VoIP, NGN and DoS: Attack Scenarios, Detection and Prevention

Dr. Dorgham Sisalem
Director Strategic Architecture
Introduction

- General introduction
- VoIP is part of the Internet so expect the same security issues
- Specific SIP attacks
- General protection approaches
- Summary
Some Security Myths

• PSTN is 100% secure
 ▪ True, as long as no one manages to get to the cables at the street corner

• Firewalls solve all security issues
 ▪ Cutting off your Internet cable would solve them as well

• NAT is a great security feature
 ▪ Sure, if you like complex things

• The Internet can withstand a nuclear war
 ▪ The Internet maybe, its services probably not
From Success to Failure

- Malicious
- Complex
- Unpredictable
- Unknowledgeable
- Users
- Services
- Devices
- Revenue
- Uncooperative
- Faults
- Interest
- Failure
What Should We Expect?

All what we know today:
- Viruses
- TCP attacks
- Denial of Service
...

Unintentional attacks:
- Mis-configured devices
- Buggy software

Specialized SIP attacks

Attacks on supporting services (DNS, DHCP)
General Attacks

- Anything that applies to any device connected to the Internet applies to SIP
 - Software bugs can be misused for buffer overflow attacks
 - Bad implementation can lead to system crashes and security hole

- Anything that applies to Web and mail applies to SIP
 - Flooding attacks
 - TCP SYN attacks
 - DNS misuse
 - Cross site scripting
General Threats

Local Threats

Threats within the network

Threats for IT infrastructure

GSM/UMTS

WLAN Access Point

Bluetooth

Server

Internet
SIP Flooding Attacks
SIP Flooding Attacks

• One or more attackers send valid but useless SIP messages
 - Attack tool can be built by undergrad students with nearly no knowledge of SIP
 - Using bot-nets and similar techniques a very high load can be realized at the SIP server
 - High memory consumption
 - High CPU load
 - Difficult to detect
 - Traffic is valid

• Active research topic
 - Detect based on anomalies and similarities
Fancy SIP Attacks

- Misuse SIP specification
 - Fork to non-existing destinations
 - Fork to malicious destinations
 - Configure loops
 - At server 1 forward calls to server 2 and 3
 - At server 2 forward calls to server 1
 - At server 3 forward calls to server 1

- Results in high memory usage
- More complex to realize and simpler to trace back
Fancy SIP Attacks

• Eavesdrop on SIP traffic and generate
 ▪ BYE to established sessions
 ▪ CANCEL to transaction in progress

• Could be annoying to the involved parties
 ▪ Requires the ability to eavesdrop on the signaling traffic
Fraud with SIP

- Billing fraud
 - Guess admin passwords and credentials to get free access to PSTN
- Credit card misuse
 - Use free VoIP calls to service numbers to test credit card pins
Unintentional Attacks

- End systems generate too much useless traffic
 - Bad configuration
 - Buggy software
- Most common scenario today
Unintentional Attacks
Analysis

- Good sales strategy?
- Symptoms
 - Higher load on data bases
 - Higher signaling traffic
 - No significant increase in number of calls
- General traffic analysis
 - No malicious packets
 - Unproportional high number of legal REGISTER messages
- Deep analysis
 - Certain user agents register once a second instead of once an hour
 - User agent otherwise totally RFC3261 conform
Solution

• Block all traffic from the IP addresses originating misbehaving traffic
 ▪ Couple SIP logic with IP filtering
 ▪ Possible but
 ✗ Block all users with misbehaving user agents

• Block all registration traffic from the user agents
 ▪ Simple but
 ✗ Block all users using the same chip set (chip set indicated as the user agent and not only misbehaving user agents)
 ✗ Block all users with misbehaving user agents

• Temporarily block registration traffic from the IP addresses generating misbehaving traffic
 ▪ An IP address is misbehaving if it sends more than 3 REGISTER messages in less than one minute
 ▪ If an address is misbehaving then block all REGISTER messages for 1 hour after which three REGISTER messages are allowed
Intelligent Packet Filtering

Deploy filtering

Time

0 2 4 6 8 10 12 14
Unintentional Attack: The Mid-Night High

• To avoid improper use an ISP changes the IP address of its users every 24 hours
 ▪ Would cause all registrations to become invalid

• Manufacturer of widely used VoIP/DSL boxes has the right approach
 ▪ Disconnect the VoIP box every 24 hours
 ▪ Reregister the user

• Right solution but:
 ▪ 100000+ users registering between 3 and 4 pm is a well synchronized denial of service!!
DoS Prevention: High Level Requirements

• Fast
 ▪ Must process thousands of messages per second
 ▪ Scale with the VoIP infrastructure

• Non-Intrusive
 ▪ Do not add delay or SIP headers
 ▪ Do no interfere with NAT traversal or service provisioning

• Adaptive
 ▪ Integrate new rules and policies
 ▪ Learn new attack signatures

• Complete
 ▪ Analyze message and session irregularities

• Informative
 ▪ Provide statistics and alarms in various levels of detail
Fortress and Moat
Fortress and Moat
• Often suggested approach
 ▪ Build an all knowing, all seeing component in front of the VoIP infrastructure
 ▪ This component terminates sessions and starts new sessions to the proxies
 ▪ Controls both signaling and media
 ▪ Provide
 ▪ Message parsing
 ▪ Black and white lists
 ▪ Media screening
Design Considerations: Do and don’ts

• Solution should be as distributed and scalable as the VoIP infrastructure itself
 ▪ Centralized points are attractive to attack

• Solution should avoid collecting session state
 ▪ Scales only at high hardware costs
 ❖ SIP Session information can easily reach a few Kbytes
 ▪ Failure would cause session failure
 ❖ Can only be fixed at even higher costs

• Solution should avoid dealing with media
 ▪ Routing all traffic through a central point increases the bandwidth requirement of the provider considerably
 ▪ No added QoS benefit
 ❖ In contrast, it increases RTT and adds additional processing points
Peace Keeping

- Use components dedicated for VoIP security that
 - Passively monitor incoming traffic
 - Check for irregularities
 - Filter out suspicious traffic
 - Deploy intrusion detection algorithms
 - Generate network statistics

- Failure of monitoring components does not lead to service failure
 - E.g., no decrease in the overall reliability of the service
VolPDefender

- Research project by Fraunhofer Fokus
 - In the SIP research arena since 1996
 - First to implement a conferencing system based on VoIP
 - Implementer of SER: most used open source SIP proxy

- Goals:
 - Highly Scalable
 - Cope with high bandwidth attacks, especially DoS
 - Invisible placing
 - Attackers cannot see the availability of the solution
 - No support from proxy needed
 - Intelligent defense
 - Defense algorithms dynamically en-/ disable
 - Multiple detection algorithms
VoIPDefender

Legitimate Users

Attacker

Invisible self-contained VoIP Defender

Internal SIP Infrastructure

Fraunhofer Institute for Open Communication Systems
VoIP Defender: Architecture

Analyzer

Decider Component 1

Filter

Dispatcher

Service

Fraunhofer Institute for Open Communication Systems

Incoming / Outgoing Traffic
VoIP Defender: Intelligence

- Anomaly detection:
 - Statistical analysis
 - Observation of SIP state machine
 - Signatures

- Filtering
 - Install dynamic filters to drop packets from malicious users based on:
 - IP address
 - SIP content
Bottom Line

• SPIT, SPIM, VoIP DoS: Hype or Reality
 ▪ Today Hype tomorrow Reality

• Reality
 ▪ The enemy is still not the script Kiddy
 ▪ It is those who did not spend enough time to read the RFCs and test their solutions No Script kiddies yet
 ▪ Immature user agents
 ▪ Mis-configured proxies and gateways
 ▪ Inaccurate CDRs
 ▪ Too stringent firewalls and mis-configured NATs
 ▪ Remember: DNS traffic up-to 90% mainly junk
Thank you