DataSet and DataInstance concepts are confusing
DataInstance parameter
The word parameter refers to a value passed into an entity (while argument is the declaration of the ability to accept parameters). This is also the way how I understand DataInstance parameters - as a way to create structured values. However, in the specification (DataInstanceArgumentSpecification.actualParameter) and Andreas’ slides (A data instance becomes (semantically) a function that takes optional parameter values as input and returns another value) parameters are thought of as arguments.

I can imagine use cases for both but the specification should describe those different usages more clearly and the rules should be removed that require all parameters to be treated as arguments (“Equal number of parameters” constraint of DataInstanceArgumentSpecification).
Another aspect of confusion is that parameters can only be defined for DataInstances and not for DataSets. If parameters would be arguments then this makes sense (such definition would be similar to parameterized templates in TTCN-3). But if parameters were really parameters (i.e. structural fields of an instance) then it would make more sense to define those in DataSet - otherwise there could be DataInstances in a same DataSet with different structure.
I understand that if you wear appropriate glasses while looking at it from different angles then you could make sense to all this, but it’s confusing.
DataInstanceArgumentSpecification and DataSetArgumentSpecification
As mentioned above, I’d like to see the explicit parameter binding restriction removed. We already agreed to have implicit bindings in case of components, it would be good to use the same logic throughout the language.
Another restriction that is unpractical is that it’s not possible to specify parameters for DataSets. In current version this is obviously because DataSets don’t have parameters. But if DataSet will become DataType then everyone would expect to be able to create Interaction conditions (values) on the fly (i.e. type + some “field values” or “variable values”). The need for this is evident (for me :) also in the TDLan examples.
Proposal: parameters vs arguments
Problems with current meta-model
NOTE: this chapter talks specifically about treating parameters as arguments not about the existence of parameters (as parameters) in DataInstances.

Having anonymous arguments (DataInstance parameters treated as arguments) defined on instance level causes folowing problems:
1. It’s possible to define sets of arguments (DataInstances with different parameters) within a DataSet that are incompatible with each other. Meta-model provides little help in creating conforming DataInstances. Defining conformance constraint for DataInstance parameters is complicated.
2. Anonymity of argments may cause ambiguity. Say, if a structure contains two fields of „type“ „integer“. To resolve the ambiguity user must be required to define different DataSets for each argument which might lead to redefinition.
3. Anonymous argument specification on a DataInstace adds no value because it has to be bound to a parameter (ArgumentSpecification) that would contain exactly the same information as the original argument (parameter).

Rationale for changes
Arguments (formal parameters) serve only one purpose, they specify a named feature of containing entity that can accept/rpvoide a value (and possibly details about the nature of the value, like its multipilicity). In statically typed languages this information is contained in types. In duck typed languages this information is not present, parameters are assigned without predefined arguments (fields). Both from logical and practical perspective, there is no need for argument definitions in DataInstances. If strong typing is needed, then arguemnts should be defined in DataSets (or an entity playing their role in updated meta-model). If not, then DatInstance parameters should be treated as parameters (with optional redefinition capability).
I have no strong arguments (no pun :) in favor of introducing DataSet arguments to the language (except my personal belief that strongly typed languages are more useful). It is always possible to assume that user knows how to correctly define parameters or gets additional help from an external tool. However, in order to avoid ambiguities and make conformance check easier I believe that all parameters should be named. This includes also ArgumentSpecifications.
Meta-model update proposal

[image: image1.png]B Datatlement

data

H MappableDatatiement

H Element

B Dataparameter]__0, Argumentspeciication
parameter
0.4 parameter
B Datalnstance 1

H DatanstanceArgumentspedficatior

datalnstange

-l datalnstance

B Dataset B Datasethrgumentspecication
dataSet.
1 1
ataset

Hoateprony

Remove following constraints:

DataInstanceArgumentSpecification: Equal number of parameters
DataInstanceArgumentSpecification: Matching parameters

Proposal: DataSets as classifiers and containers
DataSets are used both as data classifier and data container. This limits users’ ability to group data instances and reuse data classifiers. Such approach also precludes adding other means of data classification to the language like ranges, regular expressions.
Meta-model update proposal

1. Introduce DataSignature meta-class that replaces DataSet in all associations where it was used as classifier.

2. Make DataSet inherit from DataSignature.
3. Add mandatory signature reference attribute to DataInstance. Add constraint: if DataInstance is owned by a DataSet then its signature must be the same DataSet.

4. Make DataInstance PackageableElement (via MappableDataElement)

[image: image2.png]E PackageableElement B Datatlement

H MappableDatatiement

1 signature

H Datasignature

datasignatire

datysignature

0.* [E Datalnstance
datalnstance

E Dataset

E DataSetArgumentspecification| B GateType | [B DataProxy

This allows flexible grouping of DataInstances as well as reuse and semantic extension of data classifiers (DataSignature) while preserving existing DataSet functionality.
Proposal: DataProxy, Interaction, ActionReference
Proposal of meta-model changes covering what we already agreed (I think).
1. Introduce a new meta-class for AtomicBehaviors that can take arguments and assign (return) values to variables.

2. Make ActionReference and Interaction inherit from that meta-class.

3. Add variable containment reference attribute to ComponentType to define component local variables.

4. TBD: use of DataProxy in Block guards and BoundedLoop numIteration (invariant condition)

[image: image3.png]actualParameter
o

B Dataklement

H DatatlementMappin
= elementURL : nul

mappableDataElement

1 | dataResourceMapping parameter
H DataResourceMappin
B Datanstance |« L B DatalnstanceArgumentspecification]
datalnstance
0, datalnstance
E PackageableElement <}——————————————————
H GateType datase Dataset 1 H DatasetArgumentspecification]
17 dataSet

dataset | 1

E AtomicBehaviour

variable [B DataProxy |2 B ComponentTyp:
0T variables

argument

H NotsureWhatToNameThisBehavior

o
Mulilicyt be eined
Hacion |1 [[o
S Acioreterenc] [B Teracion

% body : null_[action

