels to the environment are considered non-normative, i.e. no requirements are imposed on them.

Page 14
DEG/MTS-00053: Jul-1998 mts05311.doc

SYSTEM CTM_St3 [(RPINXtoICC)} [(VPINXtoFRP)} 1(1)
EXTERN - PREF
.- - INORMATIVE
[(ICCtoRPINX)} : [(FRPtoVPINX)}
QSIG3
Rerouting_PINX Visitor_PINX
[(VPINXtoRPINX)} [(RPINXtoVPINX)}
[(DPINX'(ORPINX)}
,,,,, NORMATIVE [(DPINXIOVPINX)}
QSIG4
Qsicas2 | Lo NORMATIVE

(VPINXtoDPINX)}

NORMATIVE
[(RPlewDPlNX)]
QSIG2
CTMI_Detect_ -+ Home_PINX
_PINX [(HPINXtoDPINX)} [(DPINXtoHPINX)

Figure 2: A system diagram with several channels that are marked as normative

The examples shown in Figure 1 and Figure 2 have used SDL channels to model the message paths at normative
interfaces. SDL allows processes to be defined in isolation but with a block and a system definition implied. Such a
process definition has an implied signal route to the boundary of the implied block and a delaying channel
connecting the implied block to the boundary (environment) of the implied SDL system. If this channel is intended to
be a normative communications path, it cannot easily be marked as norfattesses should be defined within

an explicit block and systenin those cases where this is not desirable an extended comment should be added to
identify which of the implied communications paths are to be considered as normative.

The specification of process types (or any other SDL object types) permits systems to be defined using a number of
discrete building blocks, each of which might be the subject of a separate standard. However, unlike processes,
process types cannot be specified in isolation and should always be defined within a package.

6.2 Normative requirements

It is important to make a distinction between the terms “Normative Communications Path” and “Normative
Requirements”. The former is a simple identification of the fact that a particular communications path carries only
protocol messages that are the subject of the specific standard or another related standard. The latter refers to the
structure and contents of messages passed across a normative communications path and to aspects of behaviour
which should be visible in a product implementing the standard. This behaviour includes the temporal relationships
that must exist between messages and the criteria to be established before a particular message is sent.

For each normative communications path there will be a list of messages that can be exchanged in each direction.
Messages carried across normative communications paths should be specified in SDL signal definitions and
marked as normative requirements.

Page 15
mts05311.doc DEG/MTS-00053: Jul-1998

SDL Signal definitions specify the data types of message parameters. The normative status of a message should
extend to its parametewll data types specified in the parameter lists of normative signals should be defined
using ASN.1 or SDL data formalisms and marked as normative requirements themselves.

The definitions of signals and data types needed for internal messages or for communication across non-normative
interfaces should be separated from normative definitions.

The following mechanism for marking is suggested. The SDL comment A NORMATIVE REQUIREMENT?/ is
inserted immediately before a normative definition and applies to all definitions that follow it in the same text
(usually within a text box) until either the end of the text (end of the text box) is reached, or there is a marking
*INFORMATIVE?/.

An example of signal and data specifications marked as normative requirement is given in Figure 3.

/*NORMATIVE REQUIREMENT */ B
*** Definition of INFORM Data Types ***/
NEWTYPE ctmilnform STRUCT
ctmUserNumber pisnNumber;
ENDNEWTYPE ctmilnform;
/* NORMATIVE REQUIREMENT */ J*** Definition of DIVERT Data Types ***/
SYNTYPE ctmiDivertRes = BOOLEAN ENDSYNTYPE ctmiDivertRes;
/** Definitions of Signals From Rerouting PINX **/ NEWTYPE ctmiDivertErr
LITERALS notAvailable,
SIGNAL unspecified
rpinx_SETUP(SetupArg,ctmilnform), OPERATORS
rpinx_FACILITYDivVErr (ctmiDivertErr), ORDERING
rpinx_DISCONNECTDivRes (ctmiDivertRes); ENDNEWTYPE ctmiDivertErr;

Figure 3: Normative requirements imposed by signal and data definitions in SDL diagrams

In this particular example, the data definitions are given in SDL data formalism. The alternative is to define data
using ASN.1 as described in ITU-T Recommendations Z.105 [2] and X.680 [4]

The definition of messages and their parameters is not sufficient to completely define a normative communications
path. The sequences of messages expected at the normative interface also need to be specified. These sequences
be defined by the behaviour specified in SDL process graphs that send and receive messages across the normative
communications path.

The sequencing of messages can also be expressed very well using MSCs without any associated SDL but there ar
some problems and limitations in this approach, thus:

- the number of MSCs required for such descriptions is usually large;

- while individual MSCs are readable and easy to understand, the collection of charts that is needed to describe
a set of possible sequences is considerably less easy to read;

- for all practical purposes it is impossible to specify a compete set of MSCs that fully describes the overall
behaviour of a protocol.

MSCs should be used to define the sequence of protocol messages required for normal operation and the
sequences expected in the most significant exceptional cad8€s are useful in the specification of signalling
protocols and can be used for the following purposes:

- as a starting point for developing SDL behaviour descriptions;
- for the validation of SDL specifications;

- for guiding the selection of test purposes;

for the derivation or generation of test cases;

as an aid to understanding.

The complete behaviour in terms of all observable message sequences should be defined using SDL behaviour
descriptions SDL descriptions are likely to duplicate the behaviour specified in MSCs but this kind of redundancy is

Page 16
DEG/MTS-00053: Jul-1998 mts05311.doc

encouraged. Howevdhe MSC description of a sequence of messages should be consistent with the SDL
description of the same sequence

In an SDL specification, behaviour is described by the processes contained within SDL blocks. These blocks should
be regarded as normative only in terms of the observable effects at their normative interfaces. Their division into
processes and procedures should not be considered to be normative.

7 Specification and description language concepts

7.1 Introduction

ITU-T Recommendation Z.100 [1]specifies a wide range of language concepts for SDL. Many of these concepts can
be used effectively in telecommunications protocol standards. There are others, however, which should be avoided
or, at least, used with great care.

The concepts in this clause are presented in the same order as Z.100. but the numbering does not follow precisely
because:

some clauses (such as introductory sections) have been omitted;
- in some cases several sub-clauses in Z.100 are treated in one clause in this document;
- where necessary extra clauses have been added for concepts in Z.105;

- the use of some of Z.100 concepts are described together with another concept where they are more
appropriate (for example the useimternal inputis described undeénput);

- some additional clauses have been added (for exampfeafwo.

It is expected that SDL is used with ASN.1, and that ITU-T Recommendation Z.105 [2] (which is based on Z.100) is
used. The relevant subclauses in this document also include guidelines on the use of Z.105.

The following subclauses identify the SDL concepts used in Z.100 and provide a classification and justification for
each, as follows:

Use freely

- the feature is without any negative impact on validation and testing and may have positive benefits. It can
be used wherever applicable but should always conform to the rules of SDL syntax and semantics;

- Use with care
- use of the feature may make validation and testing more difficult;
- Not recommended
- use of the feature usually makes validation and testing difficult;
- Do not use
- use of the feature is likely to produce a model that cannot be validated or tested.

Particular attention is paid to those concepts that are classified as "use with care" and "not recommended" to ensure
that the criteria for using or avoiding the concepts are clearly expressed.

Page 17
mts05311.doc DEG/MTS-00053: Jul-1998

7.2 Basic SDL

7.2.1 General rules

7211 Lexical rules

ASN.1 does not permit the use of the characters '{’, '}, T, T, '|' (vertical bar) and space in names although they are
permitted by the lexical rules of SDL. These characters should not be included in any names used within the SDL in
a standard.

SDL does not support the use of a hyphen in names and, thus, names with hyphens should be avoided in ASN.1
modules.

NOTE: Z.105 specifies that hyphens in ASN.1 names should be converted to underscores when imported into
SDL specifications.

7.2.1.2 Visibility rules, names and identifiers

There are no specific recommendations on the use of SDL visibility rules, names and identifiers

7.2.1.3 Informal text

The syntax of SDL permits informal text to appear in both task symbols and decisions but in neither case does it
specify what the resultant behaviour should be. To avoid this ambiguity, informal text should not be used. As shown
in Figure 4, the following alternative approaches can be used:

- informal text in task symbols can be replaced with procedure calls (even if dummy procedures are specified
initially);

- informal text in decisions can be replaced wigyatype Meaningful terms for the decision results can be
specified usingynonyms

synonym Success BOOLEAN = TRUE;

syntype SetupRespnse = BOOLEAN endsyntype;
synonym Failure BOOLEAN = FALSE;

Analyse Input Analyselnput_
Parameters Parameters

Setup
uccessful?2

No Success Failure

Figure 4: Alternatives to the use of informal text
NOTE: Although not often used in standards, the correct syntax of informal text is that it is enclosed in single

quotes (e.g., 'text). If the use of informal text is unavoidable in a standard then this form should be
used.

7.2.1.4 Drawing rules

There are no specific recommendations on the use of SDL drawing rules

Page 18
DEG/MTS-00053: Jul-1998 mts05311.doc

7.2.1.5 Comment

SDL comments should be used freely to annotate specifications.

7.2.1.6 Text extension

Text extensions may be used freely within specifications.

7.2.1.7 Text symbol

The text symbol is an essential component of an SDL specification and should be used wherever necessary.

7.2.2 Basic data concepts

An SDL description that does not use data is only useful for very simple descriptions. Data needs to be used to give
formal meaning to tasks, decisions and parameters. More information on thedatz tgpesandexpressionsan
be found in subclause 7.5

7.2.2.1 Data type definitions

SDL data type definitions may be used freely within specifications although it is generally more acceptable to use the
ASN.1 language to specify data types (sorts) in telecommunications standards. Neither SDL nor ASN.1 place

implicit restrictions on the values of unbounded data types (such as Integer or Octet String) that can be assigned to a
variable of that data type. As an example, integer variables are assumed to have a maximum value & infinity.
bounded range of possible values should be specified for all data types (SDL sorts), particularly implicit types

such as INTEGER and REAL.

7.2.2.2 Values and literals

SDL values and literals may be used freely within specifications.

7.2.2.3 Expressions

Expressions are a fundamental concept in SDL and should be used freely.
7.2.3 System structure

7.2.3.1 Organisation of SDL specifications

7.2.3.1.1 Package

The SDL package is a valuable tool in structuring a specification into easily identifiable units that can be reused in
several places. It is a similar construct to the ASN.1 "module" and may be used freely.

7.2.3.1.2 Referenced definition

The use of graphical diagrams makes it essential that referenced definitions are used.

7.2.3.2 System

The SDL system construct is a valuable tool in the specification of telecommunications protocols and services and
should be used wherever necessary.

7.2.3.3 Block

The SDL block construct is a valuable tool in the specification of telecommunications protocols and services and
should be used wherever necessary.

Page 19
mts05311.doc DEG/MTS-00053: Jul-1998

7.2.3.4 Process

The SDL process construct is an essential tool in the specification of telecommunications protocols and services anc
should be used in all such standards.

7.2.3.5 Service

The semantics of the SDL service construct can be misleading and for this reason are not recommended for use in
standards.

7.2.3.6 Procedure
SDL procedures are valuable for segregating specific aspects of behaviour within the specification of a
telecommunications protocol or service and should be used freely.

7.2.4 Communication

7.2.4.1 Channel

Channels are essential for the interconnection of SDL blocks and should be used freely for this purpose in
specifications.

It is possible to specify a channel with delay but this facility should be used with care. If more than one delaying
channel is used to connect two blocks, the order of arrival of signals in the input queues is not determinable.

7.2.4.2 Signal route

Signal routes are essential for the interconnection of processes and for the connection of processes to the boundari
of blocks. As such, they should be used freely within specifications.

7.2.4.3 Connection

Connection labels are used in block diagrams to specify the connection of signal routes to channels at block
boundaries. These should be used freely in specifications using blocks rather than block types. Specifications using
block types should use gates for this purpose (see subclause 7.6.1.4).

7.2.4.4 Signal

SDL signals are essential in the identification and structural definition of protocol messages are permitted to pass
across each communication path in a standardized system and should be used freely

7.2.4.5 Signal list definition

SDL signal list definitions provide a very convenient shorthand for collecting and naming groups of related signals.
They can make a specification easy to read and should be used extensively.

7.2.5 Behaviour

7.25.1 Variables

Variables are an essential concept in the specification of SDL processes and should be used freely.

7.25.1.1 Variable definition

Variable definitionsare used to declare the data type of an 8&iable (dcl) and, if necessary, to assign an initial
value. They should, therefore, be used freely within specifications

If a variable is not initialized before it is accessed, then, according to Z.100, its contents are undefined. The
subsequent behaviour of the system is likely to be unpredictable, particularly if the variable is based on a composite

Page 20
DEG/MTS-00053: Jul-1998 mts05311.doc

data type such as an Array, a String or a Struct. For this reskoamposite data types should be initialized,
preferably by a default initialization defined in the data tygeor example:

newtype Chartable Array(Character, Octet)

default (. 'FF'H.) comment initialize whole array to the hex value FF;
endnewtype Chartable;
dcl Chartab Chartable := (.0 .) comment alternative initialization to zero;

SDL permits variables to be identified irdel statement aevealedor exported. The dangers of using these
facilities are discussed in subclauses 7.2.5.1.2 and 7.4.12 respectively.

7.25.1.2 View definition

SDL permits avariablein one process to be declared ageavof avariable (declared agevealed in another

process. This then implies that the viewing process can accegzitiide for reading at the same time that the

revealing process is writing to it and this can lead to severe data synchronization problems. Consequently, view and
reveal should not be used.

7.25.2 Start

The SDL start symbol is an important marker in a process diagram and should always be included. It is syntactically
incorrect to omit it.

7.25.3 State

State symbols are essential in the specification of SDL processes and should be used freely.

7.25.4 Input (and invalid stimuli)
Input symbols are essential in the specification of SDL processes and should be used freely

A conformance test of a system may include tests for responses to invalid stimuli. However, the concept of an invalid
stimulus does not exist in SDL. All declared signals are valid when received in inputs. The semantics of SDL
assumes that the environment of the system sends only valid signals to the system.

If there is a need to specify the response of the system to an invalid stimulus, this should be defined explicitly using
an appropriately named signal. Such a signal may represent more than one stimulus.

7.25.5 Save

Save symbols may be used freely within SDL specifications.

7.2.5.6 Spontaneous transition

A spontaneous transition can be executed any time without specifying precisely when and why it happens. It usually
means that the stimulus that actually triggers such activity is not modelled. Spontaneous transitions lack the precision
of specification that is necessary in most standards and should not be used

7.25.7 Label

Labels uniquely identify the point in a process graph where corresponding joins continue processing (see
subclause 7.2.5.9) and should be used freely for this purpose.

7.2.5.8 Nextstate
The Nextstate symbol is essential in controlling the flow of a process and should be used freely.

SDL permits the use of a hyphen (-) character in a Nextstate symbol to indicate that the process should remain in the
same state and this should be used with care (see subclause 7.4.8).

Page 21
mts05311.doc DEG/MTS-00053: Jul-1998

7.25.9 Join

Join symbols can be used freely although indiscriminate use can make process graphs difficult to read.

7.2.5.10 Stop

The stop symbol can be freely used for terminating dynamically created processes. They should not be used in
processes that are not created dynamically unless the standard specifically requires operation to cease under certai
circumstances.

7.2.5.11 Return

Return symbols identify the end of processing in procedure and operator diagrams and should be used freely for thic
purpose.

7.2.6 Action

7.2.6.1 Task

Task symbols are essential in specifying the functions represented by a process and should be used freely.

7.2.6.2 Create

Create symbols should be used freely when the dynamic creation of process instances is required.

7.2.6.3 Procedure call

Procedure call symbols represent in graphical form access to procedures (see subclause 7.2.3.6) and should be use
freely for this purpose.

Access to value-returning procedures cannot be gained using the procedure call syroabblkélye/ord must be
used instead.

7.2.6.4 Output

Output symbols are used to represent the flow of protocol messages from one process to another and should be ust
freely.

7.2.6.5 Decision

Decision symbols represent the dynamic choices that can be made within a process and should be used freely.

7.2.7 Timer

Timers are valuable in the specification of protocols and should be used freely.

7.2.8 Internal input and output

Internal input and output are semantically equivalent to normal input and output. If their use is felt to improve the
readability of specification, they can be used freely.

Page 22
DEG/MTS-00053: Jul-1998 mts05311.doc

7.3 Structural Decomposition Concepts in SDL

7.3.1 Partitioning

7.3.1.1 Block patrtitioning

Blocks can be partitioned into further blocks (using a block substructure) or a number of processes and this
capability should be used freely.

In standards, blocks should not contain both processes and a block substructure as they represent alternative
descriptions of the same behaviour. Also, in order to ease understanding for the human reader, the number of
constituent processes specified in a single block should be kept to a minimum

7.3.1.2 Channel partitioning

Channel partitioning creates alternative descriptions of a system at different levels of abstraction. It is difficult to
derive conformance requirements from a standard that specifies aspects of a system at more than one level of
abstraction and, therefore, channel partitioning should not be used.

7.3.2 Refinement

Refinement is used to specify signals at different levels of abstraction. It is difficult to derive conformance
requirements from a standard that specifies aspects of a system at more than one level of abstraction and, therefore,
refinement should not be used.

7.4 Additional Concepts of Basic SDL

7.4.1 Macro

Macros are expanded before the general grammar rules of SDL language are applied. The first consequence is that it
is difficult to analyse the errors arising from expanded macros. Second, the SDL contained in the unexpanded
macros may be difficult to understand. Finally, macros are not subject to the SDL scoping rules leading to increased
likelihood of name clashes. The overall effect is that macros can be prone to errors.

Macros should only be used for some limited, well thought out purposes where their use can be proven to bring
benefits and the macros have be shown to produce the required functionality

Some specific guidance is given for each of the sub-categories.

7.4.1.1 Macro, graphical behaviour

A graphical behaviour macro call symbol is expanded with the matching graphical macro definition containing part
of an SDL process graph. Macro definitions that have one inlet and one outlet are preferred. In most situations
procedures represent a superior alternative to graphical behaviour macros.

74.1.2 Macro, structural

A structural macro call symbol is expanded with the matching graphical macro definition containing part of an SDL
system or block diagranstructural macros should not be used because they do not help in understanding the
specification of structure Superior SDL constructs, such as the partitioning of structures into several layers and the
use of instances of block and process types should be used instead.

7.4.1.3 Macro, textual

The textual macro call (keywordacro followed by macro name) is expanded with the text contained in the
matching macro definition. These should be kept simple and used with care.

Page 23
mts05311.doc DEG/MTS-00053: Jul-1998

7.4.2 Generic system definition

A system specification may have optional parts and system parameters with unspecified values in order to meet
various needs. Such a system specification is referred to as "generic". Its generic property is specified by means of
external synonyms. Most standards tend to describe generic systems with many optional features.

7.4.2.1 External synonym

External synonyms are particularly appropriate in the specification of options and should be used freely

7.4.2.2 Simple expression

Simple expressions are SDL expressions that rely only on data types (their literals, values and operators) that are
predefined as part of the SDL language standard. They can be evaluated statically without interpretation of the whol
SDL model and should be used freely.

7.4.2.3 Optional definition (The select construct)

The select graphical symbol is a graphical line surrounding part of an SDL system or block diagram and containing ¢
simple Boolean expression which is usually based on an external synonym. The select symbol can be quite effective
where a simple exclusive choice is to be made between two similar sections of a specification. However,

standards where it is necessary to specify multiple or complex options, the use of system and block types may be
easier to understand than the use of numerous select symbols

7.4.2.4 Optional transition string

The option symbol in a transition allows the processing to branch based on the value of the simple expression
contained in the option symbol. However, unlike decisions where the value of the expression changes dynamically,
the value of the expression in option symbol can only be determined statically. In stamplawda] transitions

should be used freely to model the differences in behaviour between implementation apfivmgxpressions in

the option symbols should thus be based on external synonyms that reflect choices that can be specified in ICS
documents.

7.4.3 Asterisk state

Asterisk state is a way of specifying that in all states the mentioned inputs are processed in the same way. This can
contribute to the overall reduction of the size of the specification but may lead to misinterpretation, particularly if
used in a complex process specification with a large number of states.

It should be used with care, particularly if in combination with asterisk input and save symbols.

7.4.4 Multiple appearance of state

Several appearances of a state with the same name are often needed to split the state specification over several pa
of SDL diagrams. For the purpose of simplicity, this approach should be used freely but it is advisable to use
comments to indicate the existence of other partial state specifications.

7.4.5 Asterisk input

Asterisk input is a convenient shorthand notation for specifying the actions that follow the reception of any signal not
explicitly mentioned in a particular state. This may help to reduce the overall size of the specification. However, it
tends to lead to errors in specifications and is likely to cause difficulties in validation and testing. The main problem
is that the actual signals that are covered by this notation can be misunderstood, both by the rapporteur and by the
readers. It is safer to use an explicit list of signals instead.

7.4.6 Asterisk save

Asterisk save is a convenient shorthand notation for specifying that all signals not explicitly mentioned in a particular
state are kept in the input queue for later processing in some other state. The main problem is that the actual signals

Page 24
DEG/MTS-00053: Jul-1998 mts05311.doc

that are covered by this notation can be misunderstood, both by the rapporteur and by the readers. It is safer to use an
explicit list of signals instead.

7.4.7 Implicit transition

Any signal that is mentioned in neither an input nor a save symbol is discarded. If the signal requires such treatment,
it should either not be sent to the input queue or it should be removed by an explicit empty transition.

Implicit signal consumption can be detected in the validation of an SDL model. While this may not be an error, it
often indicates that a signal has arrived in a state where this was not anticipated. As this can imply that there might
be problems in the design, it is very useful to examine such situations.

Implicit transitions should be avoided in the specification of behaviour in a standard.

7.4.8 Dash nextstate

Dash nextstate is a way of indicating that a transition should terminate in the same state that it started from. It is used
when a transition or a part of it is common to more than one state.

It can lead to errors when part of the transition is specified in one state graph with a join statement to a label in
another state graph where processing is completed. A common error in this case is to assume that the dash nextstate
will terminate the transition in the state at the start of the thread containing the dash nextstate symbol. Figure 5 shows
two state transitions which join at label "A". A transition from State_1 will return to State_1 when the dash nextstate
symbol is encountered whereas a transition from State_2 will return to State_2, not State_1.

> State 1

71 State_2

é_—_-_—_—_—_—_-_.

e —— e ———— =
~

Figure 5: Example of the use of dashed nextstate

There appear to be no problems if the dashed nextstate is used where no part of the transition is common to several
states, but that often changes in the course of the development. For such situations the recommendation still is to
explicitly specify the state name in the nextstate symbol.

Page 25
mts05311.doc DEG/MTS-00053: Jul-1998

For the reasons stated above dash nextstate should preferably be used in situations where the whole transition is
common to many states.

7.4.9 Priority Input

Priority inputs are useful for allowing certain events to be processed ahead of their position in the normal
chronological sequence and should be used freely for this purpose.

7.4.10 Continuous signal

Continuous signals are a convenient way of triggering a transition on the basis of a boolean condition rather than a
signal and can be used freely for this purpose.

7.4.11 Enabling condition

Enabling conditions can lead to non-deterministic observable behaviour which can result in either of the following
situations when testing:

- the condition having parameters (for example, sent in a previous message), thus making the test more
complex, in order to make the test decidable;

- apparent non-determinism (from the tester point of view) remaining in the validation model so that the test
will often be "inconclusive".

Given this problem and the complex rules that govern the use of enabling conditions and since the same can be
expressed using normal input and save symbols in different states, enabling conditions should not be used in
standards.

7.4.12 Imported and Exported value

Import and export are shorthand notations for accessing variables from other processes. The implication of these
constructs is that signals are sent between the processes. As SDL does not permit the explicit specification of the
form and contents of these signals and as they may appear on normative interfaces, their use is unacceptable within
standards and should be avoided. Explicit signal exchanges should be used instead of Import and export.

7.4.13 Remote procedures

Remote procedures are called from one process but defined and executed in another. As they can transfer values ir
both directions, they generate signals which are implicitly rather than explicitly specified and should be avoided
except in instances where it is certain that the calling process and the remote procedure will always be co-located. I
such cases, remote procedures can be used effectively to provide access to data that is common to a number of
processes.

Remote procedure calls should always specify the destination of the call in the same way as output signals.

7.5 Data in SDL

Data is essential in giving formal meaning to any SDL system. It is conveyed in the parameters of signals and is helc
in variables within processes. Each of these parameters and variables has an associated data type (called sort in SI
and can either be undefined or contain a value in the range that has been either explicitly or implicitly defined for
that data type.

7.5.1 The data kernel language

Abstract data types are defined by a set of algebraic equations listeciiotms of anewtype This approach is

the basis for establishing the properties of data in SDL and the Predefined data for SDL and this is called the data
kernel in Z.100. SDL with ASN.1 is also defined using this approach. However, only a few of the corresponding
SDL constructs should be used freely, as in general the algebraic approach is difficult to use and error prone.

Page 26
DEG/MTS-00053: Jul-1998 mts05311.doc

7.5.1.1 Data type definitions

Data type definitions (using the keywardwtype) are essential for identifying new data types and for specifying
their structure and scope. More information on the use of data types can be found in subclause 7.2.2.1
7.5.1.2 Literals and parameterised operators

Names for values of a data type are listelitasals, which can be used freely.

The name, parameter types and result type for each operator are listedpandtars. Theoperators introduced

by anewtype can be used freely. For clarity, it is preferable to have a textual operator definition or a reference to an
operator diagram that is described informally, rather than informal text aridens An operator that is not

described formally should be definedeagernal. Because the body of axternal operator is not defined in SDL,

such operators should be used with care and a good description of the operator should be given.

7.5.1.3 Axioms and conditional equations

Experience has shown that it is difficult to generate a set of correct and coaxpete and that in most cases it is
not possible to derive an executable model from a specification which incorpotat®s. For these reasons,
axiomsshould not be used to define the properties of operators.

Conditional equations are a class of equation specified axgens and therefore should not be used.

7.5.2 SDL expressions and data types
Expressions are a fundamental concept in SDL and should be used freely.

Many constructs exist in SDL for writing expressions that depend simply on the literal values of data types and are
independent of variables or value returning procedure calls or the SDL imperative opamtomnport, parent,
offspring, self, sender, active or any). These expressions are treated under "Passive use of Data" in Z.100 which
defines constructs to allow:

- data types to be inherited;
- structures to be defined
- the use of:
- infix operators
for example, a + b instead of plus(a, b);
- conditional expressions
of the form,if boolearnthen consequence expressielsealternative expressidit
- character string literals.

These constructs can and should normally be used freely with variables, value returning procedure calls and
imperative operators.

Expressions that do not depend on the value of a variable or procedure call or imperative operator are called ground
expressions in Z.100 and can be used freely. Ground expressions are the only expressions allowed in some contexts
such asynonymdefinitions.

7.5.2.1 Special operators

The infix operators (=>gr, xor, and, in, /=, =, >, <, <=, >=, +,/, *, /inod, rem, -) and the monadic prefix

operators (-not) should be used freely for the data types defined by the package Predefined and for other data types
derived from them. If new operators are defined using operator diagrams, special operator names and symbols
should not be used.

Page 27
mts05311.doc DEG/MTS-00053: Jul-1998

7.5.2.2 Character string, Bit_String and Hex_String literals

Character string literals are used to denote values of the predefined data types Character (for single characters) anc
Charstring (for one or more characters) and should be used freely for this purpose.

Bit_String or Hex_String literals are used to denote values of (or derived from) the Predefined data types Bit_String
and Octet_String and should be used freely for this purpose

7.5.2.3 Predefined data, equality and noequality

Thepackage Predefined' of Z.105 defines a number of useful data types such as Integer, Boolean and IA5String.
Some of these data types have a fixed size (for example, Boolean can only take the values 'True' and 'False’) where
others are not bounded (integers, for example, can take any value up to infinity).

There are a number of other aspects that need to be considered when using predefined data, as follows:

- The data typany can have an infinite number of values but without denotations for the values. It should only
be used for values that are passed transparently from one external interface to another. For validation and
testing it is necessary to replaangy by an actual data type. For these reasons the @8/ & not
recommended.

- The itemsBit, Boolean Character, Null andOctet are data types that can be used freely. Each of these data
types have a finite number of values as follows:

- Bit(2);

- Boolean(2);

- Character(128);
- Null(2);

- Octet(255).

- The data typebiteger andNatural do not have defined bounds. Therefaymtype andnewtype should be
used to limit the range of values for variables and parameters of these types.

- The itemsDuration, Real andTime are data types based on rational numbers (that is any number that can be
represented by one integer divided by another integer) and therefore there are neither defined bounds nor a
limit to the precision of these numbers. The unlimited precision means that there is always some valid value
that is between any other two values. These types should therefore be used with care and syntype and newty
should be used to limit the range of values for variables and parameters of these types.

- ThePid data type can be freely used for process identity values. It is not possible to use it for any other
purpose.

- The itemsArray , Bag, Powerset String andString0 are generators that can be used to define new data
types.

- Bag, String andString0 generate data types that define strings of unlimited length so these must be used
with care to ensure that the actual length is bounded.

- Arrays can be used freely, provided the index has a finite number of values.

- Powersetshould be used with data types that have a limited number of values such as a user defined
enumerated data type.PPowersetof a data type that has a large or infinite number of values also needs
large or infinite numbers of values. They should be used with care and should not be sent as a signal
parameter across a normative interface.

- The itemsBit_String, Charstring, GeneralizedTime GraphicString, IA5String, NumericString,
Octet_String, PrintableString, UniversalString, UTCTime andVisibleString should be used with care
because they are based on string generators and therefore have no maximum length. It is prefersibke that a
(see Z.105) is specified, for example:

syntype Bits16 = Bit_String constants size (0:16) endnewtype Bits16;

Page 28
DEG/MTS-00053: Jul-1998 mts05311.doc

- TheString data type is also used to provide the operators that ASRQUENCE OF data types inherit.
Therefore ASN.ISEQUENCE OF data types can be used freely, provided therei®especified.

- The purpose of thBag data type is to provide the operators that ASBET OF data types inherit, and
should not be used directly. However, ASISET OF data types can be used freely, provided theresizea
specified to limit the actual size of tBag values.

- The purpose of thEnumeration data type is to provide the operators that ASEBNUMERATED data
types inherit, and therefore should not be used directly. However, ANJMERATED data types can be
used freely.

- The itemsEXTERNAL _Type, Object_element Object_ldentifier , andObjectDescripter are ASN.1 data
types that can be used according to the ASN.1 rules.

By default, all data types have the “=" and “<=" operators defined, so these can be used freely. The keyword
noequality can be used for defining Predefined data but should not be used in normal specifications.
7.5.2.4 Boolean axioms, conditional terms and error!

Boolean axioms, conditional terms and the keyvwesrdr! are used to specify operator properties using axioms and
therefore should not be used (see subclause 7.5.1.3).

NOTE: Conditional expressions (rather than conditional terms) can be used freely.

7.5.2.5 Ordering

The keywordordering can be used freely when introducing a set of literals in SDL for a user defined type. It has the
effect of defining the operators “,”, “>”, “<=" and “<=", such that the literals are ranked in the order they are listed in
the specification.

7.5.2.6 Syntypes and range conditions

A syntypecan be used freely in specifications to introduce an alternative name for a data typerstdrasrange
condition associated with this name. This enables the value used in variables and parameters to be bounded, and
enables checks to be made that the values are in range. Therefistantswith a bounded range condition should

be used freely.

The constantsrange condition limits values that a parameter or variable of a data type can have and can be used
freely, provided the number of values is bounded.

7.5.2.7 Structures, SEQUENCE, SET and CHOICE

An SDL struct, an ASN.1 SEQUENCE or an ASN.1 SET can be used freely to define a structured data type that has
named fields, where each field may have a different data type. For fields of a SEQUENCE or a SET, the attributes
optional and default can be used freely.

An ASN.1 CHOICE data type is a special case of a structured data type where all the fields are mutually exclusive,
and value of the structure is the same as the value of the present field. CHOICE data types should be used with care,
because the actual value which is present may not be clear.

7.5.2.8 Inheritance

A newtypewith the keywordnherits can be used freely to specify that one data type is distinct from another one
but inherits the same set of values, literals and the specified set of operators. An ASN.1 sort assignment is an
alternative syntax for the same thing and can be used freely to inherit values, literals and all operators.

NOTE: Z.105(03/95) contains an error in stating that:
Integerlist ::= INTEGER(0..5 | 10);
is the same as:

syntype S = Integer(0..5 | 10) endsyntype S;

Page 29
mts05311.doc DEG/MTS-00053: Jul-1998

whereas it is, in fact, the same as:

newtype Integerlist
inherits Integer
operators all
Integer(0..5 | 10)
endnewtype Integerlist;

7.5.2.9 Generators

Although generators are used to define templates for some Predefined data types such as Array, general use is not
recommended because there is only limited checking that can be done on a generator before it is applied. Data type
with context parameters provide an alternative mechanism for defining such templates that is consistent with the way
other types used in SDL.

7.5.2.10 Synonyms

Synonyms should be used freely to give meaningful names to values. They can be defitexhalsor values that

are used to distinguish implementation options.

7.5.2.11 Name class literals and literal mapping

Name class literals allows a large number of literals to be defined for a data type. It is useful mechanism for defining
the literals of Predefined data such as Integer and Charstring. However, it is not recommended for general use
because:

- it can be difficult to validate that specifications using the construct are correct;
- it can easily lead to data types with infinite numbers of values.
Wherever possible the literals should be listed explicitly.
Because literal mapping is associated with both name class literals and thaxiemefit should not be used (see
subclause 7.5.1.3).
7.5.2.12 Operator definitions and operator applications

Operator definitions allow operators to be defined in a manner resembling value returning procedures. They should
be used freely to specify the function of operators introducedé@wsype.

Operator applications can be used freely to invoke either user defined operators, or operators inherited from
Predefined data.
7.5.2.13 Indexed primary and indexed variable

An indexed primary is normally used to access an array or a string item and can be used freely for this purpose. An
indexed primary can also be used with any other data type for which the Extract! Operator is defined but it is not
recommended that this operator is introduced explicitly for user defined data types.

When assigning a value to an indexed variable (array element), it is required that the complete (array) variable is
assigned a value before an assignment is made to the indexed part of it. Otherwise, indexed variables can be used
freely.

7.5.2.14 Field primary and field variable

A field primary is normally used to access the field of a structured data type and can be used freely for this purpose.

When assigning a value to a field variable (structure element), it is required that the complete (structure) variable is
assigned a value before an assignment is made to the indexed part of it. Otherwise, indexed variables can be used
freely.

Page 30
DEG/MTS-00053: Jul-1998 mts05311.doc

7.5.2.15 Structure primary (and array value)

A structure primary of the form, ‘(. <expression list>.)’, can be used freely to construct a structure value from a list
of values corresponding to the fields of the structure. The same construct can also be used freely in the form,
‘(. <expression> .)’ to construct a value for a complete array where every element has the same value.

A structure primary can also be used with any other data type for which the Make! Operator is defined, but it is not
recommended that this operator is introduced explicitly for user defined data types.

7.5.2.16 Conditional expression

A conditional expressiorif(<booleanthen <ground expressionelse<ground expressionft) can be used freely
wherever an expression is heeded.

7.5.2.17 Variable access

Variables can be accessed freely but care should be taken that a variable has a value associated with it either by
assignment or from initialization. A variable that does not have a value is undefined and an access in this case means
that the further behaviour of the system is undefined.

7.5.2.18 Assignment statement

Assignment statements can be used freely.

7.5.2.18.1 Default initialization

Default initialisations ensure that an initial value is pre-set into the relevant variable. They can help to avoid
indeterminate behaviour and should be used freely.

7.5.2.19 Imperative operators

7.5.2.19.1 Now expression

Thenow operator to obtain the global system time should be used with care, because it is unlikely that real systems
can maintain a globally synchronised clock. Its primary use within standards should benowtkerin’ form for
setting timers:

Example:

set (now + 50, Timerl)

7.5.2.19.2 Import expression

Theimport expression for obtaining the value of a variable in another process should not be used. For more details
see subclause 7.4.12

7.5.2.19.3 Pid expression

The Pid expressionzarent, offspring, senderandself provide the identities of the current and related processes.
They can be used freely for the control of processes but, because of their transient nature, should not be used for
identification purposes within the parameters of signals sent across normative interfaces.

7.5.2.19.4 View expression

Theview expression for obtaining the value of a variable in another process should not be used. For more details
see subclause 7.2.5.1.2.

7.5.2.19.5 Timer active expression

Theactive expression can be used freely to check if timers are active.

Page 31
mts05311.doc DEG/MTS-00053: Jul-1998

7.5.2.19.6 Anyvalue expression

Theany expression should not be used because its behaviour is not determinable and is, therefore, impossible to
validate or test.

However, within a validation model, tla@y expression may be useful for specifying non-deterministic behaviour,
such as user activity, where the interaction with the system is via non-normative service interfaces. Afheiever
used, a comment should be added to explain the basis for determining the value.

7.5.2.20 Value returning procedure call

Value returning procedures can be used very effectively to improve the readability of an SDL specification and
should be used freely.

7.5.2.21 External data

Because the meaning of external data to refer tdtamative data formalism is not well defined, it is likely to lead
to misunderstanding and ambiguities and should not be used.

7.6 Structural Typing Concepts in SDL

SDL systems, blocks and processes have the basic characteristics of objects - they contain internal data and
communicate in principle using messages. The typing concept gives SDL more object-oriented characteristics -
inheritance, specialization and parameterization of definitions.

7.6.1 Types, instances, and gates

7.6.1.1 Type definitions

SDL structures can be specified of without the use of types. However, type definitions can be useful for the
following reasons:

- they enable a specification to have several instances of the same type;
- they essential for the object-oriented use of SDL;
- they can inherit the properties of an existing type and specialize it by adding or changing properties.

Type definitions are particularly useful in packages where definitions can be collected for use in the specification of
several different systems.

Type definitions should be used freely in situations where above benefits can be realized.

7.6.1.1.1 System type

System types are unlikely to cause any specification or interpretation problems and, thus, can be used freely.
However, many standards are described as only one system and in these cases, system definitions, rather than syst
types, are likely to result in a clearer overall specification.

7.6.1.1.2 Block type

Unlike block definitions, block type definitions can be reused in several places and are an attractive approach in
standardizing systems that have numerous blocks with similar functions. In such situations, block type definitions
can be used freely.

Page 32
DEG/MTS-00053: Jul-1998 mts05311.doc

7.6.1.1.3 Process type

Unlike process definitions, process type definitions can be specialized and reused in several places. They are an
attractive approach in standardizing systems that have numerous processes with similar functions and can be used
freely in such situations.

7.6.1.1.4 Service type

Service type definitions should not be used for the same reasons described for service definitions in

subclause 7.2.3.5.

7.6.1.2 Type expression

A type expression is used when defining one type (system, block, process) in terms of another and can be used freely
for this purpose.

7.6.1.3 Definitions based on types

In this document the definitions based on type are referred to as 'type instances'. They are necessary if type
definitions are used.

7.6.1.3.1 System definition based on system type

System definitions based on system types (system type instances) are necessary if a system definition is given as a
type and can be used freely for this purpose.

7.6.1.3.2 Block definition based on block type

Block definitions based on block types (block type instances) are necessary if a block definition is given as a type
and can be used freely for this purpose.

It is possible to specify that there are more than one block type instance with the same name by specifying the
required number in the instance specification. However, there is no SDL construct for the dynamic creation of such
block instances. Also, addressing messages to a particular instance requires an extensive and complex additional
description of system initialization. It is, therefore, recommended that the number of instances is limited to the
default value of one.

7.6.1.3.3 Process definition based on process type

Process definition based on process type or process type instances are useful where several process type instances
are required or where specialization is being used. They should be used freely for this purpose. Process instances can
be dynamically created and terminated. The initial and maximal number of process instances should be specified.

7.6.1.3.4 Service definition based on service type

Service definition based on service type should not be used for the same reasons described for service definitions in
subclause 7.2.3.5

7.6.1.4 Gate

Gates specify the interface of a block or process type giving it a name and the list of signals that can be used in each
direction. They are essential for specifying how instances of block and process types are connected to
communications paths and should be used freely for this purpose.

7.6.2 Context parameter

Context parameters provide a means of defining system types, block types, process types and procedures with
parameters that are given actual identities for the context in which they are used. The actual context parameter
provided when the type is used will be an identifier for an entity that conforms to the formal context parameter.
Context parameters should be used with care as overuse may make the description difficult to understand.

Page 33
mts05311.doc DEG/MTS-00053: Jul-1998

7.6.3 Specialization

Specialization is to the ability to define a new system, block or process type such that it inherits all the properties of
an existing type plus new properties and some modifications to existing properties. SDL supports this but also has
mechanisms for limiting the amount of change that is possible.

Specialization should be used with care for the following reasons. First, the overall properties of a type can only be
deduced by applying the changes specified in the specialized type to the inherited type. Since there could be severas
levels of specialization, understanding the result can be difficult. Second, inheritance introduces dependencies
between type definitions which could be difficult to keep under control.

7.6.3.1 Adding properties

When using specialization, properties such as channels, processes, states and transitions can be added to the resul
system, block or process. For the reasons given in subclause 7.6.3, properties should only be added with care.

7.6.3.2 Virtual type

A virtual type is always defined in the context of another type. For example a virtual process type can be defined as
part of a block type definition. If another block type definition inherits the existing block definition the virtual

process type definition can be redefined under the same name. Only the kigyalzeld prevents the type

definitions to be redefined further.

Virtual types used in a controlled way can be useful but, because they can become very difficult to understand, they
should be used with care.

7.6.3.3 Virtual transition/save

In a process that is redefined, input symbols and save symbols that may be changed contain a keyword “Virtual”. As
part of the redefinition, the following can occur:

- anew transition can be defined to replace the old one;
- inputs can be transformed into save symbol;
- save symbols can be transformed into inputs.

Changed transitions begin with an input symbol containing either the keyword “Redefined” or “Finalized”. The
former can be further specialized while the latter cannot.

For the reasons given in subclause 7.6.3, virtual transitions and saves should be used with care.

8 Conceptsin MSC

8.1 Introduction to MSC

Message Sequence Charts (MSCs) are used to describe sequences of events that can be performed by a standardi
system. They are useful for giving an overview and have an important role to play in the understanding and
development of both the SDL in a standard and the corresponding validation and testing material. The MSCs are
often used as the basis of test sequences.

The MSCs in a standard should be consistent with the SDL in that the SDL should be capable of handling the stimul
and generating the responses defined by the MSCs. However, the MSCs cannot be considered normative in the sar
sense as the SDL. A system is not required to follow the sequence described in an MSC unless it is the only sequen
that is valid according to the SDL. ThidSCs should be used to supplement the SDL to give descriptions of some
valid sequences of behaviour

The availability of examples of possible message flows is very helpful during the development of test specifications
for protocol or service standardshus,MSCs should be used to give at least one example of message exchanges
for each required system function and should give examples of message exchanges in exceptional conditions.

Page 34
DEG/MTS-00053: Jul-1998 mts05311.doc

The following subclauses identify the MSC concepts used in Z.120[3] and provide a classification and justification
for each, as follows:

Use freely

- the feature provides positive support for the SDL description and is without any negative impact on
validation and testing;

- Use with care

- use of the feature has some limited impact on validation and testing, or may be difficult to understand and
therefore has limited value in support of the SDL.;

- Not recommended

- the feature is complex or difficult to understand , and makes validation and testing difficult;
- Do not use

- use of the feature is likely to produce behaviour traces that cannot be validated or tested.

Particular attention is paid to those concepts that are classified as "use with care" and "not recommended" to ensure
that the criteria for using or avoiding the concepts are clearly expressed.

MSC's used in standards should always conform to the rules of syntax and semantics elaborated in
ITU-T Recommendation Z.120 [3].

8.2 General rules

MSC may be expressed in either a graphical form or in text. Wherever MSCs are used to illustrate message flows in
a standard, they should be expressed in the graphical form as this is much clearer and easier to understand than the
textual form.

8.2.1 Lexical rules

The MSC lexical rules closely follow those of SDL except that MSC has a different set of keywords. In order that
MSC can be used freely with SDL and ASNHe characters '{", '}', [, ‘T, '|' (vertical bar) and space should not
be used in MSC names, and the use of SDL keywords for names should be avoided

8.2.2 Visibility and naming rules

The set of MSCs in a standard can be considered a single MSC document, which is the only scope unit in MSC.
Names are globally visible and cannot be qualified as in SDL. Thus, no two items belonging to the same class
(condition, instance, message, MSC, timer) should have the same name. Note that this does not apply to gate names,
which are implicitly qualified by being associated with a specific MSC. A message name identifies the purpose and
content of a message, and the name can be used for several communications of the message.

As far as possiblayames in an MSC should be the same as the names of corresponding entities in theF8DL
example, a message name should be the same as a corresponding signal name, and an MSC instance should have the
same name as the corresponding SDL process or block.

8.2.3 Comment

Comments should be used freely to annotate the MSC descriptions, and to link to them to the corresponding SDL.

8.2.4 Drawing rules

The rules given in Z.120 [3] should be followed. To aid understanditention should be given to the order of
MSC instances left to right and avoiding messages that cross instances

Page 35
mts05311.doc DEG/MTS-00053: Jul-1998

8.2.5 Paging of MSCs

Partitioning an MSC over more than one "page" (normally a figure in a standard) is undesirable. Composition
mechanisms should be used to avoid diagrams that are larger then one page. However, partitioning over pages is
sometimes unavoidablé&/here paging is used, the MSC pages should be numbered according to [B]L20

8.3 Message Sequence Chart documents

The MSC diagrams in a standard can be considered as an MSC document without the need to include the syntax fo
an <MSC document>. This syntax may be omitted because in this context the set of MSC diagrams is obvious and
the related SDL is also obvious. If omitted, the MSC document (formally required by Z2.120 [3]), can be derived
implicitly and will include all the basic MSC diagrams and high level MSC (HMSC) diagrams in the standard.

Basic MSC should normally be used in combination with an HM$e&e 8.4.5) so that there is an overview of the
whole set of behaviour traces covered by the MSC.

8.3.1 Message Sequence Chart

A basic Message Sequence Chart describes a sequence of message interchanges between instances. It will normal
start from a particular condition of the system and finish with in a specific conditioasic MSC should be given
a name that is meaningful for the sequence

8.3.2 Instance

Instances are fundamental to MSC and should be used freely. They represent the communicating entities and can
correspond to the SDL entities or to items in the environment.

For clarity, the instance name should be placed inside the instance head symbol with the instance kind placed above
The form of heading used should be consistent in all MSC diagrams

8.3.3 Message
Message symbols and instance entities are essential MSC concepts and should be used freely.

MSC does not require the parameters of a message communication to be described. However, a parameter
description should be provided although this has no formal meaning in the MSC notation.

8.3.3.1 Message overtaking

Within the syntax and semantics of MSC, it is possible for one message to overtake another message. Message
overtaking can represent message re-ordering in an underlying communication layer or the effect of saving signals ir
an SDL process input queldessage overtaking should be avoided, except for sequences where it is essential to
show the behaviour when overtaking takes place

8.3.3.2 Incomplete messages

A incomplete message communication is represented by a lost message symbol or a found message symbol. A lost
message is one that is output but is never input whereas a found message is one that appears without an obvious
source instancé.ost and found message should be used with daegeause they normally correspond either to the
behaviour of the environment or the behaviour of the underlying system. They should not be used to describe traces
of normal behaviour of systems.

8.3.3.3 Correspondence between SDL and MSC behaviour

Some traces described in MSC can cover situations that cannot logically occur in the SDL in a standard because
assumptions are made about the characteristics of the environment or underlying layers for the protocol or service
being described. For example, the SDL structure description of a transport layer may be a channel whereas an actu
underlying layer may lose or re-order messages. If the protocol requires that such message loss or re-ordering is
handled, the SDL functional behaviour will include the handling of lost and re-ordered messages though this could

Page 36
DEG/MTS-00053: Jul-1998 mts05311.doc

not occur according to the properties of the SDL channel. A testing or validation model would probably need to

replace the channel with a functional model. A related MSC should therefore be provided that reflects the loss or re-
ordering of messages. Message overtaking (see 8.3.3.1) and incomplete messages (see 8.3.3.2) are useful concepts in
these situations.

MSC descriptions that cover behaviour which does not correspond directly to the SDL should be clearly
annotated

8.3.4 Environment and gates

A set of basic MSC diagrams that does not contain any referenced MSC diagrams is considered as communicating
with the environment of the system. The environment is normally represented by the frame of the MSC though it may
be also be represented by one or more instances.

An MSC that contains a referenced MSC diagram (see 8.4.4) can have communications with the referenced diagram.
For example, a message can be output in the referencing diagram and be input in the referenced diagram. For
messages to (or from) a referenced MSC diagram, the message symbols are associated with gates. There are
corresponding gates on the frame of the reference diagram. Where there is only one communication of each message
between the two diagrams the gates do not need to be further identified. Unnamed gates are considered to be
implicitly named by the message and the message direction. Where there are multiple communications of a message
the gates need to be named to distinguish one from another.

Similarly, an MSC that contains an inline expression (see 8.4.3) can have communications with the inline expression.
Gates are used to identify the messages to (or from) the inline expression.

Gates should be used with care because they make the MSC more complex and, therefore, more difficult to
understand. Gates should not be given names unless this is necessary because names can clutter MSC diagrams and
the message symbol name is usually sufficient.

If there is no message symbol leading to (or from) a gate in the referencing diagram then there is an implicit message
symbol leading from (or to - respectively) the frame of the referencing diagram. A similar rule applies for gates on
inline expressions. This can lead to some ambiguity of whether the gate should be connected to an ordinary message
symbol or to a lost or found message symibkre should always be an explicit message symbol for each gate of

a referenced diagram or inline expression in the enclosing diagrsmrthat it is clear what communication actually

takes place.

Gates on referenced MSC diagrams and inline expressions can also be used to order otherwise unordered events
within a diagram or inline expression. These order gates are associated with the corresponding events by a general
order symbol (see 8.3.5) and must be named. The order of events within a diagram or expression is controlled by the
order (top to bottom) that names appear when the diagram is referenced or the inline expression is used. Diagrams
with order gates are not easy to understand and the general order symbol can be confused with a message instance
symbol. For these reasons, the use of general order gates is not recommended.

8.3.5 General ordering

To specify event ordering in cases where the events are not ordered by message communication, general ordering is
used. General ordering clutters a diagram and can be difficult to understand when there are several general order
symbols. It is often possible to replace the general ordering with simpler diagrams if alternatives are used. For the
purposes of understanding the behaviour, diagrams without general ordering are often sufficient. The use of general
ordering is not recommended, and wherever possible it should be replaced with simpler sequences that adequately
cover the required cases.

It is recommended that the general order symbol is used rather than the single line symbol, because the latter can
only be used within column instances.

8.3.6 Condition

Conditions are very useful for indicating initial and final conditions and should be used freely. However, conditions
should not be used for composing several related MSC. HMSCs should be used for this purpose.

Page 37
mts05311.doc DEG/MTS-00053: Jul-1998

8.3.7 Timer

It is very useful to show timer activity (start, restart or expiration) in relation to other messages in MSC diagrams.
Timers should thus be used freely.

8.3.8 Action

MSCs should predominately describe message exchanges but in some situations it is useful to indicate also the acti
that is performed after some message is received.

8.3.9 Instance creation

Instance creation should be used with care. In standardization, it should be avoided in the same manner as dynamic
process creation in SDL specifications. Instance creation should only be shown if it is needed to understand the MS(
diagram.

8.3.10 Instance stop

Instance stop should be used with care in situations where instance creation is also used.

8.4 Structural concepts

8.4.1 Coregion

Coregions are useful for showing situations where two or more events need to occur in any order before proceeding
They should, however, be used with care to ensure, in particular, that the number of events in the coregion is small.

8.4.2 Instance decomposition

Instance decomposition introduces a level of complexity into MSC diagrams that generally is not desirable. Its use,
therefore, is not recommended.

8.4.3 Inline expression

Inline expressions are used to define, in a concise form, several different sequences that can occur at the same plac
in the enclosing diagram. A diagram using an inline expression is equivalent to several diagrams where the inline
expression is replaced by each of the defined sequences in turn. Inline expressions give the benefit of conciseness
the expense of making the language used more complex and should, therefore, be used with care.

8.4.4 MSC reference

MSC references are a means of connecting several MSC diagrams together. Their use is essential if HMSC diagran
are included. However, without an HMSC diagram, it may be difficult to relate the diagrams to one another. In such
case, references should be used with care.

8.4.5 High-level MSC (HMSC)

High-level MSCs can be used to relate a number of simpler MSC diagrams generally improving their readability
making them easier to understand. HMSCs provide useful overviews of systems and should be used freely.

Page 38

DEG/MTS-00053: Jul-1998

mts05311.doc

Annex A: Summary of use of SDL and MSC in ETSI
Standards

A.1 Selection of SDL concepts

Table 1 identifies the SDL concepts specified in Z.100 and provides a classification and references for each.

Table 1: Classification of SDL concepts

Concept Category Recommendation on Use Ipternal Reference Bxternal References
Abstract data data Use with care 7221 Z.100 2.3.1 page 23
type Z.1005.1.1 page 115

Z.100 5.1.2 page 115
Adding type Use with care 7.6.3.1 Z.100 6.3.1 page 182
Any sort data Not recommended 7.5.2.3 Z.105 lll page 47
Anyvalue expression Do not use 7.5.2.19.6 Z.100 5.4.4.6 page 163
expression
Any decision expression Do not use 7.5.2.19.6 Z7.100 5.4.4.6 page 163
Array data Use freely 72511 Z.100 Annex C.8
7.5.2.13
7.5.2.15
ASN.1 module data Use freely 7.2.11 Z.10511.1.1 page 33
7221
75.1.1
7.5.2.3
7.5.2.7
7.5.2.8
Assignment behaviour Use freely 7.5.2.18 Z.100 5.4.3 page 157
Asterisk input behaviour Use with care 7.4.5 Z.100 4.6 page 103
Asterisk save behaviour Use with care 7.4.6 Z.100 4.7 page 103
Asterisk state behaviour Use with care 7.4.3 Z.100 4.4 page 102
Axioms behaviour Do not use 7.5.13 Z.100 5.2.3 page 121
Bit string data Use with care 7.5.2.2 Z.105 lll page 47
7.5.2.3
Block structure Use freely 7.2.3.3 Z.100 2.4.3 page 30
Block definition | structure Use freely 7.6.1.3.2 Z.100 6.1.3.2 page 173
based on block
type
Block structure Use with care 7311 Z.100 3.2.2 page 83
partitioning
Block type structure Use freely 7.6.1.1.2 Z.100 6.1.1.2 page 167
Boolean data Use freely 7.5.2.3 Z.100 Annex C.1
7.5.2.16 Z.105 Il page 48
Boolean axiom behaviour Do not use 7.5.1.3 Z7.100 5.3.1.5 page 129
Channel structure Use freely 7.24.1 Z.100 2.5.1 page 42
Channel structure Do not use 7.3.1.2 Z.100 3.2.3 page 86
partitioning
Character data Use freely 7.5.2.2 Z.100 Annex C.2
7.5.2.3
Character string | data Use with care 7.5.2.2 Z.105 Il page 48
7.5.2.3 Z.100 Annex C.4
Character string | data Use freely 7.5.2.2 Z7.100 5.3.1.2 page 127
literals
Choice data Use with care 7.5.2.7 Z.105 4.2.4 page 13
Z.105 4.4.1 page 19
Z.105 11.3.5 page 41
Z.105 Il page 48
Comments presentation Use freely 7.2.1.5 Z.100 2.2.6 page 21
Z.105 2.6 page 4
Conditional data Do not use 7.5.1.3 Z.100 5.2.4 page 124
equation
Conditional behaviour Use freely 7.5.2.16 Z.100 5.4.2.3 page 155

expression

mts05311.doc

D

Page 39
EG/MTS-00053: Jul-1998

Concept Category Recommendation on Use Ipternal Reference External References
Conditional data Do not use 7.5.2.4 Z.100 5.3.1.6 page 130
term
Constraint behaviour Use with care 7.6.14 Z.100 6.1.4 page 175

7.6.2 Z.100 6.2.1 page 179
Z.100 6.2.2 page 179
Z.100 6.2.7 page 181
Z.100 6.2.9 page 182
Z.100 6.3.2 page 184
Context type Use with care 7.6.2 Z.100 6.2 page 177
parameter
Continuous behaviour Use freely 7.4.10 Z.100 4.11 page 105
signal
Create behaviour Use freely 7.2.6.2 Z.100 2.7.2 page 63
Dash nextstate | behaviour Use with care 7.4.8 Z.100 4.9 page 104
Data definition data Use freely 7221 Z.105 4.1 page 6
7.5.1.1
Data type (sort data Use freely 7.22.1 Z.1005.2.1 page 116
in Z.100) 7.5.1.1
Data type data Use freely Z.105 4.1.1 page 6
assignment
Data type data Use with care 7.6.2 Z.100 6.2.9 page 182
context
parameter
Data type data Use freely 7.2.2.1 Z.1054.2 page 7
Expressions 7.5.11
Decision behaviour Use freely 7.2.6.5 Z.100 2.7.5 page 68
Default data Use freely 7.5.2.18.1 Z.100 5.4.3.3 page 159
initialization
Delay behaviour Use with care 7.24.1 Z.100 2.5.1 page 42
Duration data Use with care 7.5.2.3 Z.100 Annex C.11
Enabling behaviour Do not use 7.4.11 Z.100 4.12 page 106
condition
Enumerated data Use freely 7523 Z.105 4.2.5 page 14
Z.105 11l page 49
Environment structure Use freely 7254 Z.100 1.3.2 page 5
7.5.2.19.6
Equality data Use freely 7.5.2.3 Z7.100 5.3.1.4 page 129
Error behaviour Do not use 7.5.2.4 Z.100 1.3.3 page 5
Z.100 5.3.1.7 page 131
Expression behaviour Use freely 7.2.2.3 Z.100 2.3.4 page 23
7.5.2 Z.100 5.3.3.1 page 148
External data data Do not use 7.5.2.21 Z7.100 5.4.6 page 164
External data Use freely 7421 Z.100 4.3.1 page 97
synonym
Field data Use freely 7.5.2.14 Z.100 5.3.3.5 page 151
Z.100 5.4.3.2 page 158
Finalized type Use with care 7.6.3.2 Z.100 6.3.2 page 183
7.6.3.3
Frame presentation Use freely 7.2.1.4 Z.100 2.2.5 page 20
Gate type Use freely 7.6.1.4 Z.100 6.1.4 page 175
Generator type Not recommended 7.5.2.9 Z.1005.3.1.12
page 139
Identifier, presentation Use freely 7.2.11 Z.100 2.2.1 page 13
keyword, name, Z.100 7.2 page 198
qualifier and Z.105 2.1 page 3
lexical rules Z.105 2.3 page 3
Z.105 2.7 page 4
Z.105 2.8 page 5
Implicit behaviour Not recommended 7.4.7 Z.100 4.8 page 103
transition
Import and behaviour Do not use 7.4.12 Z.100 2.6.1.1 page 50
Export Z.100 4.13 page 109
Z.100 5.4.4.2 page 161
Indexed primary | behaviour Use freely 7.5.2.13 Z.100 5.3.3.4 page 151

or variable

Z.100 5.4.3.1 page 158

Page 40
DEG/MTS-00053: Jul-1998

mts05311.doc

Concept Category Recommendation on Use Ipternal Reference BExternal References
Infix operator behaviour Use freely 7.5.2 Z.1005.3.1.1 page 126
7.5.2.1 Z.105 2.5 page 4
Informal text behaviour Do not use 7.2.1.3 Z.100 2.2.3 page 20
Inheritance type Use freely 7.5.2.8 Z2.1005.3.1.11
page 137
Input behaviour Use freely 7.25.4 Z.100 2.6.4 page 53
Instance structure Use freely 7.6.1 Z.1001.3.1 page 3
Integer data Use with care 7.5.2.3 Z.100 Annex C.5
Z.105 Il page 49
Integer Naming | data Use freely 7.21.1 Z.105 4.2.6 page 15
Internal input presentation Use freely 7.2.8 Z.100 2.9 page 71
and output
Join behaviour Use freely 7.2.5.9 Z.100 2.6.8.2.2 page 60
Keywords presentation Use freely 7211 Z.100 2.2.1 page 13
Z.105 2.2 page 3
Lexical rules presentation Use freely 7.2.1.1 Z.100 2.2.1 page 13
Z.105 2.1 page 3
Z.105 2.3 page 3
Z.100 7.2 page 198
Z.105 2.7 page 4
Literal data Use freely 7222 Z.100 2.3.3 page 23
7.5.1.2 Z.1005.2.2 page 119
Literal mapping | data Do not use 7.5.2.11 Z.1005.3.1.15
page 144
Macro, presentation Not recommended 74.11 Z.100 4.2 page 91
graphical
behaviour
Macro, presentation Do not use 7.4.1.2 Z.100 4.2 page 91
structural
Macro, textual presentation Use with care 7.4.1.3 Z7.100 4.2 page 91
Name presentation Use freely 7.2.11 Z.100 2.2.1 page 13
7.21.2 Z.105 2.1 page 3
Z.105 2.3 page 3
Z.100 7.2 page 198
Z.105 2.8 page 5
Name class data Not recommended 7.5.2.11 7.1005.3.1.14
literals page 143
Natural data Use with care 7.5.2.3 Z.100 Annex C.6
Nested diagram | presentation Use with care Z.100 2.4.13 page 26
Newtype data Use freely 7.5.2.3 Z.1005.2.1 page 117
Nextstate behaviour Use freely 7.25.8 Z.100 2.6.8.2.1 page 59
7.4.8
Noequality data Do not use 7.5.2.3 Z.100 5.3.1.4 page 129
Now behaviour Use with care 7.5.2.19.1 Z7.100 5.4.4.1 page 160
Null data Use freely 7.5.23 Z.105 11l page 49
Object identifier | data Use freely 2.1054.2.2.3
Z.105 Il page 49
Octet string data Use with care 7.5.2.3 Z.105 Ill page 50
Operator behaviour Use freely 7.5.1.2 Z.100 5.2.2 page 119
7521 Z.100 5.3.2 page 146
7.5.2.12 Z.100 5.4.2.4 page 156
7.5.2.19 Z.105 11.1.3 page 34
Z.10511.3.1 page 3
Operator behaviour Use freely 7.2.5.11 Z.100 5.3.2 page 146
diagram 7.5.1.3
7.5.2.1
Option behaviour Use freely 7421 Z.100 4.3.4 page 100
7.4.2.3
7.4.2.4
Optional fields data Use freely Z7.105 4.2.1 page 8
Ordering data Use freely 7.5.25 Z7.100 5.3.1.8 page 132
Output behaviour Use freely 7.2.6.4 Z.100 2.7.4 page 65
7.2.8
Package structure Use freely 7.23.11 Z.100 2.4.1.2 page 24
Z.105 3 page 5
Page presentation Use freely 7.2.1.4 Z.100 2.2.5 page 20

mts05311.doc

D

Page 41
EG/MTS-00053: Jul-1998

Concept Category Recommendation on Use Ipternal Reference External References
Pid data Use with care 7.5.2.19.3 Z.100 5.4.4.3 page 161
Z.100 Annex C.10
Powerset data Use with care 7.5.23 Z.100 Annex C.9
Predefined data Use freely 7.5.2.3 Z7.100 5.3.1.3 page 128
Priority Input behaviour Use freely 7.4.9 Z.100 4.10 page 104
Procedure behaviour Use freely 7.2.3.6 Z.100 2.4.6 page 39
Z.100 2.7.3 page 64
Procedure type Use with care 7.6.2 Z.100 6.2.2 page 179
context
parameter
Process behaviour Use freely 7.2.3.4 Z.100 2.4.4 page 32
Z.100 6.1.1.3 page 168
Process context | type Use with care 7.6.2 Z.100 6.2.1 page 179
parameter
Process type Use freely 7.6.1.3.3 Z.100 6.1.3.3 page 173
definition
based on
process type
Qualifier presentation Use freely 7.2.1.2 Z.100 2.2.2 page 17
Z.105 2.1 page 3
Z.105 2.3 page 3
Z.100 7.2 page 198
Range condition | data Use freely 7.5.2.6 Z.1005.3.1.9.1
page 134
Z.105 4.3 page 16
Real data Not recommended 7.5.2.3 Z.100 Annex C.7
Z.105 Il page 50
Redfined type Use with care 7.6.3.2 Z.100 6.3.2 page 183
Referenced presentation Use freely 7.2.3.1.2 Z.100 2.4.13 page 26
diagram
Remote behaviour Use with care 7.4.13 Z.100 4.14 page 112
procedure
Remote type Use with care 7.6.2 Z.100 6.2.3 page 180
procedure
context
parameter
Remote variable | type Not recommended 7.6.2 Z.100 6.2.6 page 181
context
parameter
Return behaviour Use freely 7.25.11 Z2.1002.6.8.2.4
page 61
Save behaviour Use freely 7.25.5 Z.100 2.6.5 page 55
Select structure Use with care 7.4.2.3 Z7.100 4.3.3 page 98
Sequence data Use freely 7.5.2.7 Z.105 4.2.2 page 9
7.5.2.3 Z.105 11.3.2 page 37
Z.105 11l page 51
Sequenceof data Use freely 7.5.2.3 Z.105 4.2.3 page 12
Z.105 11.3.3 page 38
Z.105 11l page 51
Service structure Not recommended 7.2.35 Z.100 2.4.5 page 37
Z.1006.1.1.4 page 170
Service type Do not use 7.6.1.3.4 Z.100 6.1.3.4 page 174
definition
based on
service type
Set data Use freely 7.5.2.7 Z.105 lll page 51
7.5.2.3
SET OF data Use freely 7.5.2.3 Z.105 11.3.4 page 40
Z.105 11l page 51
Signal behaviour Use freely 7.24.4 Z.100 2.5.4 page 48
Signal context type Use with care 7.6.2 Z.100 6.2.4 page 180
parameter
Signal list structure Use freely 7.245 Z.100 2.5.5 page 49
Signal structure Do not use 7.3.2 Z.100 3.3 page 89
refinement
Signal route structure Use freely 7.2.4.2 Z.100 2.5.2 page 44

Page 42

DEG/MTS-00053: Jul-1998

mts05311.doc

Concept Category Recommendation on Use Ipternal Reference BExternal References
Sort (Data type | data Use freely 7.5.2.18 Z.105 4.1.1 page 6
in Z.100)
assignment
Sort context data Use with care 7.6.2 Z.100 6.2.9 page 182
parameter
Sort data Use freely 7.5.2 Z2.105 4.2 page 7
Expressions
Sort data Use freely 7.2.2.1 Z.1005.2.1 page 116
7.5.1.1
Specialization type Use with care 7.6.3 Z.100 6.3 page 182
Spontaneous behaviour Do not use 7.2.5.6 Z.100 2.6.6 page 56
transition
Start behaviour Use freely 7.25.2 Z.100 2.6.2 page 51
State (and behaviour Use freely 7.25.3 Z.100 2.6.3 page 52
multiple 7.4.4
appearance)
Stop behaviour Use freely 7.2.5.10 Z.100 2.6.8.2.3 page 60
String data Use freely 75.2.2 Z.100 Annex C.3
Z.105 2.4 page 4
Z.105 4.4.3 page 22
Struct data Use freely 7.5.2.7 Z.1005.3.1.10
7.25.1.1 page 136
Z.100 5.3.3.6 page 152
Subrange data Use freely Z.105 4.2.7 page 16
Subtypes data Use freely Z.105 11l page 52
Synonym data Use freely 7.5.2.10 Z2.1005.3.1.13
page 142
Z.100 5.3.3.3 page 150
Synonym type Use with care 7.6.2 Z.100 6.2.8 page 181
context
parameter
Syntype data Use freely 7.5.2.6 Z7.100 5.3.1.9 page 132
System structure Use freely 7.2.32 Z.100 2.4 page 23
Z.100 2.4.2 page 28
Z.100 6.1.1.1 page 166
System type Use freely 7.6.1.3.1 Z.100 6.1.3.1 page 172
definition
based on
system type
Tag data Use freely Z.105 1.1 page 30
Z.105 11l page 52
Task behaviour Use freely 7.2.6.1 Z.100 2.7.1 page 62
Text extension presentation Use freely 7.2.1.6 Z.100 2.2.7 page 22
Text symbol presentation Use freely 7.21.7 Z.100 2.2.8 page 22
Time data Use with care 7.5.2.3 Z.100 Annex C.12
Timer behaviour Use freely 7.2.7 Z.100 2.8 page 70
Timer active behaviour Use freely 7.5.2.19.5 Z.100 5.4.4.5 page 162
Timer context type Use with care 7.6.2 Z.100 6.2.7 page 181
parameter
Transition behaviour Use freely Z.100 2.6.8 page 58
Type type Use freely 76.11 Z.1001.3.1 page 3
7.6.1.2 Z.100 6.1.1 page 166
Z.100 6.1.2 page 171
Useful type data Use freely Z.105 Ill page 52
Value data Use freely 7.2.2.2 Z.100 2.3.3 page 23
Value returning | behaviour Use freely 7.5.2.20 Z.100 5.4.5 page 163
procedure
Value data Use freely Z2.1054.1.2 page 7
assignments
Value data Use freely Z.105 4.4 page 19
expression
Variable behaviour Use freely 7.25.1 Z.100 2.3.2 page 23

Z.100 2.6.1 page 50
Z.100 5.4.1 page 153
Z.100 5.4.2 page 154
Z.100 5.4.2.2 page 155

Z.105 4.1 page 6

mts05311.doc

D

Page 43
EG/MTS-00053: Jul-1998

Concept Category Recommendation on Use Ipternal Reference BExternal References
Variable context | type Use with care 7.6.2 Z.100 6.2.5 page 181
parameter
View and behaviour Do not use 7.25.1.2 Z.100 5.4.4.4 page 162
Reveal 7.5.2.194 Z7.100 2.6.1.2 page 51
Virtual type Use with care 7.6.3.2 Z.100 6.3.2 page 183
Virtual type Use with care 7.6.3.3 Z.100 6.3.3 page 184
transition/save
Visibility presentation Use freely 7.2.1.2 Z.100 2.2.2 page 16

Page 44

DEG/MTS-00053: Jul-1998 mts05311.doc

A.2 Selection of MSC concepts
Table 2 identifies the MSC concepts specified in Z.120 and provides a classification and references for each.

Table 2: Classification of MSC concepts

Concept Category Recommendation on Use Ipternal Reference BExternal References
Action informal Use freely 8.3.8 Z.120 4.8 page 30
description
Alternative composition Use with care 8.4.3 Z.120 5.3 page 34
expression
Axis entity structure | Use freely 8.24 Z.120 4.2 page 17
8.3.2
Coevent seguence Use with care 8.4.1 Z.120 5.1 page 31
Comment informal Use freely 8.2.3 Z.120 2.1 page 9
description Z.120 2.3 page 10
Condition sequence Use freely 8.3.6 Z.120 4.6 page 25
Coregion sequence Use with care 8.4.1 Z.120 5.1 page 31
Z.120 6.11 page 53
Create sequence Use with care 8.3.9 Z.120 4.9 page 30
Z.120 4.9 page 30
Decomposition composition Do not use 8.4.2 Z.120 5.2 page 33
Z.120 6.13 page 54
Document composition Use freely 8.3 Z.120 3 page 11
Duration seqguence Use freely 8.3.7 Z7.120 4.7 page 29
End (HMSC) seguence Use freely 8.4.5 Z.120 5.5 page 39
Environment entity structure | Use freely 8.3.4 Z7.120 4.4 page 20
Event sequence Use freely 8.3.3 Z.120 4.1 page 13,
8.3.7 Z.120 4.3 page 19
Exception composition Use with care 8.4.3 Z.120 5.3 page 34
expression
Expression composition Use with care 8.4.3 Z.120 5.5 page 39
Found message | sequence Use with care 8.3.3.2 Z7.120 4.3 page 20
Frame presentation Use freely 8.34 Z7.120 4.1 page 14
Gate composition Not recommended. 8.34 Z.120 4.1 page 13
Z.120 4.4 page 22
General order sequence Do not use 8.3.5 Z.120 4.5 page 24
Z.120 6.11 page 53
Z.120 6.12 page 54
Global condition | sequence Use freely 8.3.6 Z.120 4.6 page 27
Head entity structure | Use freely 8.24 Z.120 4.1 page 12
8.3.2
High-level MSC | composition Use freely 8.4.5 Z.120 5.5 page 39
(HMSCQC)
HMSC condition | composition Use freely 8.4.5 Z.120 5.5 page 40
Identifier presentation Use freely 8.2.1 Z.120 3 page 12
8.2.2
In gate composition Not recommended 8.34 Z.120 4.4 page 22
Incomplete sequence Use with care 8.3.3.2 Z.120 4.3 page 18
message
Infinity composition Use with care 8.4.3 Z7.120 5.3 page 34
Inline composition Use with care 8.4.3 Z.120 5.3 page 33
expression
Inline gate composition Not recommended 8.34 Z.120 4.4 page 22
Z.120 5.3 page 34
Inline order gate | composition Not recommended 8.34 Z.120 4.4 page 23
Instance entity structure | Use freely 8.3.2 Z.120 4.1 page 12
Z.120 4.2 page 16
Instance axis entity structure | Use freely 8.24 Z.120 4.2 page 17
8.3.2
Instance composition Do not use 8.4.2 Z.120 5.2 page 33
decomposition Z.120 6.13 page 54

mts05311.doc

D

Page 45
EG/MTS-00053: Jul-1998

Concept Category Recommendation on Use hternal Reference BExternal References
Instance event sequence Use freely 8.3.3 Z.120 4.1 page 13
8.3.6
8.3.7
8.3.8
8.3.9
8.4.1
Instance head entity structure | Use freely 8.24 Z.120 4.1 page 13
8.3.2
Instance kind entity structure | Use freely 8.3.2 Z.120 4.1 page 13
Kind entity structure | Use freely 8.3.2 Z.120 4.1 page 13
Local condition | sequence Use freely 8.3.6 Z.120 6.7 page 50
Loop composition Use with care 8.4.5 Z.120 5.3 page 34
expression Z.120 6.19 page 61
Lost message sequence Use with care 8.3.3.2 Z.120 4.3 page 20
Message sequence Use freely 8.3.3 Z.120 4.3 page 17
Message sequence Use freely 8.3.3 Z.120 4.3 page 18
instance
MSC document | composition Use freely 8.3 Z.120 3 page 11
Node composition Use freely 8.45 Z.120 5.5 page 40
Note informal Use freely 8.2.1 Z.120 2.1 page 8
description
Operand composition Use with care 8.3.8 Z.120 5.3 page 35
Optional composition Use with care 8.4.3 Z.120 5.3 page 34
expression
Order gate composition Not recommended 8.34 Z.120 4.1 page 13
Z.120 4.4 page 22
Orderable event | sequence Not recommended 8.35 Z.120 4.1 page 13
Ordered event sequence Not recommended 8.3.5 Z.120 4.5 page 25
Out gate composition Not recommended 8.34 Z.120 4.4 page 22
Parallel composition See expression. 8.4.3 Z.120 5.3 page 34
expression
Parameter informal Use freely 8.3.3 Z.120 4.3 page 18
description
Qualifier informal Use freely 8.3 Z.120 3 page 12
description
Reference composition Not recommended (except | 8.4.4 Z.120 4.3 page 18
for HMSCs) Z.120 5.4 page 36
Z.120 5.4 page 37
Z.120 6.17 page 59
Reference composition Not recommended 8.2.2 Z.120 5.4 page 37
identification 8.44
Reset sequence Use freely 8.3.7 Z.120 4.7 page 28
SDL document informal Use freely 8.3 Z.120 3 page 12
identifier description 8.3.3.3
SDL reference informal Use freely 8.3 Z.120 3 page 12
description 8.3.3.3
Set seqguence Use freely 8.3.7 Z.120 4.7 page 28
Shared sequence Use freely 8.3.6 Z.120 4.6 page 26
condition Z.120 5.3 page 34
Z.120 6.8 page 51
Shared composition Use with care 8.4.3 Z.120 5.3 page 33
expression
Shared MSC composition Not recommended 8.4.4 Z.120 5.4 page 37
reference
Start (HMSC) sequence Use freely 8.4.5 Z.120 5.5 page 39
Stop sequence Use with care 8.3.10 Z7.120 4.10 page 31
Substitution composition Do not use 8.4.4 Z.120 5.4 page 37
Z.120 5.4 page 37
Substructure composition Do not use 8.4.2 Z.120 5.2 page 33
Timeout seguence Use freely 8.3.7 Z.120 4.7 page 28
Timer seguence Use freely 8.3.7 Z2.120 4.7 page 27

Page 46
DEG/MTS-00053: Jul-1998 mts05311.doc

A.3 List of supplementary guidelines

Associated with each SDL and MSC concept identified in this document there is a recommendation for its use within
telecommunications standards. In addition, there are a number of supplementary guidelines offered throughout the
document and these are summarised below:

PRINCIPLES AND GENERAL GUIDELINES

1 The specific behaviour described using SDL in a standard is indicative only of the relationship between
incoming and outgoing signals and should not be treated as binding at the language or structure level

SDL IN EUROPEAN TELECOMMUNICATION STANDARDS
2 A standard should make it clear whether the SDL specification is normative or informative

3 If the normative description of a protocol is the SDL, the duplication of information should be limited by
using the text only to bring together requirements that are distributed over several SDL diagrams

NORMATIVE INTERFACES AND REQUIREMENTS
4 Normative communications paths should be marked with the comment “Normative
5 Processes should be defined within an explicit block and system

6 Messages carried across normative communications paths should be specified in SDL signal definitions and
marked as normative requirements

7 All data types specified in the parameter lists of normative signals should be defined using ASN.1 or SDL
data formalisms and marked as normative requirements themselves

8 MSCs should be used to define the sequence of protocol messages required for normal operation and the
sequences expected in the most significant exceptional cases

9 The complete behaviour in terms of all observable message sequences should be defined using SDL
behaviour descriptions

10 The MSC description of a sequence of messages should be consistent with the SDL description of the same
sequence

SPECIFICATION AND DESCRIPTION LANGUAGE CONCEPTS

11 A bounded range of possible values should be specified for all data types (SDL sorts), particularly implicit
types such as INTEGER and REAL

12 All composite data types should be initialized, preferably by a default initialization defined in the data type

13 Macros should only be used for some limited, well thought out purposes where their use can be proven to
bring benefits and the macros have be shown to produce the required functionality

14 Structural macros should not be used because they do not help in understanding the specification of structure

15 In standards where it is necessary to specify multiple or complex options, the use of system and block types
may be easier to understand than the use of numerous select symbols

16 Optional transitions should be used freely to model the differences in behaviour between implementation
options

17 Implicit transitions should be avoided in the specification of behaviour in a standard
CONCEPTS IN MSC
18 MSCs should be used to supplement the SDL to give descriptions of some valid sequences of behaviour

19 MSCs should be used to give at least one example of message exchanges for each required system function
and should give examples of message exchanges in exceptional conditions

Page 47
mts05311.doc DEG/MTS-00053: Jul-1998

20 The characters '{', '}, T, 'T. '|' (vertical bar) and space should not be used in MSC names, and the use of SDL
keywords for names should be avoided

21 Names in an MSC should be the same as the names of corresponding entities in the SDL

22 Attention should be given to the order of MSC instances left to right and avoiding messages that cross
instances

23 Where paging is used, the MSC pages should be numbered according to Z.120
24 Basic MSC should normally be used in combination with an HMSC

25 A basic MSC should be given a name that is meaningful for the sequence

26 The form of heading used should be consistent in all MSC diagrams

27 Message overtaking should be avoided, except for sequences where it is essential to show the behaviour wh
overtaking takes place

28 Lost and found message should be used with care

29 MSC descriptions that cover behaviour which does not correspond directly to the SDL should be clearly
annotated

30 There should always be an explicit message symbol for each gate of a referenced diagram or inline expressic
in the enclosing diagram

Page 48

DEG/MTS-00053: Jul-1998 mts05311.doc
History
Document history
Sept 1997 ¥ draft derived from ETS 300 414 without change except for new Style sheet and
sub-clause renumbering
July 1998 i' complete stable draft of EG with all new contents.
July 1998 Version 0.2.0 taking into account comments from CNET and made available for

MTS approval

