What do we expect from Wireless in the Factory?

And what are we doing about it?
What does the Factory, Industrial Control and Automation community want from wireless?

- More data communication to monitor …
 - Equipment condition
 - Secondary processes
 - Environment and emissions
 - Location of assets & tracking
 - Sensors for commissioning
- No new wires
- Reliable communications
- Zero or low maintenance
- Secure
- Low, or at least predictable, latency
Industrial data communication requirements can be categorised

<table>
<thead>
<tr>
<th>Safety</th>
<th>Class 0: Emergency action (always critical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Class 1: Closed loop regulatory control (often critical)</td>
</tr>
<tr>
<td></td>
<td>Class 2: Closed loop supervisory control (usually non-critical)</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Class 3: Open loop control (human in the loop)</td>
</tr>
<tr>
<td></td>
<td>Class 4: Alerting (short-term operational consequence, e.g. event-based maintenance)</td>
</tr>
<tr>
<td></td>
<td>Class 5: Logging & downloading/uploading (no immediate operational consequence, e.g. history collection, SOE, preventive maintenance)</td>
</tr>
</tbody>
</table>

- For class 0, even a (single) wired system may not be sufficiently reliable
- The Monitoring classes can be a good fit with wireless communications
- For class 1 and class 2, wireless is generally used only when there’s no alternative

Source: ISA
In many cases the data rates required are modest

<table>
<thead>
<tr>
<th>Application area</th>
<th>Likely data volume / frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process temperature sensing</td>
<td>10 bytes / minute</td>
</tr>
<tr>
<td>Machinery condition monitoring</td>
<td>1000-50.000 bytes / day</td>
</tr>
<tr>
<td>Personal radiation monitor</td>
<td>20 bytes / minute</td>
</tr>
<tr>
<td>Portable barcode reader</td>
<td>64 bytes / 10 seconds</td>
</tr>
<tr>
<td>Environment alarm</td>
<td>10 bytes / event</td>
</tr>
</tbody>
</table>

Source: ISA
Some of the application areas where wireless provides a good fit include

- Equipment condition monitoring
 - Generally non-critical, replaces a person touring the plant
 - Can monitor vibration, fluid transparency, actuator position, …
 - Aids cost-effective maintenance

- Additional sensors for plant commissioning
 - Temperature, pressure at additional points
 - Environmental monitoring
 - Leak detection in new plant
 - Can be economically removed and re-used after plant is running
As well as communicating with mobile devices, we have the opportunity to locate or track them

- In all but the smallest facility, the wireless network will have multiple fixed nodes
- A mobile node will hand over communication from one fixed node to the next (cellular operation)
- We can deduce the location of the mobile from
 - The fixed node (base station) serving it
 - Signal strength information from other fixed nodes
 - Time-of-flight information (where the radio system provides sufficient precision)
 - Processing this data with geographical knowledge

Source: Texas Instruments
We cannot afford to install any new wires

- Installed industrial wiring can cost between €100 and €10,000 per metre
- This cost can increase substantially where the factory or process cannot be operated during installations
- With wiring, every measurement or control has to justify its installation cost
 - Temporary (commissioning) instrumentation can be hard to justify
Radio is inherently an unreliable medium, so we need various measures to deliver a reliable service

- Signal processing for better immunity to interference, etc.
- Various types of diversity to avoid poor link performance:
 - Space diversity combats reflections and multi-path
 - Path diversity combats shadowing or excessive propagation loss
 - Frequency diversity combats interference
- Send / acknowledge / retry ensures that the end devices know whether the message has got through or not
- Listen before send improves co-existence with other systems
 - Increases chance of first-time success
 - Improves throughput
Radio nodes need a source of power, without significant additional maintenance

- Batteries will need to be charged or replaced
 - Battery lifetime must be at least a year, and preferably more
 - Places a heavy demand on the system design to achieve this

- Electrical energy can in some cases be harvested from external sources
 - Solar (or other) light
 - Vibration of motors etc.
 - Temperature difference

- Otherwise a power supply needs to be available for the node, which can increase its cost

Source: Perpetuum Ltd.
A radio system must be **at least as secure** as the wired system would have been

- Must ensure that transmitted data is correct – integrity
- Must avoid spoof instrument readings or control actuation – authentication
- May need to keep data secret – confidentiality

- All radio systems achieve these objectives by encryption
 - AES 128 is a popular coding scheme
 - Different methods are specified for key management
What wireless communications standards and products are used now?

(will consider local area systems, as wide area / public services are well understood)

- Wi-Fi has been available for some time in various ‘hardened’ forms
- Bluetooth has been deployed in some industrial systems
- ZigBee was originally targeted at factory automation …
- Wireless HART has recently been released
- ISA 100.11a is in a near-final draft

- Specialist standards have been created, e.g. Wireless M-BUS, KNX-RF
- ‘Ex-proprietary’ standards are gaining traction
 - Z-Wave
 - Wavenis
 - …
IEEE 802.15.4 is a very popular PHY/MAC standard for industrial use

- 16 channels, 5 MHz spacing, in the 2.400 – 2.485 GHz licence-free band, peak data rate of 250 kbit/s (also defined for 868 and 902MHz)
- Direct sequence spread spectrum transmission, with a chip rate of 2 MHz, gives a processing gain against interference of 9dB
- 16-bit ‘local’ address allows compact messages
- Operable at very low duty cycles for long battery life
- Encryption engine (invariably hardware) gives 128-bit AES CCM*
- Implemented in silicon in volume now, from many vendors
ISA 100 is designed to support native and tunnelled application layers

- User application processes are standardised, with hooks for extension
- Various transport services, including ‘reliable,’ ‘best effort,’ ‘real-time’ are offered
- Network and transport layers are based on TCP or UDP / IPv6
- Separate Data Link layer adds
 - Frequency hopping
 - Mesh routing
- MAC and Physical layer are defined in IEEE 802.15.4
The scope of standard ISA 100.11a includes

- Permitted networks
 - Radio link
 - ISA 100.11a over Ethernet and field buses

- Topologies
 - Star / tree
 - Mesh
 - Alternative routing

- Security architecture and specification

- Gateways and backbone routers

- System management functions

Example ISA 100.11a network
Application Support Layer delivers communications services to user and management processes

- Data from the transport layer is de-multiplexed and sent to the peer UAP (or MP)
- Can pass objects (methods, attributes) natively within the ISA 100.11a protocol
 - Standard objects defined
 - Standard profiles defined per application
 - Manufacturers also free to define their own
- A tunnelling mode is available to pass legacy data
- Adaptation modes supports legacy field protocols:
 - Foundation FieldBus
 - ProﬁBus
 - HART …

Industry Independent Objects defined in ISA 100.11a
- UAP management object – 1 per UAP – facilitates common UAP management.
- Device management object.
- Alert reporting management object.
- Alert receiving object(s) – up to four per device, supporting the four alert reporting categories (device related, communication related, security related, and process related).
- UploadDownload object.
- Concentrator object – represents an assembly of data at a publisher.
- Dispersion object – represents an assembly of data at a subscriber.
- Gateway cache object – represents local cache in the gateway.
- Tunnel object – supports encapsulation of non-native ISA100.11a messages.
Security is fully built-in to the standard

- Authentication and confidentiality services are independently available
- A security manager in the network manages and distributes keys
 - Asymmetric keys, or (provisioned) secret master keys for session key distribution
- Each node can secure data at two places
 - Data Link layer encryption, secures each hop
 - Transport layer encryption, secures peer-to-peer comms
- Default device policy sets the minimum security available to an application:

<table>
<thead>
<tr>
<th>Security requirements for packets transmitted by device</th>
<th>Outgoing protection of packet requested by device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsecured</td>
<td>Allowed</td>
</tr>
<tr>
<td>Authenticated</td>
<td>Allowed</td>
</tr>
<tr>
<td>Authenticated and confidential</td>
<td>Allowed</td>
</tr>
<tr>
<td>Device’s Policy</td>
<td>Unsecured</td>
</tr>
<tr>
<td></td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td>Authenticated</td>
</tr>
<tr>
<td></td>
<td>Not allowed</td>
</tr>
<tr>
<td></td>
<td>Allowed</td>
</tr>
<tr>
<td></td>
<td>Authenticated and confidential</td>
</tr>
<tr>
<td></td>
<td>Not allowed</td>
</tr>
<tr>
<td></td>
<td>Not allowed</td>
</tr>
<tr>
<td></td>
<td>Allowed</td>
</tr>
</tbody>
</table>
Any questions?
Our 300+ engineers and scientists offer wireless product design across the spectrum:

- Handsets and Terminals
- Wireless Video
- Wireless Medical
- Radio Network Testers
- Access Nodes & Switches
- Optical Nodes
- Radio Data Modules
- Standards-based radio: Bluetooth, ZigBee, DECT, Wi-Fi, GSM, 3G, ...
- Wireless Telemetry
- Professional Radio
- Radio and mixed-mode ASICs

Expertise & best practice across multiple market sectors.