Network Working Group Editors of this version: Request for Comments: 2579

McCloghrie

STD: 58 Cisco

Systems

Obsoletes: 1903 D.

Perkins

Category: Standards Track

SNMPinfo

J. Schoenwaelder

TU Braunschweig

Authors of previous version:

Case

SNMP

Research

Κ.

McCloghrie Cisco

Systems

Μ. Rose

First Virtual

Holdings

S. Waldbusser

International Network

Services

April 1999

Textual Conventions for SMIv2

Status of this Memo

This document specifies an Internet standards track protocol for

Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet

Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

Table of Contents

1 Introduction	2 2 0 1 2 3 3 3
McCloghrie, et al. Standards Track [Page 1]	ž
RFC 2579 Textual Conventions for SMIv2 April 1999	
6 Security Considerations	5
Management information is viewed as a collection of managed objects, residing in a virtual information store, termed the Management Information Base (MIB). Collections of related objects are defined in MIB modules. These modules are written using an adapted subset of OSI's Abstract Syntax Notation One, ASN.1 (1988) [1], termed the Structure of Management Information (SMI) [2].	
When designing a MIB module, it is often useful to define new types similar to those defined in the SMI. In comparison to a type defined in the SMI, each of these new types has a different name, a similar syntax, but a more precise semantics. These newly defined types are termed textual conventions, and are used for the convenience of humans reading the MIB module. It is the purpose of this document to define the initial set of textual conventions available to all MIE modules. Objects defined using a textual convention are always encoded by	
means of the rules that define their primitive type. However, textual conventions often have special semantics associated with them. As such, an ASN.1 macro, TEXTUAL-CONVENTION, is used to	

concisely convey the syntax and semantics of a textual convention.

1.1. A Note on Terminology

For the purpose of exposition, the original Structure of Management

Information, as described in RFCs 1155 (STD 16), 1212 (STD 16), and

RFC 1215, is termed the SMI version 1 (SMIv1). The current version

of the Structure of Management Information is termed SMI version 2 (SMIv2).

2. Definitions

SNMPv2-TC DEFINITIONS ::= BEGIN

IMPORTS

TimeTicks FROM SNMPv2-SMI;

-- definition of textual conventions

TEXTUAL-CONVENTION MACRO ::=

McCloghrie, et al. Standards Track [Page 2]

RFC 2579 Textual Conventions for SMIv2 April 1999

BEGIN

TYPE NOTATION ::=

DisplayPart "STATUS" Status "DESCRIPTION" Text ReferPart

"SYNTAX" Syntax

VALUE NOTATION ::=

value(VALUE Syntax) -- adapted ASN.1

DisplayPart ::=

"DISPLAY-HINT" Text

empty

Status ::=

"current" | "deprecated" | "obsolete"

ReferPart ::=

"REFERENCE" Text

empty

-- a character string as defined in [2] Text ::= value(IA5String)

```
Syntax ::= -- Must be one of the following:
                      -- a base type (or its refinement), or
                      -- a BITS pseudo-type
                 type
                | "BITS" "{" NamedBits "}"
    NamedBits ::= NamedBit
               NamedBits "," NamedBit
    NamedBit ::= identifier "(" number ")" -- number is nonnegative
END
DisplayString ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "255a"
   STATUS
                current
   DESCRIPTION
            "Represents textual information taken from the NVT ASCII
McCloghrie, et al.
                          Standards Track
                                                               [Page
3]
RFC 2579
              Textual Conventions for SMIv2
                                                           April
1999
            character set, as defined in pages 4, 10-11 of RFC 854.
            To summarize RFC 854, the NVT ASCII repertoire specifies:
              - the use of character codes 0-127 (decimal)
              - the graphics characters (32-126) are interpreted as
               US ASCII
              - NUL, LF, CR, BEL, BS, HT, VT and FF have the special
               meanings specified in RFC 854
              - the other 25 codes have no standard interpretation
              - the sequence 'CR LF' means newline
              - the sequence 'CR NUL' means carriage-return
              - an 'LF' not preceded by a 'CR' means moving to the
                same column on the next line.
              - the sequence 'CR x' for any x other than LF or NUL is
                illegal. (Note that this also means that a string
may
                end with either 'CR LF' or 'CR NUL', but not with
CR.)
```

```
Any object defined using this syntax may not exceed 255
        characters in length."
SYNTAX
            OCTET STRING (SIZE (0..255))
```

PhysAddress ::= TEXTUAL-CONVENTION

DISPLAY-HINT "1x:" STATUS current

DESCRIPTION

"Represents media- or physical-level addresses."

OCTET STRING

MacAddress ::= TEXTUAL-CONVENTION

DISPLAY-HINT "1x:" STATUS current

DESCRIPTION

"Represents an 802 MAC address represented in the `canonical' order defined by IEEE 802.1a, i.e., as if it were transmitted least significant bit first, even though 802.5 (in contrast to other 802.x protocols) requires MAC addresses to be transmitted most significant bit first."

SYNTAX OCTET STRING (SIZE (6))

McCloghrie, et al. Standards Track [Page 4]

RFC 2579 Textual Conventions for SMIv2 April 1999

TruthValue ::= TEXTUAL-CONVENTION

current

DESCRIPTION

"Represents a boolean value."

INTEGER { true(1), false(2) }

TestAndIncr ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION

"Represents integer-valued information used for atomic operations. When the management protocol is used to

specify

that an object instance having this syntax is to be modified, the new value supplied via the management

protocol

must precisely match the value presently held by the instance. If not, the management protocol set operation fails with an error of `inconsistentValue'. Otherwise,

if

to

the current value is the maximum value of 2^31-1

(2147483647

decimal), then the value held by the instance is wrapped

zero; otherwise, the value held by the instance is

incremented by one. (Note that regardless of whether the management protocol set operation succeeds, the variable-binding in the request and response PDUs are identical.)

The value of the ACCESS clause for objects having this syntax is either `read-write' or `read-create'. When an instance of a columnar object having this syntax is

created,

any value may be supplied via the management protocol.

When the network management portion of the system is reinitialized, the value of every object instance having

this

syntax must either be incremented from its value prior to the re-initialization, or (if the value prior to the re-initialization is unknown) be set to a pseudo-randomly generated value."

SYNTAX INTEGER (0..2147483647)

AutonomousType ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION

"Represents an independently extensible type

identification

value. It may, for example, indicate a particular sub-

tree

with further MIB definitions, or define a particular type

of

protocol or hardware."

SYNTAX OBJECT IDENTIFIER

InstancePointer ::= TEXTUAL-CONVENTION

STATUS obsolete

McCloghrie, et al. Standards Track [Page 5]

RFC 2579 Textual Conventions for SMIv2 April 1999

DESCRIPTION

"A pointer to either a specific instance of a MIB object

or

a conceptual row of a MIB table in the managed device.

In

the latter case, by convention, it is the name of the particular instance of the first accessible columnar

object

in the conceptual row.

The two uses of this textual convention are replaced by VariablePointer and RowPointer, respectively."

SYNTAX OBJECT IDENTIFIER

VariablePointer ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION

"A pointer to a specific object instance. For example, sysContact.0 or ifInOctets.3."

SYNTAX OBJECT IDENTIFIER

RowPointer ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION

"Represents a pointer to a conceptual row. The value is

the

name of the instance of the first accessible columnar

object

in the conceptual row.

For example, ifIndex.3 would point to the 3rd row in the ifTable (note that if ifIndex were not-accessible, then ifDescr.3 would be used instead)."

SYNTAX OBJECT IDENTIFIER

RowStatus ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION

"The RowStatus textual convention is used to manage the creation and deletion of conceptual rows, and is used as

the

value of the SYNTAX clause for the status column of a conceptual row (as described in Section 7.7.1 of [2].)

McCloghrie, et al. Standards Track [Page 6]

RFC 2579 Textual Conventions for SMIv2 April 1999

The status column has six defined values:

- `active', which indicates that the conceptual row is

available for use by the managed device;

- `notInService', which indicates that the

conceptual

row exists in the agent, but is unavailable for use by the managed device (see NOTE below); 'notInService' has no implication regarding the internal consistency of the row, availability of resources, or consistency with the current state of the managed device; - `notReady', which indicates that the conceptual row exists in the agent, but is missing information necessary in order to be available for use by the managed device (i.e., one or more required columns in the conceptual row have not been instanciated); - `createAndGo', which is supplied by a management station wishing to create a new instance of a conceptual row and to have its status automatically set to active, making it available for use by the managed device; - `createAndWait', which is supplied by a management station wishing to create a new instance of a conceptual row (but not make it available for use by the managed device); and, - `destroy', which is supplied by a management station wishing to delete all of the instances associated with an existing conceptual row. Whereas five of the six values (all except `notReady') may be specified in a management protocol set operation, only three values will be returned in response to a management protocol retrieval operation: `notReady', `notInService' or `active'. That is, when queried, an existing conceptual row has only three states: it is either available for use by the managed device (the status column has value `active'); it is not available for use by the managed device, though the agent has sufficient information to attempt to make it so (the status column has value `notInService'); or, it is not available for use by the managed device, and an attempt to make it so would fail because the agent has insufficient information (the state column has value `notReady').

[Page

RFC 2579 1999

Textual Conventions for SMIv2

April

NOTE WELL

This textual convention may be used for a MIB table, irrespective of whether the values of that table's conceptual rows are able to be modified while it is active, or whether its conceptual rows must be taken out of service in order to be modified. That is, it

is the responsibility of the DESCRIPTION clause of the status column to specify whether the status column

must not be `active' in order for the value of some other column of the same conceptual row to be modified.

such a specification is made, affected columns may

changed by an SNMP set PDU if the RowStatus would

not be equal to `active' either immediately before or

other than 'active'.

RowStatus column must also exist.

processing the PDU. In other words, if the PDU also contained a varbind that would change the RowStatus value, the column in question may be changed if the RowStatus was not equal to `active' as the PDU was

received, or if the varbind sets the status to a

Also note that whenever any elements of a row exist, the

after

Ιf

be

value

[Page

RFC 2579 1999

Textual Conventions for SMIv2

April

To summarize the effect of having a conceptual row with a status column having a SYNTAX clause value of RowStatus, consider the following state diagram:

STATE

ACTION	A A status column does not exist	is notReady +	notInService	status column is active
set status column to createAndGo	noError ->D or inconsistent- Value	entValue		
set status column to createAndWait	noError see 1 or wrongValue	inconsist- entValue 		
set status column to active	inconsistent- Value 	entValue or		noError ->D
set status column to notInService	inconsistent- Value 	!		noError ->C or see 6
set status column to destroy	noError ->A		noError ->A	or
set any other column to some value	!	noError see 1	noError ->C	see 5 ->D

(1) goto B or C, depending on information available to the $$\operatorname{agent}.$$

(2) if other variable bindings included in the same PDU,

McCloghrie, et al. Standards Track [Page 9]

RFC 2579

Textual Conventions for SMIv2

April

1999

provide values for all columns which are missing but required, and all columns have acceptable values, then return noError and goto ${\tt D}.$

(3) if other variable bindings included in the same PDU, provide legal values for all columns which are missing

but

required, then return noError and goto C.

(4) at the discretion of the agent, the return value may either:

CICICI

inconsistentName: because the agent does not choose

to

be

create such an instance when the corresponding $\ensuremath{\mathsf{RowStatus}}$ instance does not exist, or

inconsistentValue: if the supplied value is
inconsistent with the state of some other MIB

object's

value, or

noError: because the agent chooses to create the instance.

If noError is returned, then the instance of the status column must also be created, and the new state is B or C, depending on the information available to the agent. If inconsistentName or inconsistentValue is returned, the

row

remains in state A.

- (5) depending on the MIB definition for the column/table, either noError or inconsistentValue may be returned.
- (6) the return value can indicate one of the following errors:

wrongValue: because the agent does not support
notInService (e.g., an agent which does not support
createAndWait), or

inconsistentValue: because the agent is unable to take the row out of service at this time, perhaps because it is in use and cannot be de-activated. (7) the return value can indicate the following error: inconsistentValue: because the agent is unable to remove the row at this time, perhaps because it is in use and cannot be de-activated. McCloghrie, et al. Standards Track [Page 101 RFC 2579 Textual Conventions for SMIv2 April 1999 (8) the transition to D can fail, e.g., if the values of the conceptual row are inconsistent, then the error code would be inconsistent Value. NOTE: Other processing of (this and other varbinds of) the set request may result in a response other than noError being returned, e.g., wrongValue, noCreation, etc. Conceptual Row Creation There are four potential interactions when creating a conceptual row: selecting an instance-identifier which is not in use; creating the conceptual row; initializing any objects for which the agent does not supply a default; and, making the conceptual row available for use by the managed device. Interaction 1: Selecting an Instance-Identifier The algorithm used to select an instance-identifier varies for each conceptual row. In some cases, the instanceidentifier is semantically significant, e.g., the destination address of a route, and a management station selects the instance-identifier according to the semantics.

In other cases, the instance-identifier is used solely to distinguish conceptual rows, and a management station without specific knowledge of the conceptual row might examine the instances present in order to determine an unused instance-identifier. (This approach may be used, but it is often highly sub-optimal; however, it is also a questionable practice for a naive management station to attempt conceptual row creation.) Alternately, the MIB module which defines the conceptual row might provide one or more objects which provide assistance in determining an unused instance-identifier. For example, if the conceptual row is indexed by an integer-value, then an object having an integer-valued SYNTAX clause might be defined for such a purpose, allowing a management station t o issue a management protocol retrieval operation. In order to avoid unnecessary collisions between competing management stations, `adjacent' retrievals of this object should be

Finally, the management station could select a pseudorandom number to use as the index. In the event that this index

different.

McCloghrie, et al. Standards Track [Page 11]

RFC 2579 Textual Conventions for SMIv2 April 1999

was already in use and an inconsistentValue was returned in response to the management protocol set operation, the management station should simply select a new pseudorandom number and retry the operation.

A MIB designer should choose between the two latter algorithms based on the size of the table (and therefore efficiency of each algorithm). For tables in which a number of entries are expected, it is recommended that a

object be defined that returns an acceptable index for creation. For tables with small numbers of entries, it

is

the

MIB

large

 $\hbox{recommended that the latter pseudo-random index mechanism} \\$ be

used.

Interaction 2: Creating the Conceptual Row

Once an unused instance-identifier has been selected, the management station determines if it wishes to create and activate the conceptual row in one transaction or in a negotiated set of interactions.

Interaction 2a: Creating and Activating the Conceptual

Row

The management station must first determine the column requirements, i.e., it must determine those columns for which it must or must not provide values. Depending on

the

complexity of the table and the management station's knowledge of the agent's capabilities, this determination can be made locally by the management station.

Alternately,

the management station issues a management protocol get operation to examine all columns in the conceptual row

that

it wishes to create. In response, for each column, there are three possible outcomes:

- a value is returned, indicating that some other management station has already created this

conceptual

row. We return to interaction 1.

- the exception `noSuchInstance' is returned, indicating that the agent implements the object-type associated with this column, and that this column in

at

least one conceptual row would be accessible in the

MIB

view used by the retrieval were it to exist. For

those

columns to which the agent provides read-create

access,

the `noSuchInstance' exception tells the management station that it should supply a value for this

column

when the conceptual row is to be created.

McCloghrie, et al. Standards Track [Page 12]

RFC 2579 1999 Textual Conventions for SMIv2

April

- the exception `noSuchObject' is returned,

indicating

that the agent does not implement the object-type associated with this column or that there is no conceptual row for which this column would be accessible in the MIB view used by the retrieval.

As

such, the management station can not issue any management protocol set operations to create an instance of this column.

Once the column requirements have been determined, a management protocol set operation is accordingly issued. This operation also sets the new instance of the status column to `createAndGo'.

When the agent processes the set operation, it verifies

that

it has sufficient information to make the conceptual row available for use by the managed device. The information available to the agent is provided by two sources: the management protocol set operation which creates the conceptual row, and, implementation-specific defaults supplied by the agent (note that an agent must provide implementation-specific defaults for at least those

objects

which it implements as read-only). If there is

sufficient

information available, then the conceptual row is

created, a

`noError' response is returned, the status column is set

to

`active', and no further interactions are necessary

(i.e.,

interactions 3 and 4 are skipped). If there is

insufficient

information, then the conceptual row is not created, and

the

set operation fails with an error of `inconsistentValue'. On this error, the management station can issue a

management

protocol retrieval operation to determine if this was because it failed to specify a value for a required

column,

or, because the selected instance of the status column already existed. In the latter case, we return to interaction 1. In the former case, the management $\frac{1}{2}$

station

can re-issue the set operation with the additional information, or begin interaction 2 again using `createAndWait' in order to negotiate creation of the conceptual row.

McCloghrie, et al. 13]

Standards Track

[Page

RFC 2579

Textual Conventions for SMIv2

April

1999

NOTE WELL

-

Regardless of the method used to determine the

column

requirements, it is possible that the management station might deem a column necessary when, in fact, the agent will not allow that particular columnar instance to be created or written. In this case,

the

management protocol set operation will fail with an error such as `noCreation' or `notWritable'. In

this

case, the management station decides whether it

needs

to be able to set a value for that particular

columnar

instance. If not, the management station re-issues

the

management protocol set operation, but without

setting

a value for that particular columnar instance; otherwise, the management station aborts the row creation algorithm

creation algorithm.

Interaction 2b: Negotiating the Creation of the

Conceptual

Row

The management station issues a management protocol set operation which sets the desired instance of the status column to `createAndWait'. If the agent is unwilling to process a request of this sort, the set operation fails

with

an error of `wrongValue'. (As a consequence, such an

agent

must be prepared to accept a single management protocol

set

operation, i.e., interaction 2a above, containing all of

the

columns indicated by its column requirements.)

Otherwise,

the conceptual row is created, a `noError' response is returned, and the status column is immediately set to

either

`notInService' or `notReady', depending on whether it has sufficient information to (attempt to) make the

conceptual

row available for use by the managed device. If there is

sufficient information available, then the status column

is

set to `notInService'; otherwise, if there is

insufficient

information, then the status column is set to `notReady'. Regardless, we proceed to interaction 3.

Interaction 3: Initializing non-defaulted Objects

The management station must now determine the column requirements. It issues a management protocol get

operation

to examine all columns in the created conceptual row. In the response, for each column, there are three possible outcomes:

[Page

McCloghrie, et al. Standards Track 14]

RFC 2579 Textual Conventions for SMIv2 April 1999

 a value is returned, indicating that the agent implements the object-type associated with this

column

and had sufficient information to provide a value.

For

those columns to which the agent provides read-

create

access (and for which the agent allows their values

to

be changed after their creation), a value return

tells

the management station that it may issue additional management protocol set operations, if it desires,

in

order to change the value associated with this

column.

- the exception `noSuchInstance' is returned, indicating that the agent implements the object-type associated with this column, and that this column in

at

least one conceptual row would be accessible in the

MIB

view used by the retrieval were it to exist.

However,

the agent does not have sufficient information to provide a value, and until a value is provided, the conceptual row may not be made available for use by

the

managed device. For those columns to which the agent provides read-create access, the `noSuchInstance' exception tells the management station that it must issue additional management protocol set operations, in order to provide a value associated with this column. - the exception `noSuchObject' is returned, indicating that the agent does not implement the object-type associated with this column or that there is no conceptual row for which this column would be accessible in the MIB view used by the retrieval. As such, the management station can not issue any management protocol set operations to create an instance of this column. If the value associated with the status column is `notReady', then the management station must first deal with all `noSuchInstance' columns, if any. Having done so, the value of the status column becomes `notInService', and we proceed to interaction 4. McCloghrie, et al. Standards Track [Page 15] RFC 2579 Textual Conventions for SMIv2 April 1999 Interaction 4: Making the Conceptual Row Available Once the management station is satisfied with the values associated with the columns of the conceptual row, it issues a management protocol set operation to set the status column to `active'. If the agent has sufficient information to make the conceptual row available for use by the managed

device, the management protocol set operation succeeds (a

`noError' response is returned). Otherwise, the

management

protocol set operation fails with an error of `inconsistentValue'.

NOTE WELL

A conceptual row having a status column with value `notInService' or `notReady' is unavailable to the managed device. As such, it is possible for the

managed device to create its own instances during

the

time between the management protocol set operation which sets the status column to `createAndWait' and

the

management protocol set operation which sets the

status

column to `active'. In this case, when the

management

protocol set operation is issued to set the status column to `active', the values held in the agent supersede those used by the managed device.

supersede those used by the managed device.

If the management station is prevented from setting the status column to `active' (e.g., due to management

station

or network failure) the conceptual row will be left in

the

`notInService' or `notReady' state, consuming resources indefinitely. The agent must detect conceptual rows that have been in either state for an abnormally long period

of

time and remove them. It is the responsibility of the DESCRIPTION clause of the status column to indicate what

an

abnormally long period of time would be. This period of time should be long enough to allow for human response

time

(including `think time') between the creation of the conceptual row and the setting of the status to `active'. In the absence of such information in the DESCRIPTION clause, it is suggested that this period be approximately

5

minutes in length. This removal action applies not only

to

newly-created rows, but also to previously active rows

which

are set to, and left in, the notInService state for a prolonged period exceeding that which is considered

normal

for such a conceptual row.

Conceptual Row Suspension

When a conceptual row is `active', the management station may issue a management protocol set operation which sets the instance of the status column to `notInService'. If the agent is unwilling to do so, the set operation fails with an error of `wrongValue' or `inconsistentValue'. Otherwise, the conceptual row is taken out of service, and a `noError' response is returned. It is the responsibility of the DESCRIPTION clause of the status column to indicate under what circumstances the status column should be taken out of service (e.g., in order for the value of some other column of the same conceptual row to be modified). Conceptual Row Deletion For deletion of conceptual rows, a management protocol set operation is issued which sets the instance of the status column to `destroy'. This request may be made regardless of the current value of the status column (e.g., it is possible to delete conceptual rows which are either `notReady', `notInService' or `active'.) If the operation succeeds, then all instances associated with the conceptual row are immediately removed." INTEGER { SYNTAX -- the following two values are states: -- these values may be read or written active(1), notInService(2), -- the following value is a state: -- this value may be read, but not written notReady(3), -- the following three values are -- actions: these values may be written, but are never read createAndGo(4), createAndWait(5), destroy(6) }

TimeStamp ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION

"The value of the sysUpTime object at which a specific

McCloghrie, et al. Standards Track [Page 17]

RFC 2579 Textual Conventions for SMIv2 April 1999

 $% \left(-1\right) =-1$ defined in the description of any object defined using this

type.

If sysUpTime is reset to zero as a result of a reinitialization of the network management (sub)system,

then

the values of all TimeStamp objects are also reset. However, after approximately 497 days without a reinitialization, the sysUpTime object will reach 2^32-1

and

then increment around to zero; in this case, existing

values

of TimeStamp objects do not change. This can lead to ambiguities in the value of TimeStamp objects."

SYNTAX TimeTicks

TimeInterval ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION

"A period of time, measured in units of 0.01 seconds." SYNTAX INTEGER (0..2147483647)

DateAndTime ::= TEXTUAL-CONVENTION

DISPLAY-HINT "2d-1d-1d,1d:1d:1d.1d,1a1d:1d"

STATUS current

DESCRIPTION

"A date-time specification.

field	octets	contents	range
1	1-2	year*	065536
2	3	month	112
3	4	day	131
4	5	hour	023
5	6	minutes	059
6	7	seconds	060
		(use 60 for leap-second)	
7	8	deci-seconds	09
8	9	direction from UTC	'+' / '-'
9	10	hours from UTC*	013
10	11	minutes from UTC	059

^{*} Notes:

⁻ the value of year is in network-byte order

⁻ daylight saving time in New Zealand is +13

```
be
            displayed as:
                              1992-5-26,13:30:15.0,-4:0
McCloghrie, et al.
                            Standards Track
                                                                 [Page
18]
RFC 2579
                    Textual Conventions for SMIv2
                                                               April
1999
            Note that if only local time is known, then timezone
            information (fields 8-10) is not present."
               OCTET STRING (SIZE (8 | 11))
    SYNTAX
StorageType ::= TEXTUAL-CONVENTION
    STATUS
                 current
    DESCRIPTION
            "Describes the memory realization of a conceptual row. A
            row which is volatile(2) is lost upon reboot. A row
which
            is either nonVolatile(3), permanent(4) or readOnly(5), is
            backed up by stable storage. A row which is permanent(4)
            can be changed but not deleted. A row which is
readOnly(5)
            cannot be changed nor deleted.
            If the value of an object with this syntax is either
            permanent(4) or readOnly(5), it cannot be written.
            Conversely, if the value is either other(1), volatile(2)
or
            nonVolatile(3), it cannot be modified to be permanent(4)
or
            readOnly(5). (All illegal modifications result in a
            'wrongValue' error.)
            Every usage of this textual convention is required to
            specify the columnar objects which a permanent(4) row
must
            at a minimum allow to be writable."
                 INTEGER {
    SYNTAX
                                      -- eh?
                     other(1),
                     volatile(2), -- e.g., in RAM
                     nonVolatile(3), -- e.g., in NVRAM
                     permanent(4), -- e.g., partially in ROM readOnly(5) -- e.g., completely in ROM
                 }
```

For example, Tuesday May 26, 1992 at 1:30:15 PM EDT would

McCloghrie, et al. Standards Track [Page 19]

RFC 2579 Textual Conventions for SMIv2 April 1999

TDomain ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION

"Denotes a kind of transport service.

Some possible values, such as snmpUDPDomain, are defined in the SNMPv2-TM MIB module. Other possible values are

defined

in other MIB modules."

REFERENCE "The SNMPv2-TM MIB module is defined in RFC 1906." SYNTAX OBJECT IDENTIFIER

TAddress ::= TEXTUAL-CONVENTION

STATUS current

DESCRIPTION

"Denotes a transport service address.

 $\mbox{\sc A}$ TAddress value is always interpreted within the context of a

TDomain value. Thus, each definition of a TDomain value

must

be accompanied by a definition of a textual convention for

use

with that TDomain. Some possible textual conventions, such

as

SnmpUDPAddress for snmpUDPDomain, are defined in the

SNMPv2-TM

 $\ensuremath{\mathsf{MIB}}$ module. Other possible textual conventions are defined in

other MIB modules."

REFERENCE "The SNMPv2-TM MIB module is defined in RFC 1906." SYNTAX OCTET STRING (SIZE (1..255))

END

3. Mapping of the TEXTUAL-CONVENTION macro

The TEXTUAL-CONVENTION macro is used to convey the syntax and semantics associated with a textual convention. It should be noted

that the expansion of the TEXTUAL-CONVENTION macro is something

conceptually happens during implementation and not during runtime.

The name of a textual convention must consist of one or more

or digits, with the initial character being an upper case letter. The name must not conflict with any of the reserved words listed

section 3.7 of [2], should not consist of all upper case letters, and

shall not exceed 64 characters in length. (However, names longer than 32 characters are not recommended.) The hyphen is not allowed

in the name of a textual convention (except for use in information modules converted from SMIv1 which allowed hyphens in ASN.1 type assignments). Further, all names used for the textual conventions defined in all "standard" information modules shall be unique.

McCloghrie, et al. Standards Track 20]

[Page

RFC 2579 1999

Textual Conventions for SMIv2

April

3.1. Mapping of the DISPLAY-HINT clause

The DISPLAY-HINT clause, which need not be present, gives a hint

to how the value of an instance of an object with the syntax

using this textual convention might be displayed. The DISPLAY-HINT

clause must not be present if the Textual Convention is defined with

a syntax of: OBJECT IDENTIFIER, IpAddress, Counter32, Counter64, or

any enumerated syntax (BITS or INTEGER). The determination of whether it makes sense for other syntax types is dependent on the specific definition of the Textual Convention.

When the syntax has an underlying primitive type of INTEGER, the hint

consists of an integer-format specification, containing two parts. The first part is a single character suggesting a display format, either: `x' for hexadecimal, or `d' for decimal, or `o' for octal,

'b' for binary. For all types, when rendering the value, leading

zeros are omitted, and for negative values, a minus sign is rendered

immediately before the digits. The second part is always omitted

`x', `o' and `b', and need not be present for `d'. If present, the

second part starts with a hyphen and is followed by a decimal number.

which defines the implied decimal point when rendering the value. For example:

Hundredths ::= TEXTUAL-CONVENTION DISPLAY-HINT "d-2"

SYNTAX INTEGER (0..10000)

suggests that a Hundredths value of 1234 be rendered as "12.34"

When the syntax has an underlying primitive type of OCTET STRING, the

hint consists of one or more octet-format specifications. Each specification consists of five parts, with each part using and removing zero or more of the next octets from the value and producing

the next zero or more characters to be displayed. The octets within

the value are processed in order of significance, most significant first.

The five parts of a octet-format specification are:

(1) the (optional) repeat indicator; if present, this part is a `*', and indicates that the current octet of the value is to be used

the repeat count. The repeat count is an unsigned integer

may be zero) which specifies how many times the remainder of

octet-format specification should be successively applied. If the

repeat indicator is not present, the repeat count is one.

McCloghrie, et al. Standards Track 211

[Page

RFC 2579 1999

Textual Conventions for SMIv2

April

(2) the octet length: one or more decimal digits specifying the number

of octets of the value to be used and formatted by this octetspecification. Note that the octet length can be zero. If less than this number of octets remain in the value, then the lesser

number of octets are used.

(3) the display format, either: `x' for hexadecimal, `d' for decimal,

`o' for octal, `a' for ascii, or `t' for UTF-8. If the octet length part is greater than one, and the display format part refers

to a numeric format, then network-byte ordering (big-endian encoding) is used interpreting the octets in the value.

processed by the `t' display format do not necessarily form an integral number of UTF-8 characters. Trailing octets which do not

form a valid UTF-8 encoded character are discarded.

(4)the (optional) display separator character; if present, this part

is a single character which is produced for display after each application of this octet-specification; however, this character

not produced for display if it would be immediately followed by the

display of the repeat terminator character for this octetspecification. This character can be any character other than a decimal digit and a `*'.

(5) the (optional) repeat terminator character, which can be present only if the display separator character is present and this octet-

specification begins with a repeat indicator; if present, this part

is a single character which is produced after all the zero or more

repeated applications (as given by the repeat count) of this octet-specification. This character can be any character other than a decimal digit and a `*'.

Output of a display separator character or a repeat terminator character is suppressed if it would occur as the last character of the display.

If the octets of the value are exhausted before all the octet-

specification have been used, then the excess specifications are ignored. If additional octets remain in the value after interpreting

all the octet-format specifications, then the last octet-format specification is re-interpreted to process the additional octets, until no octets remain in the value.

3.2. Mapping of the STATUS clause

The STATUS clause, which must be present, indicates whether this definition is current or historic.

The value "current" means that the definition is current and valid.

is

The value "obsolete" means the definition is obsolete and should not

be implemented and/or can be removed if previously implemented. While the value "deprecated" also indicates an obsolete definition,

it permits new/continued implementation in order to foster interoperability with older/existing implementations.

3.3. Mapping of the DESCRIPTION clause

The DESCRIPTION clause, which must be present, contains a textual definition of the textual convention, which provides all semantic definitions necessary for implementation, and should embody any information which would otherwise be communicated in any ASN.1 commentary annotations associated with the object.

3.4. Mapping of the REFERENCE clause

The REFERENCE clause, which need not be present, contains a textual

cross-reference to some other document, either another information module which defines a related assignment, or some other document which provides additional information relevant to this definition.

3.5. Mapping of the SYNTAX clause

The SYNTAX clause, which must be present, defines abstract data structure corresponding to the textual convention. The data structure must be one of the alternatives defined in the ObjectSyntax

CHOICE or the BITS construct (see section 7.1 in [2]). Note that this means that the SYNTAX clause of a Textual Convention can not refer to a previously defined Textual Convention.

An extended subset of the full capabilities of ASN.1 (1988) subtyping is allowed, as appropriate to the underlying ASN.1 type. Any

such restriction on size, range or enumerations specified in this clause represents the maximal level of support which makes

sense". Restrictions on sub-typing are specified in detail in Section 9 and Appendix A of [2].

4. Sub-typing of Textual Conventions

The SYNTAX clause of a TEXTUAL CONVENTION macro may be sub-typed in

the same way as the SYNTAX clause of an OBJECT-TYPE macro (see section 11 of [2]).

5. Revising a Textual Convention Definition

It may be desirable to revise the definition of a textual convention

after experience is gained with it. However, changes are not allowed

if they have any potential to cause interoperability problems "over

McCloghrie, et al. Standards Track [Page 23]

RFC 2579 Textual Conventions for SMIv2 April 1999

the wire" between an implementation using an original specification $\ensuremath{\mathsf{Specification}}$

and an implementation using an updated specification(s). Such changes can only be accommodated by defining a new textual convention ${\bf r}$

(i.e., a new name).

The following revisions are allowed:

- (1) A SYNTAX clause containing an enumerated INTEGER may have new enumerations added or existing labels changed. Similarly, named bits may be added or existing labels changed for the BITS construct.
- (2) A STATUS clause value of "current" may be revised as "deprecated"

or "obsolete". Similarly, a STATUS clause value of "deprecated" may be revised as "obsolete". When making such a change, the DESCRIPTION clause should be updated to explain the rationale.

- (3) A REFERENCE clause may be added or updated.
- (4) A DISPLAY-HINTS clause may be added or updated.
- (5) Clarifications and additional information may be included in the DESCRIPTION clause.
- (6) Any editorial change.

Note that with the introduction of the TEXTUAL-CONVENTION macro, there is no longer any need to define types in the following manner:

DisplayString ::= OCTET STRING (SIZE (0..255))

When revising an information module containing a definition such as

this, that definition should be replaced by a ${\tt TEXTUAL-CONVENTION}$ macro.

6. Security Considerations

This document defines the means to define new data types for the language used to write and read descriptions of management information. These data types have no security impact on the Internet.

McCloghrie, et al. 24]

Standards Track

[Page

RFC 2579 1999 Textual Conventions for SMIv2

April

7. Editors' Addresses

Keith McCloghrie Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA

Phone: +1 408 526 5260 EMail: kzm@cisco.com

David Perkins SNMPinfo 3763 Benton Street Santa Clara, CA 95051

Phone: +1 408 221-8702

EMail: dperkins@snmpinfo.com

Juergen Schoenwaelder TU Braunschweig Bueltenweg 74/75 38106 Braunschweig Germany

Phone: +49 531 391-3283

EMail: schoenw@ibr.cs.tu-bs.de

8. References

- [1] Information processing systems Open Systems Interconnection Specification of Abstract Syntax Notation One (ASN.1), International Organization for Standardization. International Standard 8824, (December, 1987).
- [2] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.

- and S. Waldbusser, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
- [3] The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M. and Waldbusser, S., "Transport Mappings for Version 2 of the" Simple Network Management Protocol (SNMPv2)", RFC 1906, January 1996.

McCloghrie, et al. 25]

Standards Track

[Page

RFC 2579 1999 Textual Conventions for SMIv2

April

9. Full Copyright Statement

Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished

others, and derivative works that comment on or otherwise explain \vdots

or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing

the copyright notice or references to the Internet Society or other

Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be

revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on

"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

McCloghrie, et al. Standards Track 26]

[Page