A Light Reading Webinar

The Role of TISPAN In Next-Generation Networks

Thursday, March 9, 2006

Hosted by
Graham Finnie
Senior Analyst
Speakers

• Simon Spraggs
 Cisco Systems

• Jared Rosoff
 Tazz Networks
Agenda

• What is ETSI TISPAN NGN?
• The NGN evolution & requirements
• ETSI TISPAN architecture
• TISPAN use cases
• Conclusions
What Is ETSI TISPAN NGN?

• **Background**
 - Telecommunications & Internet Converged Services & Protocols for Advanced Networks (TISPAN)
 - TISPAN is a standards group within the European Telecommunication Standards Institute (ETSI)
 - Specialized in fixed networks & Internet convergence
 - 8 sub-groups defining all aspects of NGN

• **Defining a standards-based NGN architecture**
 - Based on well defined sub-systems, functional blocks & defined interfaces
 - Maximizing fixed & mobile convergence, through adoption of 3G IMS components
The Benefits of an NGN
From Stovepipes to Converged

• Enhanced User Experience
 • Universal user experience regardless of access medium
 • Integration of presence & mobility

• Simplified Service Introduction
 • Standardized interfaces
 • Well defined capabilities per functional component

• Reduced Operating Costs
 • Automated service delivery
 • Unified network architecture

Any Application, Any Network, Any Device
Delivered with Quality, Control, and Accountability
What Is an IP NGN Architecture?

INTELLIGENT INFORMATION NETWORK

Application Layer
- Consumer
- Business
- Evolved services

Service Layer
- Service Exchange
- Self Service
- Identity
- Policy
- Billing
- Mobility

Framework for User and Application-Based Control (Data, Voice, Video, Mobility)

Network Layer
- Customer Element
- Access/Aggregation
- Intelligent Edge
- Multiservice Core
- Transport

INTELLIGENT INFORMATION NETWORK
NGN Application/Protocol Requirements

Comprehensive Support for **SIP** and **Non-SIP** applications

- **SIP Applications**
 - VoIP / Push-to-talk (PTT)
 - Buddy lists
 - Click to dial
 - Location-based info services
 - FMC (Dual-mode telephony)
 - More...

- **Non-SIP Applications**
 - IPTV / VoD / Videoconferencing
 - P2P Services
 - Gaming
 - VoIP
 - Email/SMS/MMS
 - More...

- **Multiservice Core**
 - IP Contact Center
 - Intelligent Edge
 - Customer Element

- **Application Layer**
 - SIP Applications
 - Non-SIP Applications

- **Network Layer**
 - IPv4/IPv6
 - PPP/FR/ATM/Ethernet
 - IPoDWDM

- **Service Layer**
 - CoS/QoS
 - L2/L3 VPN
 - VPLS
 - MPLS

- **Transport**
 - Fast Rerouting
 - Security
 - Peering

- **Operational Layer**
 - Mobility
 - Self Service
 - Traffic Engineering

Intelligent Networking
Why Not Just Adopt 3GPP IMS for Everything?

- **Claims to be access agnostic**
 - R6 moving in that directions
 - R7 more so
- **Implicit assumptions**
 - Policy element part of the Proxy SIP server: implicit assumption that only SIP applications need policy
 - Wireless UE & authentication: No account taken of 15 years of AAA deployment in wireline
 - Wireless access network via GGSN: No account of CMTS for cable, BRAS for xDSL
 - Only SIP signaled application: No account taken of the majority of Internet applications, bandwidth apps
 - No account of the regulatory and resulting commercial models seen in wireline
ETSI TISPAN NGN
Detail & Status

• Release Timeline
 • Pragmatic approach & emphasis on solutions
 • Release 1 :- Released in Dec 2005
 • Main standards direction
 • Voice, xDSL, SIP-oriented solutions, edge QoS capabilities
 • Release 2:- 2007 timeframe
 • Being defined now
 • Release 3:- 2009 timeframe
 • Generalized mobility

• Architectural Highlights
 • Support of SIP-oriented & Non SIP applications
 • IMS for conversational SIP-oriented applications
 • Other sub-systems for other application types
 • Access agnostic
 • Support for complex commercial models
 • Roadmap to fixed mobile convergence based on IMS
 • Re-use & collaboration with SDO (specifically 3GPP)
TISPAN NGN Architecture Overview

IMS (IP Multimedia Subsystem):
The NGN core subsystem for SIP based conversational services

ETSI TISPAN Network Model (Release 1)

Transport Function

- **Function**
 - Core, access and home transport capabilities
 - Deals with different owners of the network

- **Interfaces:**
 - RACS and NASS

User Equipment
- TE: Terminal Equipment
- CNG: Customer Network Gateway

Access network
- ARF: Access Relay Function
- L2TF: Layer 2 Terminal Function
- RCEF: Resource Control Enforcement Function

Core
- BGF: Border Gateway Function
- Access and Interconnect

Function: Core, access and home transport capabilities, deals with different owners of the network.

Interfaces: RACS and NASS.

User Equipment
- TE: Terminal Equipment
- CNG: Customer Network Gateway

Access network
- ARF: Access Relay Function
- L2TF: Layer 2 Terminal Function
- RCEF: Resource Control Enforcement Function

Core
- BGF: Border Gateway Function
 - Access and Interconnect
ETSI TISPAN Network Model (Release 1)

RACS

- **Function**
 - Policy implementation
 - Admission control
- **Interfaces to**:
 - Application Function (via Gq')
 - NASS (AAA and conf)
- **Functional blocks**
 - SPDF- Serving Policy Decision Function
 - A-RACF- Access Resource and admission Control Function
ETSI TISPAN Network Model (Release 1)

NASS

Function
Registration and initialisation of UE Network Level ID and authentication

Interfaces to:
- RACS, Service, Transport

Functional blocks
- AMF: Access Management Function
- NACF: Network Access Configuration Function
- CLF: Connectivity Session Location and Repository Function
- UUAF: User Access Authorization Function
- PDBF: Profile Database Function
- CNCFG: CPE Configuration Function
ETSI TISPAN Network Model (Release 1)

Service Layer model

- **General architecture defines**
 - Core IMS subsystem
 - PSTN/ISDN emulation subsystem (PES)
 - Streaming Subsystem
 - Content broadcast subsystem
- **R1 only looks at:-**
 - IMS and PES
- **IMS subsystem**
 - Subset of 3GPP IMS
 - Service control functionality
- **PES**
 - Non IMS PES
 - PES over IMS
Application Function

- Two types of application
- AF-1 applications
 - Don’t use Service Sub-systems
 - Interfaces directly to RACS
 - Defined but not really covered in R1
- AF-2 applications
 - Use Service control sub-systems
- Interfaces to:
 - Service Subsystem
 - RACS (AF-1 apps)
1. User dials phone number, initiates SIP signaling
2. P-CSCF requests authorization for call via Gq’ interface
3. SPDF requests authorization for access network resources via Rq interface
4. A-RACF (optionally) provisions policies using Re/Ra interfaces
5. SPDF (optionally) requests BGF authorization via Ia interface
6. Remote party SDP received
7. P-CSCF requests re-authorization for call given remote SDP via Gq’ interface
8. SDPF (optionally) re-authorizes access network resources via Rq interface
9. A-RACF (optionally) changes policies using Re/Ras
10. SPDF (optionally) requests BGF re-authorization
11. Ringing signal delivered to user
TISPAN in a Wholesale Environment Use Case
Wireline Today
Will TISPAN NGN Succeed?

• R1 Is a Great Start
 • Acknowledgement of different access technologies
 • Acknowledgement of commercial models
 • Acknowledgement of varied application types
 • SIP-based FMC through common IMS subsystem

• TISPAN Future Challenges
 • R1 is heavily voice / SIP orientated
 • Support for network-based services
 • Support for existing non-SIP initiated services
 • Support for new emerging applications (for example IP/TV)
 • Gaining support from the content providers (“over the top” services)
The Poll Question

What will be the first service deployed on a TISPAN RACS / NASS subsystem?

- PSTN emulation service
- FMC multimedia SIP-based services
- IP/TV solution
- Peer to Peer solution
- User initiated bandwidth/QoS services (Turbo button)
Conclusions & Outlook

• NGNs are an important tool in the future profitability of SPs
 • Network Convergence
 • Common service portfolio regardless access

• TISPAN delivers an NGN architecture
 • TISPAN has taken a pragmatic and sensible approach to NGN environments
 • But TISPAN R1 services are limited

• NGNs architectures are still evolving
 • The future relevance of TISPAN in NGN depends on TISPAN R2 and beyond
Q & A

- Please go to the *Light Reading* Webinar page to access this show archive and to register for upcoming shows:
 www.lightreading.com/webinars.asp