

Network Working Group Editors of this version:
Request for Comments: 2579 K.
McCloghrie
STD: 58 Cisco
Systems
Obsoletes: 1903 D.
Perkins
Category: Standards Track
SNMPinfo
 J.
Schoenwaelder
 TU
Braunschweig
 Authors of previous version:
 J.
Case
 SNMP
Research
 K.
McCloghrie
 Cisco
Systems
 M.
Rose
 First Virtual
Holdings
 S.
Waldbusser
 International Network
Services
 April
1999

 Textual Conventions for SMIv2

Status of this Memo

 This document specifies an Internet standards track protocol for
the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the
"Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is
unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Table of Contents

 1 Introduction ..2
 1.1 A Note on Terminology2
 2 Definitions ...2
 3 Mapping of the TEXTUAL-CONVENTION macro20
 3.1 Mapping of the DISPLAY-HINT clause21
 3.2 Mapping of the STATUS clause22
 3.3 Mapping of the DESCRIPTION clause23
 3.4 Mapping of the REFERENCE clause23
 3.5 Mapping of the SYNTAX clause23
 4 Sub-typing of Textual Conventions23
 5 Revising a Textual Convention Definition23

McCloghrie, et al. Standards Track [Page
1]

RFC 2579 Textual Conventions for SMIv2 April
1999

 6 Security Considerations24
 7 Editors' Addresses ...25
 8 References ...25
 9 Full Copyright Statement26

1. Introduction

 Management information is viewed as a collection of managed
objects,
 residing in a virtual information store, termed the Management
 Information Base (MIB). Collections of related objects are
defined
 in MIB modules. These modules are written using an adapted subset
of
 OSI's Abstract Syntax Notation One, ASN.1 (1988) [1], termed the
 Structure of Management Information (SMI) [2].

 When designing a MIB module, it is often useful to define new
types
 similar to those defined in the SMI. In comparison to a type
defined
 in the SMI, each of these new types has a different name, a
similar
 syntax, but a more precise semantics. These newly defined types
are
 termed textual conventions, and are used for the convenience of
 humans reading the MIB module. It is the purpose of this document
to
 define the initial set of textual conventions available to all MIB
 modules.

 Objects defined using a textual convention are always encoded by
 means of the rules that define their primitive type. However,
 textual conventions often have special semantics associated with
 them. As such, an ASN.1 macro, TEXTUAL-CONVENTION, is used to
 concisely convey the syntax and semantics of a textual convention.

1.1. A Note on Terminology

 For the purpose of exposition, the original Structure of
Management
 Information, as described in RFCs 1155 (STD 16), 1212 (STD 16),
and
 RFC 1215, is termed the SMI version 1 (SMIv1). The current
version
 of the Structure of Management Information is termed SMI version 2
 (SMIv2).

2. Definitions

SNMPv2-TC DEFINITIONS ::= BEGIN

IMPORTS
 TimeTicks FROM SNMPv2-SMI;

-- definition of textual conventions

TEXTUAL-CONVENTION MACRO ::=

McCloghrie, et al. Standards Track [Page
2]

RFC 2579 Textual Conventions for SMIv2 April
1999

BEGIN
 TYPE NOTATION ::=
 DisplayPart
 "STATUS" Status
 "DESCRIPTION" Text
 ReferPart
 "SYNTAX" Syntax

 VALUE NOTATION ::=
 value(VALUE Syntax) -- adapted ASN.1

 DisplayPart ::=
 "DISPLAY-HINT" Text
 | empty

 Status ::=
 "current"
 | "deprecated"
 | "obsolete"

 ReferPart ::=
 "REFERENCE" Text
 | empty

 -- a character string as defined in [2]
 Text ::= value(IA5String)

 Syntax ::= -- Must be one of the following:
 -- a base type (or its refinement), or
 -- a BITS pseudo-type
 type
 | "BITS" "{" NamedBits "}"

 NamedBits ::= NamedBit
 | NamedBits "," NamedBit

 NamedBit ::= identifier "(" number ")" -- number is nonnegative

END

DisplayString ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "255a"
 STATUS current
 DESCRIPTION
 "Represents textual information taken from the NVT ASCII

McCloghrie, et al. Standards Track [Page
3]

RFC 2579 Textual Conventions for SMIv2 April
1999

 character set, as defined in pages 4, 10-11 of RFC 854.

 To summarize RFC 854, the NVT ASCII repertoire specifies:

 - the use of character codes 0-127 (decimal)

 - the graphics characters (32-126) are interpreted as
 US ASCII

 - NUL, LF, CR, BEL, BS, HT, VT and FF have the special
 meanings specified in RFC 854

 - the other 25 codes have no standard interpretation

 - the sequence 'CR LF' means newline

 - the sequence 'CR NUL' means carriage-return

 - an 'LF' not preceded by a 'CR' means moving to the
 same column on the next line.

 - the sequence 'CR x' for any x other than LF or NUL is
 illegal. (Note that this also means that a string
may
 end with either 'CR LF' or 'CR NUL', but not with
CR.)

 Any object defined using this syntax may not exceed 255
 characters in length."
 SYNTAX OCTET STRING (SIZE (0..255))

PhysAddress ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1x:"
 STATUS current
 DESCRIPTION
 "Represents media- or physical-level addresses."
 SYNTAX OCTET STRING

MacAddress ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1x:"
 STATUS current
 DESCRIPTION
 "Represents an 802 MAC address represented in the
 `canonical' order defined by IEEE 802.1a, i.e., as if it
 were transmitted least significant bit first, even though
 802.5 (in contrast to other 802.x protocols) requires MAC
 addresses to be transmitted most significant bit first."
 SYNTAX OCTET STRING (SIZE (6))

McCloghrie, et al. Standards Track [Page
4]

RFC 2579 Textual Conventions for SMIv2 April
1999

TruthValue ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Represents a boolean value."
 SYNTAX INTEGER { true(1), false(2) }

TestAndIncr ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Represents integer-valued information used for atomic
 operations. When the management protocol is used to
specify
 that an object instance having this syntax is to be
 modified, the new value supplied via the management
protocol
 must precisely match the value presently held by the
 instance. If not, the management protocol set operation
 fails with an error of `inconsistentValue'. Otherwise,
if
 the current value is the maximum value of 2^31-1
(2147483647
 decimal), then the value held by the instance is wrapped
to
 zero; otherwise, the value held by the instance is

 incremented by one. (Note that regardless of whether the
 management protocol set operation succeeds, the variable-
 binding in the request and response PDUs are identical.)

 The value of the ACCESS clause for objects having this
 syntax is either `read-write' or `read-create'. When an
 instance of a columnar object having this syntax is
created,
 any value may be supplied via the management protocol.

 When the network management portion of the system is re-
 initialized, the value of every object instance having
this
 syntax must either be incremented from its value prior to
 the re-initialization, or (if the value prior to the re-
 initialization is unknown) be set to a pseudo-randomly
 generated value."
 SYNTAX INTEGER (0..2147483647)

AutonomousType ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Represents an independently extensible type
identification
 value. It may, for example, indicate a particular sub-
tree
 with further MIB definitions, or define a particular type
of
 protocol or hardware."
 SYNTAX OBJECT IDENTIFIER

InstancePointer ::= TEXTUAL-CONVENTION
 STATUS obsolete

McCloghrie, et al. Standards Track [Page
5]

RFC 2579 Textual Conventions for SMIv2 April
1999

 DESCRIPTION
 "A pointer to either a specific instance of a MIB object
or
 a conceptual row of a MIB table in the managed device.
In
 the latter case, by convention, it is the name of the
 particular instance of the first accessible columnar
object
 in the conceptual row.

 The two uses of this textual convention are replaced by
 VariablePointer and RowPointer, respectively."
 SYNTAX OBJECT IDENTIFIER

VariablePointer ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "A pointer to a specific object instance. For example,
 sysContact.0 or ifInOctets.3."
 SYNTAX OBJECT IDENTIFIER

RowPointer ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Represents a pointer to a conceptual row. The value is
the
 name of the instance of the first accessible columnar
object
 in the conceptual row.

 For example, ifIndex.3 would point to the 3rd row in the
 ifTable (note that if ifIndex were not-accessible, then
 ifDescr.3 would be used instead)."
 SYNTAX OBJECT IDENTIFIER

RowStatus ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "The RowStatus textual convention is used to manage the
 creation and deletion of conceptual rows, and is used as
the
 value of the SYNTAX clause for the status column of a
 conceptual row (as described in Section 7.7.1 of [2].)

McCloghrie, et al. Standards Track [Page
6]

RFC 2579 Textual Conventions for SMIv2 April
1999

 The status column has six defined values:

 - `active', which indicates that the conceptual row
is
 available for use by the managed device;

 - `notInService', which indicates that the
conceptual

 row exists in the agent, but is unavailable for use
by
 the managed device (see NOTE below); 'notInService'
has
 no implication regarding the internal consistency of
 the row, availability of resources, or consistency
with
 the current state of the managed device;

 - `notReady', which indicates that the conceptual
row
 exists in the agent, but is missing information
 necessary in order to be available for use by the
 managed device (i.e., one or more required columns
in
 the conceptual row have not been instanciated);

 - `createAndGo', which is supplied by a management
 station wishing to create a new instance of a
 conceptual row and to have its status automatically
set
 to active, making it available for use by the
managed
 device;

 - `createAndWait', which is supplied by a management
 station wishing to create a new instance of a
 conceptual row (but not make it available for use by
 the managed device); and,

 - `destroy', which is supplied by a management
station
 wishing to delete all of the instances associated
with
 an existing conceptual row.

 Whereas five of the six values (all except `notReady')
may
 be specified in a management protocol set operation, only
 three values will be returned in response to a management
 protocol retrieval operation: `notReady', `notInService'
or
 `active'. That is, when queried, an existing conceptual
row
 has only three states: it is either available for use by
 the managed device (the status column has value
`active');
 it is not available for use by the managed device, though
 the agent has sufficient information to attempt to make
it
 so (the status column has value `notInService'); or, it
is
 not available for use by the managed device, and an
attempt
 to make it so would fail because the agent has
insufficient
 information (the state column has value `notReady').

McCloghrie, et al. Standards Track [Page
7]

RFC 2579 Textual Conventions for SMIv2 April
1999

 NOTE WELL

 This textual convention may be used for a MIB table,
 irrespective of whether the values of that table's
 conceptual rows are able to be modified while it is
 active, or whether its conceptual rows must be taken
 out of service in order to be modified. That is, it
is
 the responsibility of the DESCRIPTION clause of the
 status column to specify whether the status column
must
 not be `active' in order for the value of some other
 column of the same conceptual row to be modified.
If
 such a specification is made, affected columns may
be
 changed by an SNMP set PDU if the RowStatus would
not
 be equal to `active' either immediately before or
after
 processing the PDU. In other words, if the PDU also
 contained a varbind that would change the RowStatus
 value, the column in question may be changed if the
 RowStatus was not equal to `active' as the PDU was
 received, or if the varbind sets the status to a
value
 other than 'active'.

 Also note that whenever any elements of a row exist, the
 RowStatus column must also exist.

McCloghrie, et al. Standards Track [Page
8]

RFC 2579 Textual Conventions for SMIv2 April
1999

 To summarize the effect of having a conceptual row with a
 status column having a SYNTAX clause value of RowStatus,
 consider the following state diagram:

 STATE
 +--------------+-----------+-------------+-------------
 | A | B | C | D
 | |status col.|status column|
 |status column | is | is |status column
 ACTION |does not exist| notReady | notInService| is active
--------------+--------------+-----------+-------------+-------------
set status |noError ->D|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndGo |inconsistent- | | |
 | Value| | |
--------------+--------------+-----------+-------------+-------------
set status |noError see 1|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndWait |wrongValue | | |
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError
column to | Value| entValue| |
active | | | |
 | | or | |
 | | | |
 | |see 2 ->D|see 8 ->D| ->D
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError ->C
column to | Value| entValue| |
notInService | | | |
 | | or | | or
 | | | |
 | |see 3 ->C| ->C|see 6
--------------+--------------+-----------+-------------+-------------
set status |noError |noError |noError |noError ->A
column to | | | | or
destroy | ->A| ->A| ->A|see 7
--------------+--------------+-----------+-------------+-------------
set any other |see 4 |noError |noError |see 5
column to some| | | |
value | | see 1| ->C| ->D
--------------+--------------+-----------+-------------+-------------

 (1) goto B or C, depending on information available to
the
 agent.

 (2) if other variable bindings included in the same PDU,

McCloghrie, et al. Standards Track [Page
9]

RFC 2579 Textual Conventions for SMIv2 April
1999

 provide values for all columns which are missing but
 required, and all columns have acceptable values, then
 return noError and goto D.

 (3) if other variable bindings included in the same PDU,
 provide legal values for all columns which are missing
but
 required, then return noError and goto C.

 (4) at the discretion of the agent, the return value may
be
 either:

 inconsistentName: because the agent does not choose
to
 create such an instance when the corresponding
 RowStatus instance does not exist, or

 inconsistentValue: if the supplied value is
 inconsistent with the state of some other MIB
object's
 value, or

 noError: because the agent chooses to create the
 instance.

 If noError is returned, then the instance of the status
 column must also be created, and the new state is B or C,
 depending on the information available to the agent. If
 inconsistentName or inconsistentValue is returned, the
row
 remains in state A.

 (5) depending on the MIB definition for the column/table,
 either noError or inconsistentValue may be returned.

 (6) the return value can indicate one of the following
 errors:

 wrongValue: because the agent does not support
 notInService (e.g., an agent which does not support
 createAndWait), or

 inconsistentValue: because the agent is unable to
take
 the row out of service at this time, perhaps because
it
 is in use and cannot be de-activated.

 (7) the return value can indicate the following error:

 inconsistentValue: because the agent is unable to
 remove the row at this time, perhaps because it is
in
 use and cannot be de-activated.

McCloghrie, et al. Standards Track [Page
10]

RFC 2579 Textual Conventions for SMIv2 April
1999

 (8) the transition to D can fail, e.g., if the values of
the
 conceptual row are inconsistent, then the error code
would
 be inconsistentValue.

 NOTE: Other processing of (this and other varbinds of)
the
 set request may result in a response other than noError
 being returned, e.g., wrongValue, noCreation, etc.

 Conceptual Row Creation

 There are four potential interactions when creating a
 conceptual row: selecting an instance-identifier which
is
 not in use; creating the conceptual row; initializing any
 objects for which the agent does not supply a default;
and,
 making the conceptual row available for use by the
managed
 device.

 Interaction 1: Selecting an Instance-Identifier

 The algorithm used to select an instance-identifier
varies
 for each conceptual row. In some cases, the instance-
 identifier is semantically significant, e.g., the
 destination address of a route, and a management station
 selects the instance-identifier according to the
semantics.

 In other cases, the instance-identifier is used solely to
 distinguish conceptual rows, and a management station
 without specific knowledge of the conceptual row might
 examine the instances present in order to determine an
 unused instance-identifier. (This approach may be used,
but
 it is often highly sub-optimal; however, it is also a
 questionable practice for a naive management station to
 attempt conceptual row creation.)

 Alternately, the MIB module which defines the conceptual
row
 might provide one or more objects which provide
assistance
 in determining an unused instance-identifier. For
example,
 if the conceptual row is indexed by an integer-value,
then
 an object having an integer-valued SYNTAX clause might be
 defined for such a purpose, allowing a management station
to
 issue a management protocol retrieval operation. In
order
 to avoid unnecessary collisions between competing
management
 stations, `adjacent' retrievals of this object should be
 different.

 Finally, the management station could select a pseudo-
random
 number to use as the index. In the event that this index

McCloghrie, et al. Standards Track [Page
11]

RFC 2579 Textual Conventions for SMIv2 April
1999

 was already in use and an inconsistentValue was returned
in
 response to the management protocol set operation, the
 management station should simply select a new pseudo-
random
 number and retry the operation.

 A MIB designer should choose between the two latter
 algorithms based on the size of the table (and therefore
the
 efficiency of each algorithm). For tables in which a
large
 number of entries are expected, it is recommended that a
MIB
 object be defined that returns an acceptable index for
 creation. For tables with small numbers of entries, it
is

 recommended that the latter pseudo-random index mechanism
be
 used.

 Interaction 2: Creating the Conceptual Row

 Once an unused instance-identifier has been selected, the
 management station determines if it wishes to create and
 activate the conceptual row in one transaction or in a
 negotiated set of interactions.

 Interaction 2a: Creating and Activating the Conceptual
Row

 The management station must first determine the column
 requirements, i.e., it must determine those columns for
 which it must or must not provide values. Depending on
the
 complexity of the table and the management station's
 knowledge of the agent's capabilities, this determination
 can be made locally by the management station.
Alternately,
 the management station issues a management protocol get
 operation to examine all columns in the conceptual row
that
 it wishes to create. In response, for each column, there
 are three possible outcomes:

 - a value is returned, indicating that some other
 management station has already created this
conceptual
 row. We return to interaction 1.

 - the exception `noSuchInstance' is returned,
 indicating that the agent implements the object-type
 associated with this column, and that this column in
at
 least one conceptual row would be accessible in the
MIB
 view used by the retrieval were it to exist. For
those
 columns to which the agent provides read-create
access,
 the `noSuchInstance' exception tells the management
 station that it should supply a value for this
column
 when the conceptual row is to be created.

McCloghrie, et al. Standards Track [Page
12]

RFC 2579 Textual Conventions for SMIv2 April
1999

 - the exception `noSuchObject' is returned,
indicating
 that the agent does not implement the object-type
 associated with this column or that there is no
 conceptual row for which this column would be
 accessible in the MIB view used by the retrieval.
As
 such, the management station can not issue any
 management protocol set operations to create an
 instance of this column.

 Once the column requirements have been determined, a
 management protocol set operation is accordingly issued.
 This operation also sets the new instance of the status
 column to `createAndGo'.

 When the agent processes the set operation, it verifies
that
 it has sufficient information to make the conceptual row
 available for use by the managed device. The information
 available to the agent is provided by two sources: the
 management protocol set operation which creates the
 conceptual row, and, implementation-specific defaults
 supplied by the agent (note that an agent must provide
 implementation-specific defaults for at least those
objects
 which it implements as read-only). If there is
sufficient
 information available, then the conceptual row is
created, a
 `noError' response is returned, the status column is set
to
 `active', and no further interactions are necessary
(i.e.,
 interactions 3 and 4 are skipped). If there is
insufficient
 information, then the conceptual row is not created, and
the
 set operation fails with an error of `inconsistentValue'.
 On this error, the management station can issue a
management
 protocol retrieval operation to determine if this was
 because it failed to specify a value for a required
column,
 or, because the selected instance of the status column
 already existed. In the latter case, we return to
 interaction 1. In the former case, the management
station
 can re-issue the set operation with the additional
 information, or begin interaction 2 again using
 `createAndWait' in order to negotiate creation of the
 conceptual row.

McCloghrie, et al. Standards Track [Page
13]

RFC 2579 Textual Conventions for SMIv2 April
1999

 NOTE WELL

 Regardless of the method used to determine the
column
 requirements, it is possible that the management
 station might deem a column necessary when, in fact,
 the agent will not allow that particular columnar
 instance to be created or written. In this case,
the
 management protocol set operation will fail with an
 error such as `noCreation' or `notWritable'. In
this
 case, the management station decides whether it
needs
 to be able to set a value for that particular
columnar
 instance. If not, the management station re-issues
the
 management protocol set operation, but without
setting
 a value for that particular columnar instance;
 otherwise, the management station aborts the row
 creation algorithm.

 Interaction 2b: Negotiating the Creation of the
Conceptual
 Row

 The management station issues a management protocol set
 operation which sets the desired instance of the status
 column to `createAndWait'. If the agent is unwilling to
 process a request of this sort, the set operation fails
with
 an error of `wrongValue'. (As a consequence, such an
agent
 must be prepared to accept a single management protocol
set
 operation, i.e., interaction 2a above, containing all of
the
 columns indicated by its column requirements.)
Otherwise,
 the conceptual row is created, a `noError' response is
 returned, and the status column is immediately set to
either
 `notInService' or `notReady', depending on whether it has
 sufficient information to (attempt to) make the
conceptual
 row available for use by the managed device. If there is

 sufficient information available, then the status column
is
 set to `notInService'; otherwise, if there is
insufficient
 information, then the status column is set to `notReady'.
 Regardless, we proceed to interaction 3.

 Interaction 3: Initializing non-defaulted Objects

 The management station must now determine the column
 requirements. It issues a management protocol get
operation
 to examine all columns in the created conceptual row. In
 the response, for each column, there are three possible
 outcomes:

McCloghrie, et al. Standards Track [Page
14]

RFC 2579 Textual Conventions for SMIv2 April
1999

 - a value is returned, indicating that the agent
 implements the object-type associated with this
column
 and had sufficient information to provide a value.
For
 those columns to which the agent provides read-
create
 access (and for which the agent allows their values
to
 be changed after their creation), a value return
tells
 the management station that it may issue additional
 management protocol set operations, if it desires,
in
 order to change the value associated with this
column.

 - the exception `noSuchInstance' is returned,
 indicating that the agent implements the object-type
 associated with this column, and that this column in
at
 least one conceptual row would be accessible in the
MIB
 view used by the retrieval were it to exist.
However,
 the agent does not have sufficient information to
 provide a value, and until a value is provided, the
 conceptual row may not be made available for use by
the

 managed device. For those columns to which the
agent
 provides read-create access, the `noSuchInstance'
 exception tells the management station that it must
 issue additional management protocol set operations,
in
 order to provide a value associated with this
column.

 - the exception `noSuchObject' is returned,
indicating
 that the agent does not implement the object-type
 associated with this column or that there is no
 conceptual row for which this column would be
 accessible in the MIB view used by the retrieval.
As
 such, the management station can not issue any
 management protocol set operations to create an
 instance of this column.

 If the value associated with the status column is
 `notReady', then the management station must first deal
with
 all `noSuchInstance' columns, if any. Having done so,
the
 value of the status column becomes `notInService', and we
 proceed to interaction 4.

McCloghrie, et al. Standards Track [Page
15]

RFC 2579 Textual Conventions for SMIv2 April
1999

 Interaction 4: Making the Conceptual Row Available

 Once the management station is satisfied with the values
 associated with the columns of the conceptual row, it
issues
 a management protocol set operation to set the status
column
 to `active'. If the agent has sufficient information to
 make the conceptual row available for use by the managed
 device, the management protocol set operation succeeds (a

 `noError' response is returned). Otherwise, the
management
 protocol set operation fails with an error of
 `inconsistentValue'.

 NOTE WELL

 A conceptual row having a status column with value
 `notInService' or `notReady' is unavailable to the
 managed device. As such, it is possible for the
 managed device to create its own instances during
the
 time between the management protocol set operation
 which sets the status column to `createAndWait' and
the
 management protocol set operation which sets the
status
 column to `active'. In this case, when the
management
 protocol set operation is issued to set the status
 column to `active', the values held in the agent
 supersede those used by the managed device.

 If the management station is prevented from setting the
 status column to `active' (e.g., due to management
station
 or network failure) the conceptual row will be left in
the
 `notInService' or `notReady' state, consuming resources
 indefinitely. The agent must detect conceptual rows that
 have been in either state for an abnormally long period
of
 time and remove them. It is the responsibility of the
 DESCRIPTION clause of the status column to indicate what
an
 abnormally long period of time would be. This period of
 time should be long enough to allow for human response
time
 (including `think time') between the creation of the
 conceptual row and the setting of the status to `active'.
 In the absence of such information in the DESCRIPTION
 clause, it is suggested that this period be approximately
5
 minutes in length. This removal action applies not only
to
 newly-created rows, but also to previously active rows
which
 are set to, and left in, the notInService state for a
 prolonged period exceeding that which is considered
normal
 for such a conceptual row.

McCloghrie, et al. Standards Track [Page
16]

RFC 2579 Textual Conventions for SMIv2 April
1999

 Conceptual Row Suspension

 When a conceptual row is `active', the management station
 may issue a management protocol set operation which sets
the
 instance of the status column to `notInService'. If the
 agent is unwilling to do so, the set operation fails with
an
 error of `wrongValue' or `inconsistentValue'. Otherwise,
 the conceptual row is taken out of service, and a
`noError'
 response is returned. It is the responsibility of the
 DESCRIPTION clause of the status column to indicate under
 what circumstances the status column should be taken out
of
 service (e.g., in order for the value of some other
column
 of the same conceptual row to be modified).

 Conceptual Row Deletion

 For deletion of conceptual rows, a management protocol
set
 operation is issued which sets the instance of the status
 column to `destroy'. This request may be made regardless
of
 the current value of the status column (e.g., it is
possible
 to delete conceptual rows which are either `notReady',
 `notInService' or `active'.) If the operation succeeds,
 then all instances associated with the conceptual row are
 immediately removed."
 SYNTAX INTEGER {
 -- the following two values are states:
 -- these values may be read or written
 active(1),
 notInService(2),

 -- the following value is a state:
 -- this value may be read, but not written
 notReady(3),

 -- the following three values are
 -- actions: these values may be written,
 -- but are never read
 createAndGo(4),
 createAndWait(5),
 destroy(6)
 }

TimeStamp ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "The value of the sysUpTime object at which a specific

 occurrence happened. The specific occurrence must be

McCloghrie, et al. Standards Track [Page
17]

RFC 2579 Textual Conventions for SMIv2 April
1999

 defined in the description of any object defined using
this
 type.

 If sysUpTime is reset to zero as a result of a re-
 initialization of the network management (sub)system,
then
 the values of all TimeStamp objects are also reset.
 However, after approximately 497 days without a re-
 initialization, the sysUpTime object will reach 2^^32-1
and
 then increment around to zero; in this case, existing
values
 of TimeStamp objects do not change. This can lead to
 ambiguities in the value of TimeStamp objects."
 SYNTAX TimeTicks

TimeInterval ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "A period of time, measured in units of 0.01 seconds."
 SYNTAX INTEGER (0..2147483647)

DateAndTime ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "2d-1d-1d,1d:1d:1d.1d,1a1d:1d"
 STATUS current
 DESCRIPTION
 "A date-time specification.

 field octets contents range
 ----- ------ -------- -----
 1 1-2 year* 0..65536
 2 3 month 1..12
 3 4 day 1..31
 4 5 hour 0..23
 5 6 minutes 0..59
 6 7 seconds 0..60
 (use 60 for leap-second)
 7 8 deci-seconds 0..9
 8 9 direction from UTC '+' / '-'
 9 10 hours from UTC* 0..13
 10 11 minutes from UTC 0..59

 * Notes:
 - the value of year is in network-byte order
 - daylight saving time in New Zealand is +13

 For example, Tuesday May 26, 1992 at 1:30:15 PM EDT would
be
 displayed as:

 1992-5-26,13:30:15.0,-4:0

McCloghrie, et al. Standards Track [Page
18]

RFC 2579 Textual Conventions for SMIv2 April
1999

 Note that if only local time is known, then timezone
 information (fields 8-10) is not present."
 SYNTAX OCTET STRING (SIZE (8 | 11))

StorageType ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Describes the memory realization of a conceptual row. A
 row which is volatile(2) is lost upon reboot. A row
which
 is either nonVolatile(3), permanent(4) or readOnly(5), is
 backed up by stable storage. A row which is permanent(4)
 can be changed but not deleted. A row which is
readOnly(5)
 cannot be changed nor deleted.

 If the value of an object with this syntax is either
 permanent(4) or readOnly(5), it cannot be written.
 Conversely, if the value is either other(1), volatile(2)
or
 nonVolatile(3), it cannot be modified to be permanent(4)
or
 readOnly(5). (All illegal modifications result in a
 'wrongValue' error.)

 Every usage of this textual convention is required to
 specify the columnar objects which a permanent(4) row
must
 at a minimum allow to be writable."
 SYNTAX INTEGER {
 other(1), -- eh?
 volatile(2), -- e.g., in RAM
 nonVolatile(3), -- e.g., in NVRAM
 permanent(4), -- e.g., partially in ROM
 readOnly(5) -- e.g., completely in ROM
 }

McCloghrie, et al. Standards Track [Page
19]

RFC 2579 Textual Conventions for SMIv2 April
1999

TDomain ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Denotes a kind of transport service.

 Some possible values, such as snmpUDPDomain, are defined in
 the SNMPv2-TM MIB module. Other possible values are
defined
 in other MIB modules."
 REFERENCE "The SNMPv2-TM MIB module is defined in RFC 1906."
 SYNTAX OBJECT IDENTIFIER

TAddress ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Denotes a transport service address.

 A TAddress value is always interpreted within the context
of a
 TDomain value. Thus, each definition of a TDomain value
must
 be accompanied by a definition of a textual convention for
use
 with that TDomain. Some possible textual conventions, such
as
 SnmpUDPAddress for snmpUDPDomain, are defined in the
SNMPv2-TM
 MIB module. Other possible textual conventions are defined
in
 other MIB modules."
 REFERENCE "The SNMPv2-TM MIB module is defined in RFC 1906."
 SYNTAX OCTET STRING (SIZE (1..255))

END

3. Mapping of the TEXTUAL-CONVENTION macro

 The TEXTUAL-CONVENTION macro is used to convey the syntax and
 semantics associated with a textual convention. It should be
noted
 that the expansion of the TEXTUAL-CONVENTION macro is something
which
 conceptually happens during implementation and not during run-
time.

 The name of a textual convention must consist of one or more
letters
 or digits, with the initial character being an upper case letter.
 The name must not conflict with any of the reserved words listed
in
 section 3.7 of [2], should not consist of all upper case letters,
and
 shall not exceed 64 characters in length. (However, names longer
 than 32 characters are not recommended.) The hyphen is not
allowed
 in the name of a textual convention (except for use in information
 modules converted from SMIv1 which allowed hyphens in ASN.1 type
 assignments). Further, all names used for the textual conventions
 defined in all "standard" information modules shall be unique.

McCloghrie, et al. Standards Track [Page
20]

RFC 2579 Textual Conventions for SMIv2 April
1999

3.1. Mapping of the DISPLAY-HINT clause

 The DISPLAY-HINT clause, which need not be present, gives a hint
as
 to how the value of an instance of an object with the syntax
defined
 using this textual convention might be displayed. The DISPLAY-
HINT
 clause must not be present if the Textual Convention is defined
with
 a syntax of: OBJECT IDENTIFIER, IpAddress, Counter32, Counter64,
or
 any enumerated syntax (BITS or INTEGER). The determination of
 whether it makes sense for other syntax types is dependent on the
 specific definition of the Textual Convention.

 When the syntax has an underlying primitive type of INTEGER, the
hint
 consists of an integer-format specification, containing two parts.
 The first part is a single character suggesting a display format,
 either: `x' for hexadecimal, or `d' for decimal, or `o' for octal,
or
 `b' for binary. For all types, when rendering the value, leading

 zeros are omitted, and for negative values, a minus sign is
rendered
 immediately before the digits. The second part is always omitted
for
 `x', `o' and `b', and need not be present for `d'. If present,
the
 second part starts with a hyphen and is followed by a decimal
number,
 which defines the implied decimal point when rendering the value.
 For example:

 Hundredths ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "d-2"
 ...
 SYNTAX INTEGER (0..10000)

 suggests that a Hundredths value of 1234 be rendered as "12.34"

 When the syntax has an underlying primitive type of OCTET STRING,
the
 hint consists of one or more octet-format specifications. Each
 specification consists of five parts, with each part using and
 removing zero or more of the next octets from the value and
producing
 the next zero or more characters to be displayed. The octets
within
 the value are processed in order of significance, most significant
 first.

 The five parts of a octet-format specification are:

(1) the (optional) repeat indicator; if present, this part is a `*',
 and indicates that the current octet of the value is to be used
as
 the repeat count. The repeat count is an unsigned integer
(which
 may be zero) which specifies how many times the remainder of
this
 octet-format specification should be successively applied. If
the
 repeat indicator is not present, the repeat count is one.

McCloghrie, et al. Standards Track [Page
21]

RFC 2579 Textual Conventions for SMIv2 April
1999

(2) the octet length: one or more decimal digits specifying the
number
 of octets of the value to be used and formatted by this octet-
 specification. Note that the octet length can be zero. If less
 than this number of octets remain in the value, then the lesser

 number of octets are used.

(3) the display format, either: `x' for hexadecimal, `d' for
decimal,
 `o' for octal, `a' for ascii, or `t' for UTF-8. If the octet
 length part is greater than one, and the display format part
refers
 to a numeric format, then network-byte ordering (big-endian
 encoding) is used interpreting the octets in the value. The
octets
 processed by the `t' display format do not necessarily form an
 integral number of UTF-8 characters. Trailing octets which do
not
 form a valid UTF-8 encoded character are discarded.

(4) the (optional) display separator character; if present, this
part
 is a single character which is produced for display after each
 application of this octet-specification; however, this character
is
 not produced for display if it would be immediately followed by
the
 display of the repeat terminator character for this octet-
 specification. This character can be any character other than a
 decimal digit and a `*'.

(5) the (optional) repeat terminator character, which can be present
 only if the display separator character is present and this
octet-
 specification begins with a repeat indicator; if present, this
part
 is a single character which is produced after all the zero or
more
 repeated applications (as given by the repeat count) of this
 octet-specification. This character can be any character other
 than a decimal digit and a `*'.

 Output of a display separator character or a repeat terminator
 character is suppressed if it would occur as the last character of
 the display.

 If the octets of the value are exhausted before all the octet-
format
 specification have been used, then the excess specifications are
 ignored. If additional octets remain in the value after
interpreting
 all the octet-format specifications, then the last octet-format
 specification is re-interpreted to process the additional octets,
 until no octets remain in the value.

3.2. Mapping of the STATUS clause

 The STATUS clause, which must be present, indicates whether this
 definition is current or historic.

 The value "current" means that the definition is current and
valid.

McCloghrie, et al. Standards Track [Page
22]

RFC 2579 Textual Conventions for SMIv2 April
1999

 The value "obsolete" means the definition is obsolete and should
not
 be implemented and/or can be removed if previously implemented.
 While the value "deprecated" also indicates an obsolete
definition,
 it permits new/continued implementation in order to foster
 interoperability with older/existing implementations.

3.3. Mapping of the DESCRIPTION clause

 The DESCRIPTION clause, which must be present, contains a textual
 definition of the textual convention, which provides all semantic
 definitions necessary for implementation, and should embody any
 information which would otherwise be communicated in any ASN.1
 commentary annotations associated with the object.

3.4. Mapping of the REFERENCE clause

 The REFERENCE clause, which need not be present, contains a
textual
 cross-reference to some other document, either another information
 module which defines a related assignment, or some other document
 which provides additional information relevant to this definition.

3.5. Mapping of the SYNTAX clause

 The SYNTAX clause, which must be present, defines abstract data
 structure corresponding to the textual convention. The data
 structure must be one of the alternatives defined in the
ObjectSyntax
 CHOICE or the BITS construct (see section 7.1 in [2]). Note that
 this means that the SYNTAX clause of a Textual Convention can not
 refer to a previously defined Textual Convention.

 An extended subset of the full capabilities of ASN.1 (1988) sub-
 typing is allowed, as appropriate to the underlying ASN.1 type.
Any
 such restriction on size, range or enumerations specified in this
 clause represents the maximal level of support which makes
"protocol
 sense". Restrictions on sub-typing are specified in detail in
 Section 9 and Appendix A of [2].

4. Sub-typing of Textual Conventions

 The SYNTAX clause of a TEXTUAL CONVENTION macro may be sub-typed
in
 the same way as the SYNTAX clause of an OBJECT-TYPE macro (see
 section 11 of [2]).

5. Revising a Textual Convention Definition

 It may be desirable to revise the definition of a textual
convention
 after experience is gained with it. However, changes are not
allowed
 if they have any potential to cause interoperability problems
"over

McCloghrie, et al. Standards Track [Page
23]

RFC 2579 Textual Conventions for SMIv2 April
1999

 the wire" between an implementation using an original
specification
 and an implementation using an updated specification(s). Such
 changes can only be accommodated by defining a new textual
convention
 (i.e., a new name).

 The following revisions are allowed:

(1) A SYNTAX clause containing an enumerated INTEGER may have new
 enumerations added or existing labels changed. Similarly, named
 bits may be added or existing labels changed for the BITS
 construct.

(2) A STATUS clause value of "current" may be revised as
"deprecated"
 or "obsolete". Similarly, a STATUS clause value of "deprecated"
 may be revised as "obsolete". When making such a change, the
 DESCRIPTION clause should be updated to explain the rationale.

(3) A REFERENCE clause may be added or updated.

(4) A DISPLAY-HINTS clause may be added or updated.

(5) Clarifications and additional information may be included in the
 DESCRIPTION clause.

(6) Any editorial change.

 Note that with the introduction of the TEXTUAL-CONVENTION macro,
 there is no longer any need to define types in the following
manner:

 DisplayString ::= OCTET STRING (SIZE (0..255))

 When revising an information module containing a definition such
as
 this, that definition should be replaced by a TEXTUAL-CONVENTION
 macro.

6. Security Considerations

 This document defines the means to define new data types for the
 language used to write and read descriptions of management
 information. These data types have no security impact on the
 Internet.

McCloghrie, et al. Standards Track [Page
24]

RFC 2579 Textual Conventions for SMIv2 April
1999

7. Editors' Addresses

 Keith McCloghrie
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134-1706
 USA
 Phone: +1 408 526 5260
 EMail: kzm@cisco.com

 David Perkins
 SNMPinfo
 3763 Benton Street
 Santa Clara, CA 95051
 USA
 Phone: +1 408 221-8702
 EMail: dperkins@snmpinfo.com

 Juergen Schoenwaelder
 TU Braunschweig
 Bueltenweg 74/75
 38106 Braunschweig
 Germany
 Phone: +49 531 391-3283
 EMail: schoenw@ibr.cs.tu-bs.de

8. References

[1] Information processing systems - Open Systems Interconnection -
 Specification of Abstract Syntax Notation One (ASN.1),
 International Organization for Standardization. International
 Standard 8824, (December, 1987).

[2] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
M.

 and S. Waldbusser, "Structure of Management Information Version
2
 (SMIv2)", STD 58, RFC 2578, April 1999.

[3] The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M. and
 Waldbusser, S., "Transport Mappings for Version 2 of the" Simple
 Network Management Protocol (SNMPv2)", RFC 1906, January 1996.

McCloghrie, et al. Standards Track [Page
25]

RFC 2579 Textual Conventions for SMIv2 April
1999

9. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished
to
 others, and derivative works that comment on or otherwise explain
it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by
removing
 the copyright notice or references to the Internet Society or
other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not
be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on
an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

McCloghrie, et al. Standards Track [Page
26]

