The European Detect and Avoid approach for UWB

by

Dr. Friedbert Berens,
FBConsulting S.à r.l.,
Wasserbillig, Luxembourg
Questions:

- What is “flexible Detect and Avoid (DAA)” for UWB?
- What are the possible detection methods?
- What are the possible avoidance strategies and techniques?
DON’T PANIC

The European flexible DAA approach is “mostly harmless”!

But, if some detail are not clear please ask and initiate a discussion.

This is not a scientific presentation but it should be an interactive tutorial!
Questions:

- What is “flexible Detect and Avoid (DAA)” for UWB?
 - Basics
 - Zone Model
 - LDC
 - DAA procedure

- What are the possible detection methods?
- What are the possible avoidance strategies and techniques?
- How do can the DAA procedures be tested and certified?
EC decision 2009/343/EC, Annex section 1.2:

1.2 Appropriate mitigation techniques
Equipment using ultra-wideband technology shall also be allowed to use the radio spectrum with higher e.i.r.p. limits than mentioned in the table in section 1.1 when applying additional mitigation techniques as described in the relevant harmonised standards adopted under Directive 1999/5/EC or other mitigation techniques on condition that it achieves at least an equivalent level of protection as provided by the limits in the table in section 1.1. The following mitigation techniques are presumed to provide such protection:

1.2.1: LDC

.....

1.2.2: DAA

.....
Non-Interference Mode (NIM)

✓ Operation mode of the UWB device which guarantees the protection of victim services without additional mitigation techniques

✓ Two basic NIM operations for UBW devices:
 - TX power reduction to the regulatory limits for non DAA devices as defined in table 1.1 of EC DEC/2009/343
 - Low duty cycle operation (LDC) with -41.3dBm/MHz as defined in 1.2.1 in EC DEC/2009/343

✓ Reference protection for the flexible DAA approach based on the assumption of an equivalent protection of the potential victim services
✓ **LDC Parameter in actual EC regulation:**
 ○ $T_{on_max} = 5$ ms
 ○ $\Sigma T_{off} > 950$ ms per second
 ○ $\Sigma T_{on} < 5\%$ per second and 0.5% per hour
✓ Max Mean e.i.r.p. power: -41.3dBm/MHz
Example NI mode power levels

- 3.1GHz to 3.4GHz: -70dBm/MHz
- 3.4GHz to 3.8GHz: -80dBm/MHz
- 3.8GHz to 4.8GHz: -70dBm/MHz
- 8.5GHz to 9.0GHz: -65dBm/MHz
NI mode in BWA bands

✓ 3.4GHz to 3.8GHz:
 o Defined 36cm mitigation distance → 35dB isolation between victim (BWA system) and UWB device
 o Interference power received at victim:
 -115dBm/MHz < thermal noise at room temperature
If the UWB device would know the value of the isolation to a victim it could adjust its TX power accordingly

- Victim device protection ("UL-detection")

In contrast to "DL-detection":

- Service area protection
- Independent of relative victim and UWB device location and thus the isolation
Allowed TX UWB power versus distance/isolation

Conditions:
- Line-of-Sight (LoS)
- No fading
- No additional attenuation
RX power from victim at UWB device versus distance/isolation

Victim TX power: 20dBm

RX power: -15dBm
RX power: -24dBm
RX power: -53dBm

Conditions:
- Line-of-Sight (LoS)
- No fading
- No additional attenuation
Full flexible DAA

Victim Signal RX power at UWB device

Allowed UWB TX power

LoS assumption

Distance from Victim

Power

sensing

sensing

Victim

Allowed UWB TX power

sensing

P_{uwb_free}

P_{uwb_NIM}
The UWB device evaluates the isolation to the potential victim and adapts its TX power correspondingly in a continuous way.

This approach is very complex.

Testing almost impossible.

But, it would be inline with the EC rules!

CEPT has proposed an simpler version of the flexible DAA using discrete values.
Zone Model in flexible DAA I

Victim Signal RX power at UWB device

Distance from Victim

Detection threshold $D_{\text{thresh 1}}$

$P_{\text{uwb_free}}$

$P_{\text{uwb_NIM}}$

Victim

Zone 1 (Basic zone model) Zone N, $N=2$
Victim Signal RX power at UWB device

Distance from Victim

P_{uwb_free}

P_{uwb_NIM}

$D_{thresh\ 1}$

$D_{thresh\ 2}$

$D_{thresh\ 3}$

$D_{thresh\ N-1}$

Zone 1

Zone N, $N=5$

WALTER DAA Tutorial, ETSI, Sophia Antipolis, France 07.10.2009
→ Example BWA system

→ 4 Zones in flexible DAA

→ Victim Noise Sensitivity:
 - -115dBm/MHz

→ LoS channel conditions between victim and UWB devices

→ [distance] = m
 [isolation] = dB
Startup considerations

✓ Startup of UWB device:
 - In secure mode, thus using NIM
 - If needed sense environment or gets external infos
 - Move out of NIM only when not in vicinity of potential victim
 - Based on identified zone start non NIM operation
 - Minimum scan time is defined in regulation: “Minimum initial channel availability check time”
In-operation considerations

✓ In operation mode → no NIM
 - Continuous update of zone information
 - Defined maximum reaction time in case of a zone change
 - Only zone decreases are regulatory relevant
 - Zone increases are important for the UWB performance
 - Regulatory parameter “Detect and Avoid Time” defines the maximum reaction time allowed.
UWB Device
Power ON

UWB Operation in
Non-Interference (NI) mode

Minimum initial channel availability check time

Stay in
NI mode?

Yes

Detect and Avoid time

No

“Detect” operation

Victim Signal > D_{thresh_1}

Victim Signal Level estimation

Victim Signal < $D_{\text{thresh}(N-1)}$

$D_{\text{thresh}_2} < \text{Victim} < D_{\text{thresh}_1}$

Signal

UWB Operation in
Zone 1

UWB Operation in
Zone 2

UWB Operation in
Zone N
DAA parameter I

- DAA threshold levels
- Initial Channel Availability Check Time
- NIM power level
- Detect and avoid time
- Default avoidance bandwidth
- Initial detection probability
- In-operation detection probability
DAA parameter S-Band Radar

- Band: 3.1GHz to 3.4 GHz
- NIM power: -70dBm/MHz
- LDC allowed
- Threshold level: -38dBm (2 Zone model)
- Default avoidance bandwidth: 300MHz
- Initial Channel availability check time: 14s
- Detect and Avoid time: 150s
Band: 3.4 GHz to 3.8 GHz
NIM power: -80dBm/MHz
LDC allowed
Threshold level: -38dBm or -61dBm (3 Zones)
Default avoidance bandwidth: 200MHz
Initial Channel availability check time: 5.1s
Detect and Avoid time: 2s, 15s, 60s
Band: 8.5GHz to 9.0GHz
NIM power: -65dBm/MHz
No LDC allowed
Threshold level: -61dBm
Default avoidance bandwidth: 500MHz
Initial Channel availability check time: 14s
Detect and Avoid time: 150s
Conclusions

✓ The original EU UWB regulation gave only limited access to the lower band (3.1GHz to 4.8GHz), the new regulation will open the band by introducing additional mitigation techniques
 o Flexible DAA

✓ The European “Flexible Detect and Avoid” approach can pave the way towards a worldwide regulation using DAA

✓ Flexible DAA delivers equivalent protection to the potential victim systems combined with a manageable complexity increase at the UWB device site

✓ During the regulation process a close collaboration between the incumbent systems and the new entrance was the key to a successful solution
FBConsulting S. à r.l.:
- European Regulation and Standardization
- EU Research Project Consulting
- Research in the domain of wireless system and short range device
- ETSI Member

Contact: Dr. Friedbert Berens
FBConsulting S. à r.l.
21, Route de Luxembourg
L-6633 Wasserbillig, Luxembourg
fbconsulting@me.com
Tel: +352 26714319
Additional Slides

✓ Backup Slides with additional information
Tutorial objectives

✔ Questions:

- How does the UWB regulation and standard look like?
- What is “flexible Detect and Avoid (DAA)” for UWB?
- **What are the possible detection methods?**
- What are the possible avoidance strategies and techniques?
- How do can the DAA procedures be tested and certified?
Detection process

- UWB needs to detect a signal
- All detected signals need to be identified
- Only relevant signals need to be taken into account

Problem: Signal identification
 - Discrimination of Spurious emissions
 - Non victim systems emissions
 - Etc.
Victim signal detection (Non data aided):
 o Energy detection
 o Coherent detection
 o Pattern identification

Use of external information (intersystem and intra system information, Data aided detection)
 o Information available in existing Piconets
 o Cognitive Pilot Channel (CPC)
 o Geolocation (GPS, etc.)

Combined/Hybrid systems
Victim signal detection flow

- Spectrum sensing
- Signal identification using stored information
 - Pattern
 - Threshold sets
 - Victim Service bands

Diagram:
1. Start of Detect
2. Select frequency band for the measurement
3. Measure amplitude(s) within a given time
4. Is the amplitude(s) higher than my noise level?
 - Yes: Signal detected
 - No: Characterise signal(s)
5. Victim Service(s) detected?
 - Yes: Select the relevant threshold set(s) D_{fresh}
 - No: Characterise signal(s)
6. Compare signal(s) level to the members of the selected set(s) of thresholds and adapt operating parameters accordingly
7. Done
Detection using external information

- Collocated devices
- Existing piconets
- Cognitive pilot channel
- Geo-location information like GPS

Start of Detect

Is received victim related information available?

yes

Process this information

Adapt operating parameters accordingly

Done
- Combine sensing and external information
- Most reliable solution
- Exchange of information using LDC mode
Questions:

- How does the UWB regulation and standard looks like?
- What is “flexible Detect and Avoid (DAA)” for UWB?
- What are the possible detection methods?
- **What are the possible avoidance strategies and techniques?**
- How do can the DAA procedures be tested and certified?
Avoidance Strategies

✓ In Time
 o LDC, time sharing,

✓ In Space
 o Antenna techniques,

✓ In power
 o Power control, power reduction, switch off

✓ In frequency
 o Notching, sub-band switching (two band hopping, FFI), BG switching

✓ Hybrid solutions
Example for flexible Avoidance Methods in frequency domain

WIMAX victim RX power > -61dBm
\rightarrow avoid with max TX power of -65dBm/MHz

WIMAX victim RX power > -38 dBm
\rightarrow avoid with max TX power of -80dBm/MHz

TX power

- 41.3 dBm/MHz
- 65 dBm/MHz
- 80 dBm/MHz

3432 MHz 3960 MHz 4488 MHz