

©AePONA Ltd. 2006 Page 1 of 27

Parlay X Service Creation
Demonstration

A Tyro’s Guide

Damian O’Neill and James Aitken

AePONA Ltd.

Corporate HQ
Interpoint Building, 20-24 York Street
Belfast, BT15 1AQ
Northern Ireland, UK

Telephone +44 28 9026 9100
Email: marketing@aepona.com
Web: www.aepona.com

mailto:marketing@aepona.com
http://www.aepona.com/

1. Introduction...4
1.1. Status ..4

2. Prerequisites ..5
2.1. Hardware and Operating System..5

2.1.1. Windows ...5
2.1.2. Apple Macintosh OSX..5

2.2. Software Installation ..6
2.2.1. Download JDeveloper...6
2.2.2. Installing JDeveloper J2EE Version ..6

3. Introduction...7
3.1. What is Parlay?...7
3.2. What is Parlay X?...7
3.3. Third Party Call ..8

4. Starting the Integrated Development Environment (IDE) ...9
4.1. Starting JDeveloper ..9
4.2. Creating an Application ...9

4.2.1. Creating a New Application and Empty Project...9
5. Creating the Framework..12

5.1. Pointing to the Server...12
5.2. Generating the Stub..12
5.3. Testing the Application Stub..16

6. Creating the Application ..17
6.1. Numbers to Use..17
6.2. Initiate a Call ..18
6.3. Handling Failed Calls...21
6.4. Scheduling the Retry ..23

6.4.1. Incremental Code ..23
6.4.2. Total Application Source ..24

7. Conclusions..26
Appendix A Causeway Network Gateway ..27

©AePONA Ltd. 2006 Page 2 of 27

Copyright

2006

©Aepona Limited,
 Interpoint Building,
 20-24 York Street,
 Belfast BT15 1AQ,
 N. Ireland.

All rights reserved. This document or any part thereof may not, without the
written consent of Aepona Limited, be copied, reprinted or reproduced in any
material form including but not limited to photocopying, transcribing,
transmitting or storing it in any medium or translating it into any language, in
any form or by any means, be it electronic, mechanical, xerographic, optical,
magnetic or otherwise.

The information contained in this document is proprietary and confidential and
all copyright, trade marks, trade names, patents and other intellectual property
rights in the documentation are the exclusive property of Aepona Limited
unless otherwise specified. The information (including but not limited to data,
drawings, specification, documentation, software listings, source or object
code) shall not at any time be disclosed directly or indirectly to any third party
without Aepona Limited’s prior written consent.

The information contained herein is believed to be accurate and reliable.
Aepona Limited accepts no responsibility for its use by any means or in any
way whatsoever. Aepona Limited shall not be liable for any expenses, costs
by damage that may result from the use of the information contained within
this document. The information contained herein is subject to change without
notice.

©AePONA Ltd. 2006 Page 3 of 27

1. Introduction
This document is a step by step guide to demonstrating the creation of a
simple, click-to-dial, application using the Parlay X Third-Party-Call service.

This demonstration itself assumes almost no knowledge whatsoever of Java or
Java tools and anyone should be able to follow the steps herein described.
Nevertheless it is suitable for an audience with some Java experience and for
those who understand web service development.

This tutorial uses the Oracle JDeveloper IDE (Integrated Development
Environment) to create and run a simple web service proxy. It should,
however, be noted that all major IDEs have web service creation tools, and the
principles described in this document apply equally to other IDEs.

1.1. Status

0.2 Draft

History
0.1 11 Nov 2005 Damian O’Neill Initial version
0.2 9 Mar 2006 James Aitken Updated for new JDeveloper and

revised code

©AePONA Ltd. 2006 Page 4 of 27

2. Prerequisites

2.1. Hardware and Operating System

Recommended CPU, memory, display, and hard-drive configurations

2.1.1. Windows

Resource Recommended

Operating System
Windows XP-Service Pack 2 Windows 2000-Service Pack 4
Windows NT-Service Pack 6a

CPU Type and
Speed Pentium III 866 MHz or faster

Memory 512 MB RAM

Display 65536 colours, set to at least 1024 X 768 resolution

Hard Drive Space Base Installation: 250 MB Complete Installation: 400 MB

Java SDK Sun J2SE 1.4.2_04 for Windows, available at: http://
www.javasoft.com.

2.1.2. Apple Macintosh OSX

Resource Recommended

Operating System Apple Mac OS X Version 10.3 (Panther) or 10.4 (Tiger)

CPU Type and
Speed Dual 1.25 GHz G4/G5 (1 GHz G4 minimum)

Memory 1 GB RAM (512 MB minimum)

Display "Thousands" of colours

Hard Drive Space Base Installation: 250 MB Complete Installation: 400 MB

Java SDK
Sun J2SE 1.4.2 Update 2 available at: http://
developer.apple.com/java/download/ or from Mac OS X
Software Update.

©AePONA Ltd. 2006 Page 5 of 27

2.2. Software Installation

This section describes how to install the JDeveloper integrated development
environment (IDE), which is used in this tutorial. If another development
environment is used then, of course, the procedures will be different, however
the actual code will be the same.

2.2.1. Download JDeveloper

Go to the following download page
http://www.oracle.com/technology/software/ products/jdev/index.html

Download the latest version from the section titled: Oracle JDeveloper 10g
(you need the J2EE version). This is free, but you will need to register.

2.2.2. Installing JDeveloper J2EE Version

JDeveloper does not require an installer. To install JDeveloper, you will need
an unzip tool. In the unlikely event that you don’t have one, you can
download a free, cross-platform unzip tool, Info-Zip, available at:
http://www.info-zip.org/.

Alert: Do not install this JDeveloper release into any existing
ORACLE_HOME. You will not be able to uninstall it using Oracle Universal
Installer.

The full installation (jdevj2ee1013.zip) includes the Windows version
of Sun J2SE 1.4.2_04 and the JDeveloper documentation.

To install JDeveloper from jdevj2ee1013.zip:
• Unzip jdevj2ee1013.zip in the directory you want to install

JDeveloper.
• If you install jdevj2ee1013.zip on a UNIX or Linux system, you

have to modify jdev.conf to specify the SDK.

You should expand this to the root directory probably C:\

NOTE you possibly want to turn off any in memory virus checkers when
copying as this can otherwise take a significant amount of time.

©AePONA Ltd. 2006 Page 6 of 27

http://www.oracle.com/technology/software/%20products/jdev/index.html

3. Introduction

3.1. What is Parlay?

The Parlay Group has been formed to create an explosion in the number of
communications applications by specifying and promoting open Application
Programming Interfaces (APIs) that intimately link IT applications with the
capabilities of the communications world.

Founded in 1998, The Parlay Group focused initial development of its APIs on
functions such as call control, messaging and security. The Parlay Group was
formed by a group of companies (BT, Microsoft, Nortel Networks, Siemens,
and Ulticom - formerly DGM&S Telecom). The Group first demonstrated a
Parlay service in the UK and USA in December 1998 and since used industry
feedback to refine its specifications. The current Parlay Specifications pave the
way forward in developing usable, real-world product implementations of the
APIs.

The Parlay Group, Inc. is not a standards body. It is an open, multi-vendor
consortium organized to develop open, technology-independent application
programming interfaces (APIs) that enable the development of applications
that operate across converged networks. The Group promotes the use of Parlay
APIs and ultimate standardization.

3.2. What is Parlay X?

The Parlay X specifications have been jointly defined between the European
Telecommunications Standards Institute (ETSI), Parlay, and the Third
Generation Partnership Program (3GPP). Parlay and ETSI hold joint copyright
to this documentation and both have agreed to make it available to the public.

Parlay X 2.0 represents a substantial upgrade from the foundation provided by
Parlay X 1.0. In addition to specifying new Parlay X web services, this
upgrade reflects lessons learned from industry experience with the Parlay X
1.0 web services and the rapid evolution of web service technology. This
fourteen-part specification is available on the ETSI website:

1. Common 8. Terminal Status
2. Third Party Call

(the one used in this demonstration)
9. Terminal Location

3. Call Notification 10. Call Handling
4. Short Messaging 11. Audio Call
5. Multimedia Messaging 12. Multi-media Conference
6. Payment 13. Address List Management
7. Account Management 14. Presence

Additional specifications are being defined in a very active programme.

©AePONA Ltd. 2006 Page 7 of 27

3.3. Third Party Call

Currently, in order to perform a third party call in telecommunication networks
we have to write applications using specific protocols to access Call Control
functions provided by network elements (specifically operations to initiate a
call from applications). This approach requires a high degree of network
expertise. We can also use the OSA gateway approach, invoking standard
interfaces to gain access to call control capabilities, but these interfaces are
usually perceived to be quite complex by application IT developers.
Developers must have advanced telecommunication skills to use Call Control
OSA interfaces.

In this example we describe a Parlay X Web Service, Third Party Call, for
creating and managing a call initiated by an application (third party call). The
overall scope of this Web Service is to provide functions to application
developers to create a call in a simple way. Using the Third Party Call Web
Service, application developers can invoke call handling functions without
detailed telecommunication knowledge.

The diagram below shows a scenario using the Third Party Call Web Service
to handle third party call functions. The application executing on the laptop
calls the Make a call operation on the Third Party Call web service hosted on
the Parlay X gateway. This results in a call initiated between the A and B
parties. In general, the demonstrations use a SIP interface, as shown below
(however in a real-network, it is more likely to be SS7 or a combination of SIP
and SS7).

Third Party Call Scenario

©AePONA Ltd. 2006 Page 8 of 27

4. Starting the Integrated Development Environment (IDE)
Note that JDeveloper is being continuously updated by Oracle and there may
be slight differences between the description here and the real-thing.

4.1. Starting JDeveloper

To start JDeveloper on Windows, run the file <jdev_install>\jdev
\bin\jdevw.exe. - most likely C:\jdevj2ee1013\jdev\bin\devw.exe

To start JDeveloper on other platforms, run the file <jdev_install>/
jdev/bin/jdev.

You should see a screen similar to below after the splash screen has
disappeared:

4.2. Creating an Application

4.2.1. Creating a New Application and Empty Project

This procedure describes how to create a simple JDeveloper application and a
project within it. To create a new application:

• Open the New Gallery by choosing File > New.
• In the New Gallery, in the Categories tree, select General then

Applications or Applications Workspace.

• In the Items list, double-click Application. The Create Application dialog
appears. In the Create Application dialog, enter the attributes for the
application:

Application Name: ThirdPartyCall
Application Template: No Template
Click OK.

©AePONA Ltd. 2006 Page 9 of 27

The Create Project dialog appears. In the Create Project dialog, enter the
attributes for the project:

Project Name: ThirdPartyCallClient
Click OK.

©AePONA Ltd. 2006 Page 10 of 27

Once this is completed, the application navigator sub-window will contain
something like the following:

©AePONA Ltd. 2006 Page 11 of 27

5. Creating the Framework
Note that in the following and throughout the rest of this documents all IP
addresses, telephone numbers and SIP addresses are simply examples.

5.1. Pointing to the Server

Web Services are located using a URL. The Parlay X Third Party Call web
service is located on the Causeway platform using the following notation:

http://machine name + : + port num +/parlayx-third-party-call/services/ThirdPartyCall

For example

http://194.46.25.16:9080/parlayx-third-party-call/services/ThirdPartyCall

The WSDL1 i.e. the description of the service, if found by appending ?wsdl
to the end of this URL. Remember that the actual IP address may be different.

http://194.46.25.16:9080/parlayx-third-party-call/services/ThirdPartyCall?wsdl

We will use this WSDL: file to generate a dummy client (the stub)! By the
way, you can determine the availability of the WSDL by simply pointing a
browser at the WSDL URL – you should then see the actual WSDL text.

5.2. Generating the Stub

The next step is to use the Web Service Stub/Skeleton wizard to create a proxy
or stub to the service. To create a stub, perform the following:

• With ThirdPartyCallClient highlighted in the left hand pane Open the
New Gallery by choosing File > New.

• In the Categories select Business Tier followed by Web Services.
• In the Items list select Web Service Proxy and click OK.

1 WSDL = Web Service Definition Language. This is the key to a web service; it defines the
service as implemented by the server. The Parlay X WSDLs are standardised.

©AePONA Ltd. 2006 Page 12 of 27

http://194.46.25.16:9080/parlayx-third-party-call/services/ThirdPartyCall
http://194.46.25.16:9080/parlayx-third-party-call/services/ThirdPartyCall?wsdl

In the Generate Web Services Stub/Skeleton wizard, if the Welcome page is
displayed, click Next to display the Select Web Service Description page.

Enter the URL to the Third Party Call Web Service WSDL described
previously, e.g.

http://194.46.25.16:9080/parlayx-third-party-call/services/ThirdPartyCall?wsdl

Then press the <TAB> key. This is the key step. It will then find, load and
check the WSDL. If successful, it will display the service as
ThirdPartyCallService. It will display invalid WDSL if there is a problem –
typically when a connection cannot be made (e.g. due to firewall problems).

©AePONA Ltd. 2006 Page 13 of 27

http://194.46.25.16:9080/parlayx-third-party-call/services/ThirdPartyCall?wsdl

There will then be a number (2 or 3 depending on version of JDeveloper) of
esoteric questions up a request for a package name (see next screen), for each
of these, click Next.

Enter a package name of thirdpartycallclient (any name is acceptable) and
click Next.

You can then ignore the generation of a junit test case (see next screen), click
Next.

©AePONA Ltd. 2006 Page 14 of 27

The next screen is a summary screen – just click Finish

The wizard executes for 10 seconds or so and results in boilerplate code,
something like the following:

Note the comment that says:

// Add your own code here

This will be the starting point for entering some Java code as described in the
next section.

©AePONA Ltd. 2006 Page 15 of 27

5.3. Testing the Application Stub

Now that you have successfully auto-generated the stub code for the Third
Party Call web service, we will look at testing the application is valid.

Note the green button surrounded by the red circle:

This button executes the code that you just generated.

By pressing this button it will start the program and display the output in a
sub-window (at the bottom of the screen) labelled: Running:
ThirdPartyCallClient.jpr – Log. The output will read (but remember IP
address will be different):

C:\jdevj2ee1013\jdk\bin\javaw.exe -ojvm –classpath………….

calling http://194.46.25.16:9080/parlayx-third-party-
call/services/ThirdPartyCall

Process exited with exit code 0.

©AePONA Ltd. 2006 Page 16 of 27

6. Creating the Application

6.1. Numbers to Use

Now that we are at a point where we can call the web service we need to
determine the data that we are going to pass to the web service operation
makeCall

This operation takes three parameters:
1. Calling Party
2. Called Party
3. Charging

Therefore we need to supply addresses to the telephones we wish to call. For
the purpose of this tutorial we can ignore the Charging parameter. In older
versions of JDeveloper, it was possible to set this to null, unfortunately the
later versions require something, so the values we choose are dummy.

The address fields are uniquely identified by using a URI (Uniform Resource
Indicator). This is an address for an available resource.

The first part of a URI is called the "scheme". The most well known scheme is
http, but there are many others. Each URI scheme has its own format for how a
URI should appear. Schemes that are appropriate to us are tel: and sip.

For the main demonstration, SIP based addressing is used, pointing at local
numbers in AePONA’s test site. These numbers are then externally mapped to
real mobile phones2. Only a configured set of numbers may be used; these are
separately defined. For example two of the standard test phones are:
Phone 1: "sip:02890275282@194.46.25.12"
Phone 2: "sip:02890275283@194.46.25.12"

Note that, of course, in a real application, the actual numbers to use would be
obtained from a web page, configuration or contacts lists, etc.

If the gateway is configured to talk to sip handsets then the gateway or another box will host a
node called a registrar. This will allow the sip handsets to be registered as part of the demo.

If the machine hosting the registrar is at IP address 61.196.182.12 and the sip handsets are
labelled 5001 and 5002, then the addresses for the calling party and called party are (remember
that your IP addresses will be different). :

Phone 1: sip:5001@61.196.182.12

Phone 2: sip:5002@61.196.182.12

Note: it is outside the scope of this tutorial to elaborate on how sip hand sets register.

2 For security reasons

©AePONA Ltd. 2006 Page 17 of 27

6.2. Initiate a Call

Now that we have defined the numbers we will add the code to create a call
between the two parties. (remember to adjust the IP addresses).

After the line // Add your own code here insert the following:
// Add your own code here

java.net.URI callingParty = new java.net.URI("sip:02890275282@194.46.25.12");
java.net.URI calledParty = new java.net.URI("sip:02890275283@194.46.25.12");
ChargingInformation charging = new ChargingInformation();
 charging.setCurrency(""); charging.setDescription(""); charging.setAmount(new
BigDecimal(0));

CallInformation callInformation;

System.out.println("Calling "+calledParty+" from "+callingParty);

String callIdentifier = myPort.makeCall(callingParty, calledParty, charging);

// print the identifier for the call
System.out.println("The Call Identifier is: " + callIdentifier);
System.out.println("First calling party's phone should ring - " + callingParty);
System.out.println("Then, when answered, the called party will be rung - "+ calledParty);
System.out.println("Allow time for roaming mobile phone calls!");

Your screen should now look like the following

©AePONA Ltd. 2006 Page 18 of 27

You will notice the warning lamps () and underlined error notifications. This
is because the definitions need to be imported (a standard Java requirement).
You can either click on each of the orange lamps and select the suggested
import or JDeveloper usually automatically asks whether importing is needed,
highlighting the identifier in question and suggesting you enter <Alt><Enter> -
do so for each one.

When all imports have been done, run the application, by pressing the green
arrow as described above.

The output in the tab at the bottom of the screen labelled ‘Running:
ThirdPartyCallClient.jpr – log’ should look something like the following:

C:\jdevj2ee1013\jdk\bin\javaw.exe -ojvm –classpath………….
calling http://194.46.25.16:9080/parlayx-third-party-call/services/ThirdPartyCall
Calling sip:02890275283@194.46.25.12 from sip:02890275282@194.46.25.12
The Call Identifier is: 2490039
First calling party's phone should ring - sip:02890275282@194.46.25.12
Then, when answered, the called party will be rung - sip:02890275283@194.46.25.12
Allow time for roaming mobile phone calls!
Process exited with exit code 0.

Note that the Call Identifier may have a different value (and, of course, the IP
addresses and telephone numbers may be different).

©AePONA Ltd. 2006 Page 19 of 27

At this point the handsets should be ringing first the Calling Party, and then,
when it is answered, the Called Party (as explained by the messages output by
our application)

As you can see all it took was 73 lines of code to create a call between two
parties, this demonstrates the power of Parlay X to add telecommunication
functionality easily to your applications.

Clearly in a real application, there will need to be code that obtains the
numbers to use from somewhere (e.g. entered on a web page, extracted from
highlighted numbers on a contacts list, obtained from configuration, etc), but
all that is standard IT and web service technology. What we have
demonstrated is the ease by which this may be ‘telecoms enabled’ with
Parlay X.

3 Plus 3 additional lines to advise the punter what is going on and what to expect.

©AePONA Ltd. 2006 Page 20 of 27

6.3. Handling Failed Calls

Let’s extend the example to demonstrate how simple it is to add more complex
logic. To recap, the scenario we are demonstrating is application initiated 3rd
Party call for e.g. click to dial.

For the scenario, let us assume that it is part of a web page, whereby an
enterprise service provider invites a customer to request that they, the
customer, be called by an agent. We make the service more user friendly by
initiating the call from the enterprise to the customer; this avoids customer
irritation in the event of an appropriate agent not being available.

What happens when the service provider (calling party) is unavailable to
initiate a conversation. In this case we do not wish to loose the fact that we
should set up a call between the service provider and the customer (called
party).

A simple solution would be to retry the call at a later time. Let’s add some
code to our example that checks to see if the service provider picked up the
call, if they did not lets schedule the call for some time later and redial.

Parlay X Third Party Call provides an operation to retrieve information about a
call attempt. The operation getCallInformation takes a call identifier as an
argument and returns a complex type that contains a variety of information
about the call.

For clarity, we will do this in two steps, first we will monitor the call and get
call status, and then we will add the code to actually retry.

For monitoring we add a little loop that gets the call information every 5
seconds and, until it is connected, prints out the status, together with an
approximation to the elapsed time. Once connected it simply waits for
termination and then prints the termination cause (note that, as we only poll for
the status, it could connect and terminate within a poll cycle, so the connected
state may not be seen).

©AePONA Ltd. 2006 Page 21 of 27

Add the new code directly below where you added the previous code, ie
System.out.println("Allow time for roaming mobile phone calls!");

 CallInformation callInformation; // Holder for call information
 CallStatus callState; // Holder for Call status
 CallTerminationCause termCause; // Holder for termination cause

 boolean callConnected = false; // true when/if call connected successfully
 long pollPeriod = 0; // poll period time
 int totalPollTime = 0; // Total time spent polling in secs
 do {
 // Poll for call status every so often.
 totalPollTime += pollPeriod/1000;
 Thread.sleep(pollPeriod); pollPeriod |= 5000; // 0 1st time, 5 secs thereafter
 // get the call information
 callInformation = myPort.getCallInformation(callIdentifier);
 callState = callInformation.getCallStatus();
 if(!callConnected) {
 System.out.println(totalPollTime+". Call status is: " + callState);
 callConnected = callState.equals(CallStatus.CallConnected);
 }
 } while(!callState.equals(CallStatus.CallTerminated));

 termCause = callInformation.getTerminationCause();
 // print the termination cause
 System.out.println(totalPollTime+". The reason the call ended was: " + termCause);

Your screen should look like the following:

Once again, there will be the need to import the necessary definitions, using
<Alt><Enter> as instructed.

As previously select the green triangle at the top of the screen to execute the
program.

©AePONA Ltd. 2006 Page 22 of 27

The output in the tab (Running: ThirdPartyCallClient.jpr - Log) at the bottom
of the screen should look like:

The CallConnected state is only achieved when the calling phone (i.e. the
service provider agent in our scenario) has been rung and answered and then
the called phone rung and answered. This took the better part of 25 seconds as
in this case they were both mobile phones – note that you can expect longer,
when they are roaming.

In the example above, everything worked as the call was terminated normally,
with one or other phone hanging up (albeit after only a very short chat!)

6.4. Scheduling the Retry

What follows is some java code that adds some logic to the example we have
been working on. This code demonstrates in 30 lines or so how easy it is to
add value to a service.

6.4.1. Incremental Code

If you want to make the change incrementally, follow the instructions in this
section. It is probably easier, though, to replace the code totally as shown in
the next section.

Add the following lines, before the code we have just entered, i.e after the
print message about allowing time for roaming calls –

System.out.println("Allow time for roaming mobile phone calls!");

long retryPeriod = 10000; // 1/2 Starting retry period (20 secs)

while(true) {

©AePONA Ltd. 2006 Page 23 of 27

and add the following after our recent addition, i.e. after:
 System.out.println(totalPollTime+". The reason the call ended was: " + termCause);

 // if the termination cause indicates caller answered, we have done - log it.
 if(termCause.equals(CallTerminationCause.CallHangUp)) {
 System.out.println("Call duration was approximately: " +
callInformation.getDuration()+" secs.");
 return; // Done - there was a successful call :)
 }
 else if (!termCause.equals(CallTerminationCause.CallingPartyNoAnswer)
 && !termCause.equals(CallTerminationCause.CallingPartyBusy)
 && !termCause.equals(CallTerminationCause.CallingPartyNotReachable)) {
 System.out.println("Called party was not available - call abandoned.");
 return; // Done :(
 }

 // reschedule the call for double the current wait period
 if((retryPeriod *= 2) > 240000) {
 System.out.println("Call could not be established - sorry it didn't work out!");
 return; // Give up if more than 4 minutes
 }
 System.out.println("Retrying in "+ (retryPeriod/1000 +" secs"));
 Thread.sleep(retryPeriod);

 // call the two parties again, re-using the values defined above
 callIdentifier = myPort.makeCall(callingParty, calledParty, charging);
 System.out.println("The new Call Identifier is: " + callIdentifier);
}

6.4.2. Total Application Source

The total function should now be as follows (including auto-generated stub):

public static void main(String[] args) {
 try {
 thirdpartycallclient.ThirdPartyCallClient myPort = new
thirdpartycallclient.ThirdPartyCallClient();
 System.out.println("calling " + myPort.getEndpoint());
 // Add your own code here

 java.net.URI callingParty = new java.net.URI("sip:02890275282@194.46.25.12");
 java.net.URI calledParty = new java.net.URI("sip:02890275283@194.46.25.12");
 ChargingInformation charging = new ChargingInformation(); // = null doesn't work
 charging.setCurrency(""); charging.setDescription("");
 charging.setAmount(new BigDecimal(0));

 System.out.println("Calling "+calledParty+" from "+callingParty);

 String callIdentifier = myPort.makeCall(callingParty, calledParty, charging);

 // print the identifier for the call
 System.out.println("The Call Identifier is: " + callIdentifier);
 System.out.println("First calling party's phone should ring - " + callingParty);
 System.out.println("Then, when answered, the called party will be rung - "+
calledParty);
 System.out.println("Patience - Allow time for roaming mobile phone calls!");

 long retryPeriod = 10000; // 1/2 Starting retry period (20 secs)

 while(true) {
 CallInformation callInformation; // Holder for call information
 CallStatus callState; // Holder for Call status
 CallTerminationCause termCause; // Holder for termination cause

 boolean callConnected = false; // true when/if call connected successfully
 long pollPeriod = 0; // poll period time
 int totalPollTime = 0; // Total time spent polling in secs
 do {
 // Poll for call status every so often
 totalPollTime += pollPeriod/1000;
 Thread.sleep(pollPeriod); pollPeriod |= 5000; // 0 1st time, 5 secs thereafter
 // get the call information
 callInformation = myPort.getCallInformation(callIdentifier);
 callState = callInformation.getCallStatus();
 if(!callConnected) {
 System.out.println(totalPollTime+". Call status is: " + callState);
 callConnected = callState.equals(CallStatus.CallConnected);
 }
 } while(!callState.equals(CallStatus.CallTerminated));

©AePONA Ltd. 2006 Page 24 of 27

 termCause = callInformation.getTerminationCause();
 // print the termination cause
 System.out.println(totalPollTime+". The reason the call ended was: " + termCause);

 // if the termination cause indicates caller answered, we have done - log it.
 if(termCause.equals(CallTerminationCause.CallHangUp)) {
 System.out.println("Call duration was approximately: " +
callInformation.getDuration()+" secs.");
 return; // Done - there was a successful call :)
 }
 else if (!termCause.equals(CallTerminationCause.CallingPartyNoAnswer)
 && !termCause.equals(CallTerminationCause.CallingPartyBusy)
 && !termCause.equals(CallTerminationCause.CallingPartyNotReachable)) {
 System.out.println("Called party was not available - call abandoned.");
 return; // Done :(
 }

 // reschedule the call for double the current wait period
 if((retryPeriod *= 2) > 240000) {
 System.out.println("Call could not be established - sorry it didn't work out!");
 return; // Give up if more than 4 minutes
 }
 System.out.println("Retrying in "+ (retryPeriod/1000 +" secs"));
 Thread.sleep(retryPeriod);

 // call the two parties again, re-using the values defined above
 callIdentifier = myPort.makeCall(callingParty, calledParty, charging);
 System.out.println("The new Call Identifier is: " + callIdentifier);
 }

 } catch (Exception ex) {
 ex.printStackTrace();
 }
}

When you execute the application (green triangle at the top), the first time the
service suppliers phone rings, don’t answer. This will simulate a missed call
and will demonstrate the application logic that re-dials in increasing intervals
until the service supplier answers the phone. As this is a demonstration, we
limit the retry to 4 minutes (240000 milliseconds). A typical log could look as
follows:

©AePONA Ltd. 2006 Page 25 of 27

7. Conclusions
Web services are simple and Parlay X is simple!

This technology allows enterprise developers to write telecoms applications!
Other web services are available, for further information, see:
http://parlay.org/en/specifications/

©AePONA Ltd. 2006 Page 26 of 27

http://parlay.org/en/speci%EF%AC%81cations/

Appendix A Causeway Network Gateway

Network Assets
SS7 SIP

Network AssetsNetwork Assets
SS7 SIPSS7 SIP

Real-Time

Aepona’s Service Enablement Proposition

Aepona’s Causeway product suite provides an integrated service enablement
layer for both current and next generation networks. The suite provides for a
single logical access point for all service applications:

• Main stream intelligent networking
• SIP applications in the IMS and next generation
• Value added services of whatever shape size or form

• 3rd party applications via the core IT logic of the service delivery
platform

If operators wish to expose their networks to the maximum level of service
innovation, and hence revenue generating potential, then they need look no
further than Causeway to provide the necessary standards based and vendor
independent network integration back-bone.

Aepona’s Causeway OSA Parlay/Parlay X gateway provides comprehensive
protocol adaptation and, through the framework, the access control function.
Furthermore, as telecommunications and IT converge, the open standard web
services provided by Causeway underpin today’s service delivery platforms.
Further details of Aepona’s Parlay/Parlay X solutions may be obtained from
www.AePONA.com.

©AePONA Ltd. 2006 Page 27 of 27

http://www.aepona.com/

	1. Introduction
	1.1. Status
	2. Prerequisites
	2.1. Hardware and Operating System
	2.1.1. Windows
	2.1.2. Apple Macintosh OSX

	2.2. Software Installation
	2.2.1. Download JDeveloper
	2.2.2. Installing JDeveloper J2EE Version

	3. Introduction
	3.1. What is Parlay?
	3.2. What is Parlay X?
	3.3. Third Party Call

	4. Starting the Integrated Development Environment (IDE)
	4.1. Starting JDeveloper
	4.2. Creating an Application
	4.2.1. Creating a New Application and Empty Project

	5. Creating the Framework
	5.1. Pointing to the Server
	5.2. Generating the Stub
	5.3. Testing the Application Stub

	6. Creating the Application
	6.1. Numbers to Use
	6.2. Initiate a Call
	6.3. Handling Failed Calls
	6.4. Scheduling the Retry
	6.4.1. Incremental Code
	6.4.2. Total Application Source

	7. Conclusions
	Appendix A Causeway Network Gateway

