Networking of Information
An information-centric approach to the network of the future

Vinicio Vercellone - Telecom Italia
Bengt Ahlgren – SICS
& 4WARD WP6 colleagues
Network of Information

Today’s Internet Communication Model
Focuses on Conversations between Hosts

Future Information-centric Network Communication Model
Focuses on Dissemination of Information objects

In today’s Internet, accessing information is the dominating use case!
Problems resulting from Host-centric view

- No common *persistent naming scheme* for information
 - URLs and IPs overloaded with locator and identifier functionality
 - Moving information = changing its name ("404 file not found" errors)
 => Use *flat namespace* for persistent identification

- No consistent *representation of information* (copy-independent)
 - No consistent way to keep track of *identical copies*
 - Different *encodings* (e.g., mp3, wav) worsen problem

- Information dissemination is inefficient
 - Can’t benefit from existing copies (e.g. local copy on client)
 - Also true for *Content Delivery Networks* (e.g. Akamai)
 - No “anycast”: e.g., get “nearest” copy
 - Problems like *Flash-Crowd effect, Denial of Service, …*

- Security is host-centric
 - Mainly based on *securing channels* (encryption) and *trusting servers* (authentication)
 - Can’t trust a copy received from an untrusted server

Problems can be solved in a consistent manner via an information-centric architecture
NetInf Scenarios

- **Content distribution**
 - VideoOnDemand, Live TV, Web pages
 - Caching can be built-in from the beginning
 - Information can be retrieved from the closest available source
 - Common dissemination infrastructure for all applications, including network support
NetInf Scenarios

- **Content distribution**
 - VideoOnDemand, Live TV, Web pages
 - Caching can be built-in from the beginning
 - Information can be retrieved from the closest available source
 - Common dissemination infrastructure for all applications, including network support

- **Augmented Internet – Real-world objects**
 - Linking real world objects in the virtual information world
 - Clicking on and bookmarking real world objects
1. Step: Persistently identify information via identifier/locator split
 - Location-independent identifiers
 - Represent multiple copies

2. Step: Representation of information via Information Objects (IOs)
 - Another level of indirection
 - Represent information independent of specific copy and encoding
 - E.g. a text, a song
 - Contains information-specific metadata
 - E.g. access rights, attributes

Information Objects can do more:
 - Representation of:
 - Streams
 - Services
 - Real-world objects (e.g., a book, person)
 - IOs can be used to organize information

- Enables efficient information dissemination
 - System can automatically choose encoding and copy (e.g. based on metadata)
 - User can navigate information (e.g. choose encoding)
NetInf Naming Scheme

Type
- Defines the format
 - e.g. Hash algorithm used (SHA1, MD5, …)

Authenticator (A)
- Binds the ID of the IO to a public key PK
 - Hash function used to compress length of PK

Label (L)
- Identifying individual object published by Authenticator
 - contains a number of identifier attributes associated with an IO
 - (A, L) combination needs to be globally unique

- Supporting the combination of:
 - name persistence, self-certification, owner authentication, and owner identification
 - for information objects that are static or dynamic, that change location, that change owner, and whose owner change organisational affiliation
 - without need to trust the delivering host

- Security metadata include
 - Cryptographic hash of the data
 - Certificate chain binding the IO key (PK_{IO}) to owner key (PK_{owner})
 - Signature of the self-certified data with SK_{IO} or any other authorised SK
 - All data needed for owner authentication and identification

- Separation of notion of *publisher* and *owner*, where the latter can stay anonymous
Mapping Information Model to NetInf name resolution

IO ID: \[Type = A = \text{hash}(PK_{IO}) \quad \text{L} = \text{label} \]

Name resolution system

- **type**
 - meta data
 - IO
 - BO
 - BO

- **content**
 - metadata
 - IO ID'
 - locator\textsubscript{A}
 - locator\textsubscript{B}

Storage/caching

A

B

BO

BO
NetInf Node Architecture

NetInf Node

Additional services
Resolution and Routing functionality
Data transport functionality

Applications

NetInf API

Resolution controller
(M)DHT, Broadcast, Local

Transport controller
TCP/IP, GP, Other

Storage engine
Search engine
Local storage engine
Cache engine

NetInf Storage API
NetInf Search API

NetInf Additional Services
Storage protocol(s)
STORE(…)
NetInf App. X protocol

Name resolution protocol(s)
PUT(…)
GET(…)
...

NetInf Transport control protocol

INI
Scalable Name Resolution System

- Combination of:
 - Hierarchical DHTs (Provider-based)
 - Topological embedding of DHTs
 - Name-based routing

![Diagram of Scalable Name Resolution System]

- Global Resolution
- Local Resolution

HOST A

Get(X)

Local Resolution

Source Region

HOST B

Local Resolution

Destination Region

Return data

Data Object

X
Standardization issues

Issues to be considered for standardization:

- **NetInf interfaces**
 - User-Network Interface
 - Inter-Provider Interface
 - Name resolution service between different domains
 - registration/query protocols
 - name resolution records
 - Transport and routing of messages
 - Naming scheme
 - NetInf APIs
Standardization

❖ ITU Focus Group on Future Networks (FG FN)
 – NetInf and the information-centric approach presented at the first meeting of the focus group in Luleå, Sweden, July 2009

❖ IETF DECADE
 – NetInf presented at the DECADE BoF at the 76th IETF meeting in Hiroshima, Japan, November 2009
 – Internet-Draft submitted to the 77th IETF in Los Angeles
 • <draft-ohlman-decade-add-use-cases-reqs-00>, “Requirements for accessing data in network storage”
 • Proposes to widen the scope beyond P2P-based apps to also cover video distribution applications (incl. IPTV, YouTube) and enumerates a number of requirements to be addressed by the protocols
Summary and Conclusion

- NetInf is about the design of a new network architecture based on an information-centric paradigm.
- Some problems that are addressed by the NetInf:
 - Naming scheme for naming information
 - World-wide scalable Name Resolution mechanism for flat names
 - IOs as representation of information
 - Enable efficient information dissemination
 • Benefit from available copies, anycast, caching, solve Flash-Crowd, ...
 - Secure information-centric architecture by embedding security into identifiers
- Some significant results up to date:
 - Naming scheme with integrated security that is independent of hosts
 • Detailed definition and security analysis
 - Design of a scalable integrated name resolution and routing scheme (MDHT)
 - Scalable solution for mobility of objects, hosts and networks (LLC)
 - Overall NetInf architecture prototype
 • Demonstrated at international conferences
Thank you!

www.4ward-project.eu