Coexistence Management in Wireless Automation - VDI/VDE Guideline 2185

WIRELESS FACTORY WORKSHOP
15 - 16 December 2008 - ETSI, Sophia Antipolis, France

Dr.-Ing. Lutz Rauchhaupt

Institut für Automation und Kommunikation e.V. Magdeburg
Werner-Heisenberg-Str. 1
39106 Magdeburg
Tel. +49 391 9901495
Fax: +49 391 9901590
E-mail: lutz.rauchhaupt@ifak.eu
Institut f. Automation und Kommunikation e.V. Magdeburg
Research topic "Wireless Industrial Communication"

Assessment of wireless technologies and solutions with respect to industrial automation applications

Integration of wireless technologies and solutions into automation communication networks
Coexistence Management in Wireless Automation - VDI/VDE Guideline 2185

1. Working Group "Wireless Communication" of the VDI/VDE-Society of Measurement and Automatic Control

2. VDI/VDE Guideline 2185

3. Further Activities and Summary
VDI/VDE Society of Measurement and Automatic Control (GMA)

Technical Working Group FA5.21
"Wireless Communication (Funkgestützte Kommunikation)" was founded in 1999

Tasks:

- Bridging two disciplines - radio transmission and industrial automation
- **Definition of industrial automation requirements on wireless communication**
- Providing information about wireless technologies, its possibilities and restrictions
- **Guideline VDI/VDE 2185 "Radio based communication in automation"**
- Public promotion for wireless industrial communication
- Discussion forums at trade fairs
- **Annual Conference "Wireless Automation"
 8th Conference 11th and 12th March 2009, Lemgo, Germany**
Members represent following companies:

- ABB
- Agilion
- Amber Wireless
- Beckhoff Automation
- BMW
- DEKRA
- GHMT
- Hirschmann
- Knick Elektronische Messgeräte
- lesswire
- Panasonic
- Phoenix Contact
- Schildknecht
- Siemens
- Stollmann E+V
- Wago
- WERMA Signaltechnik
<table>
<thead>
<tr>
<th>Title:</th>
<th>Funkgestützte Kommunikation in der Automatisierungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radio based communication in industrial automation</td>
</tr>
<tr>
<td>First draft:</td>
<td>June 2002</td>
</tr>
<tr>
<td>First edition:</td>
<td>December 2003</td>
</tr>
<tr>
<td>Second edition:</td>
<td>September 2007</td>
</tr>
<tr>
<td>Title Part 2:</td>
<td>Koexistenzmanagement von Funklösungen</td>
</tr>
<tr>
<td></td>
<td>Coexistence management of wireless solutions</td>
</tr>
<tr>
<td>Draft:</td>
<td>August 2008 (comments until 31st January 2009)</td>
</tr>
<tr>
<td>First edition part 2:</td>
<td>expected in July 2009</td>
</tr>
</tbody>
</table>
Motivation for Part 2 of the VDI/VDE Guideline
"Coexistence management of wireless solutions"

Picture sources: ABB, GHMT, Hirschmann, Schildknecht, Siemens
Objective of Part 2 "Coexistence management of wireless solutions"

Guideline on

- **Coexistence** and **efficient spectrum use**
- Identification of risks
- Assessment of coexistence
- Derivation of technical and organisational measures

Target group

- Designers and persons in charge of manufacturing and process systems
- System integrators
- Machine builders
- Manufacturers of industrial wireless components
Main contents of the VDI/VDE Guideline 2185 Part 2

- Scope
- Terms and Definitions
- Necessity to introduce frequency management
- Frequency management within the system's life cycle
- Frequency management measures
 - Constraints
 - Interference potential
 - Assessment of coexistence
 - Analysis and measurement
 - Practical tips to establish coexistence
 - Installation and approval
 - Documentation
- Application of tools
Definition of the Terms
‘Coexistence of Wireless Solutions’ and ‘Interference’

Coexistence

- is a **state** within an environment (not a characteristic of a wireless solution)
- means that **all wireless solutions** involved fulfil their tasks
- depends on the requirements of the **automation application**
- can be assessed using **characteristic parameters**
- is a **dynamic state**
- has to be **planned, monitored and maintained**

The coexistence state is left if all of the following conditions are fulfilled for any wireless solution:

- the signals overlay in frequency domain with other systems **and**
- the signals overlay in time domain with other systems **and**
- the signal to noise ration is below the required level.
Definition of the Term ‘Frequency Management’

Frequency management

- is used to plan, monitor and maintain the coexistence state
- is not only frequency planning but also planning of positions (power level) and timings (duty cycle)
- includes technical and organisational measures

Source: www.ZVEI.org

Brochure "Coexistence of radio systems in automation - explanations for reliable parallel operation of wireless solutions"
Basic Measures to Introduce a Frequency Management

- Establishment of a coexistence board with persons of all relevant divisions of the company (Purchasing, IT, Automation, Facility Management etc.)
- Nomination of a coexistence management representative for the company or business location
- Inventory of all installed wireless solutions and if possible of all planned solutions
- Consideration of coexistence during planning and purchasing phase
- Establishment of a compulsory registration for all new wireless solutions or for extensions
- Release of wireless solution after approval
- Periodic audit
- Trouble shooting and maintenance
Decision Criteria "Application Class"

<table>
<thead>
<tr>
<th>Category</th>
<th>Class</th>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>0</td>
<td>Emergency action</td>
<td>(always critical)</td>
</tr>
<tr>
<td>Control</td>
<td>1</td>
<td>Closed loop regulatory control</td>
<td>(often critical)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Closed loop supervisory control</td>
<td>(usually non-critical)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Open loop control</td>
<td>(human in the loop)</td>
</tr>
<tr>
<td>Monitoring</td>
<td>4</td>
<td>Alerting</td>
<td>Short-term operational consequence (e.g. event-based maintenance)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Logging and downloading/uploading</td>
<td>No immediate operational consequence (e.g. history collection, sequence-of events preventive maintenance)</td>
</tr>
</tbody>
</table>

Source: ISA SP100
Assessment of Coexistence

Transmission Delay without Interferer

Transmission Delay with Interferer

Sample size: 1.000.000 packets
Histograms of Transmission Delay with Application Related Limit

<table>
<thead>
<tr>
<th>Transmission Delay without Interferer</th>
<th>Transmission Delay with Interferer</th>
</tr>
</thead>
</table>

- **Transmission Delay without Interferer**
 - Sample size: 1,000,000 packets

- **Transmission Delay with Interferer**
 - Sample size: 1,000,000 packets
Histograms of Update time with Application Related Limit

Update Time without Interferer

Update Time with Interferer

Sample size: 1.000.000 packets
Effort for Coexistence Management

Source: VDI Guideline 2185
Further Activities

German Electrical and Electronic Manufacturers' Association (ZVEI)
Working Group "Wireless Automation" was founded in 2005

Tasks:

- Providing confidence in the reliability of industrial wireless communication solutions
- Theoretical analysis interferences between wireless solutions using the 2.4 GHz frequency band
- Practical investigation and assessment of interferences between wireless solutions using the characteristic parameters defined in the VDI Guideline 2185
- Brochure "Coexistence of radio systems in automation - explanations for reliable parallel operation of wireless solutions"
Summary

- Coexistence is a key problem which has to be solved in order to provide reliable wireless communication in industrial automation.

- Coexistence management is independent of a certain frequency spectrum.

- Basic definitions and a guideline to establish and maintain coexistence are available. The English edition will be available in summer 2009.

- **A common international view on coexistence management would improve the confidence in wireless automation.**