OpenQFlow: Scalable OpenFlow with Flow-based QoS

April 10, 2013
Nam-Seok Ko (nsko@etri.re.kr)

Net-Computing Convergence Research Section
Smart Network Research Department
Agenda

- SDN (Software Defined/Driven Networking)
 - What is SDN?
 - Problem Analysis

- OpenQFlow
 - Scalability and QoS Enhancement for SDN
 - Prototype Implementation

- Standardization Opportunities

- Q & A
What is SDN?

- **Software Defined (or Driven) Networking (SDN)**
 - An enabler of network programmability through
 - separation of control plane from data plane
 - open interfaces among control plane, data plane and application layers
Problem Analysis

- Scalability and Performance Issues

 - Need to setup a separate rule for each N uflow
 - Maximum N exceptions

- Scalability Issues in Supporting Fine-grained QoS
 - Forwarding and QoS rules are tightly coupled
 - Need to setup separate QoS rules for each microflow

- Performance Issues
 - Every packet in an microflow should search multiple rule tables
Related Works

- **DevoFlow (Devolved Flow)**
 - Minimize the interactions between OpenFlow switches and controlled
 - Keep flows in the data-plane as much as possible
 - Provision enough wild-card rules to data-plane
 - Rule-cloning: microflow-based exact match rules
 - Determine long-lived flow using statistics sampling or triggering
 - Controllers get involved in handling long-lived flows

- **DIFANE (Distributed Flow Architecture for Networked Enterprises)**
 - Distributing the rules across “authority switches”
OpenQflow

- Objectives
 - To support scalable and stateful SDN which provides microflow-based QoS

- Distinctive Features
 - Clear separation of QoS rules from forwarding rules
 - Flow learning at microflow level
 - Learn every information in the first packet processing of a microflow
 - Simplify forwarding for the subsequent packets in a flow
 - Fine granular flow management regardless of the granularities of forwarding and QoS rules
 - Coarse granular forwarding and QoS rules – aggregation of forwarding and QoS rules
 - QoS profile types of QoS rules
 - E.g., if (DSCP value = 10) then 10Mbps guaranteed bandwidth for each flow
OpenQflow (cont’d)

- Distinctive Features (cont’d)
 - Complex packet processing in edge node but simpler processing in core node – SDN header
 - Flow label – an unique identifier for each microflow in an SDN domain
 - Does not necessarily mean that each and every microflow has its own flow label; flow label is sharable among multiple best-effort flows
 e.g., best effort traffic share one single flow label to next hop node
 - Short-lived flows may not need to have a separate flow label as well
 - QoS information
 - QoS type, rate, delay, jitter, etc.
OpenQflow (cont’d)

- Separate Rules for Forwarding and QoS
 - Much fewer exceptions

- Flow Learning Table
 - N dynamic learning flows

- Forwarding
 - Exception is not required

- QoS
 - N uflows

- Flow Learning
 - Exception is not required

- Controller

- Fewer interaction b/w switch and controller
 - Separation of QoS rules from Forwarding rules
 - Multiple micro-flows could share one QoS profile

- Performance Enhancement
 - Only the first packet goes through all the complex packet processing and then learn the information into flow state table
 - All the subsequent packets are processed according to the flow state table
OpenQflow (cont’d)

- Complex processing in edge node & simpler processing in core node
 - Edge node
 - Lookup multiple flow tables and refer to SDN controller for undefined flows
 - encapsulate/decapsulate SDN header (flow label, QoS information, etc.)
 - Core Node
 - Lookup one table against the SDN header (mostly it will be in the format of label)
OpenQflow (cont’d)

- Flow Learning Table
- Forwarding Rule
- QoS Rule
- Scheduler

1st Packet

Flow creation and packet scheduling into calendar queue based on flow QoS

Core #1

Flow Processing

Subsequent packets

Core #X

Flow Processing

QoS Co-processing

Scheduling out packets from calendar queue

Data plane prototype on a commercial multicore processor (Cavium multicore CPU)

Throughput monitoring, fair bandwidth calculation
Standardization Activities

- **ONF**
 - OpenFlow Switch Specification - OF 1.4 (08/2012)
 - open communication protocol between control plane and data plane
 - OpenFlow Management and Configuration Protocol - OF-Config 1.1
 - remote configuration of openflow switch

- **IETF & IRTF**
 - ForCES
 - SDNP BoF, SDNRG

- **ITU-T**
 - Q.21 of SG13 Future Networks
 - Y.FNsdn - Framework of software-defined networking
 - Y.FNsdn-fm - Requirements of formal specification and verification methods for SDN

- **ETSI**
 - NFV ISG
Standardization Opportunities

- **Forwarding Architecture**
 - Separation of QoS rules from forwarding rules
 - Flow learning table

- **Scalable Stateful SDN – SDN header**
 - Flow label – make simpler packet processing in core node
 - Default flow label for short-term and best-effort flows,
 - or separate flow label per each flow for enhanced packet processing
 - QoS information – enhanced QoS processing
 - Label-inferred packet processing,
 - or separate encoding for explicit QoS treatment (QoS type, rate, delay jitter, etc.)

- **Where?**
 - Study feasibility in ITU-T and/or ETSI in framework level
 - Creation or modification of protocols should be done in ONF and/or IETF
Q & A

Thank you.