Energy-aware Traffic Allocation to Optical Lightpaths in Multilayer Core Networks

Prof. P. Demestichas, Dr. K. Tsagkaris, V. Foteinos, M. Logothetis
in cooperation with
Alcatel-Lucent Bell Labs France

Email: {pdemest, ktsagk, vfotein, mlogothe}@unipi.gr
http://tns.ds.unipi.gr/
Outline

- Motivation
- Energy-aware Traffic Allocation to Optical Lightpaths
- Autonomic Management Framework for Core Networks
- Future plans
Motivation [1|2]

- By the year 2014, the amount of Internet traffic will reach the 63.9 exabytes in a monthly basis
- Video traffic will dominate (more than 91 percent of the global consumed IP traffic)
- 1 billion online video users already
- Internet connection download speed and bandwidth needs to be improved
- Addition of resources to the current wired network and service infrastructures
- The levels of the consumed energy are affected
- Capacity and energy consumption of routers grow at an exponential rate
- Higher OPEX

Traffic Engineering Schemes

- Obvious need for advanced Traffic Engineering (TE) schemes that will exploit the already available ones for optimizing traffic routes
- TE schemes should be able to adapt in an autonomous manner to the traffic fluctuations
- Autonomicity and self-adaptation are key factors for taking fast, online and reliable TE decisions

Operators

- Stringent requirements to the operators' side
- The management of this intelligence cannot rely on the traditional command and control paradigm, which is slow and error prone
- Operator should have the flexibility to provide preferences and/or guidance to the behavior of the TE mechanism, in a human friendly and technology agnostic manner
Energy-aware Traffic Allocation to Optical Lightpaths [1|8]

- **Problem Statement**: find the most energy-efficient optical lightpath to accommodate the new traffic demand, while respecting the capacity of fibers and wavelengths.

- **Proposed Solution**
 - **Energy efficiency** is achieved through the allocation of traffic to dedicated lightpaths, which are restricted at the optical layer only.
 - **Minimum** overall Optical-to-Electrical-to-Optical (OEO) conversions.
 - **Minimum** number of activated transponders.

Energy Efficiency

- End to end lightpaths, restricted at the optical channel layer (OCh)
Mathematic Formulation

(Given data, Decision variables, objective function and constraints)

- Optimization problem
- Output corresponds to the optimal routing configuration
- IBM ILOG CPLEX Optimizer (CP algorithm)

<table>
<thead>
<tr>
<th>GIVEN DATA</th>
<th>Variables</th>
<th>Description</th>
<th>Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Set of source to destination pairs.</td>
<td>$PLHN(p,l)$</td>
<td>Binary variable: 1 if fiber $l \in L$ has next fiber in path $p \in P$, 0 otherwise.</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Set of paths.</td>
<td>$PLN(p,l)$</td>
<td>Fiber that follows fiber $l \in L$ in path $p \in P$.</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Set of optical fibers.</td>
<td>$CAPW(w)$</td>
<td>Capacity of wavelength $w \in W$.</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Set of wavelengths.</td>
<td>CC</td>
<td>Cost of conversion.</td>
<td></td>
</tr>
<tr>
<td>$BS(s)$</td>
<td>Bandwidth demand for SD pair $s \in S$.</td>
<td>$CP(p)$</td>
<td>Cost of path $p \in P$ (length in number of hops).</td>
<td></td>
</tr>
<tr>
<td>$SP(s,p)$</td>
<td>Set of paths $p \in P$ for SD pair $s \in S$.</td>
<td>$CL(l)$</td>
<td>Cost of fiber $l \in L$.</td>
<td></td>
</tr>
<tr>
<td>$PL(p,l)$</td>
<td>Set of fibers $l \in L$ for path $p \in P$.</td>
<td>$CLW(l,w)$</td>
<td>Cost of wavelength $w \in W$ of fiber $l \in L$.</td>
<td></td>
</tr>
<tr>
<td>$LW(l,w)$</td>
<td>Set of wavelengths $w \in W$ for fiber $l \in L$.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DECISION VARIABLES</th>
<th>Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_{SP}(s,p)$</td>
<td>Binary variable: 1 if path $p \in P$ is utilized from SD pair $s \in S$, 0 otherwise.</td>
<td></td>
</tr>
<tr>
<td>$Y_{P}(p)$</td>
<td>Binary variable: 1 if path $p \in P$ is activated, 0 otherwise.</td>
<td></td>
</tr>
<tr>
<td>$Y_{L}(l)$</td>
<td>Binary variable: 1 if fiber $l \in L$ is activated, 0 otherwise.</td>
<td></td>
</tr>
<tr>
<td>$Y_{LW}(l,w)$</td>
<td>Binary variable: 1 if wavelength $w \in W$ is activated in fiber $l \in L$, 0 otherwise.</td>
<td></td>
</tr>
<tr>
<td>$r_{SP}(s,p)$</td>
<td>Volume of traffic demand of SD pair $s \in S$, sent through path $p \in P$.</td>
<td></td>
</tr>
<tr>
<td>$d_{LW}(l,w)$</td>
<td>Aggregated traffic demand sent through wavelength $w \in W$ of fiber $l \in L$.</td>
<td></td>
</tr>
<tr>
<td>$d_{PLW}(p,l,w)$</td>
<td>Traffic demand sent through wavelength $w \in W$ of fiber $l \in L$ for path $p \in P$.</td>
<td></td>
</tr>
<tr>
<td>$Y_{CLW}(l,w)$</td>
<td>Integer variable: number of conversions at the next router for wavelength $w \in W$ in fiber $l \in L$.</td>
<td></td>
</tr>
</tbody>
</table>
Objective function

- minimizes costs of paths, costs of links, costs of wavelengths and costs of conversions

\[
\begin{align*}
\min & \sum_p Y_P(p) \cdot C_P(p) + \sum_l Y_L(l) \cdot C_L(l) + \sum_l \sum_w Y_{LW}(l,w) \cdot C_{LW}(l,w) + \sum_l \sum_w Y_{C_{LW}}(l,w) \cdot C_c \\
\text{subject to:} & \\
Y_{C_{LW}}(l,w) & = \sum_l \sum_w Y_{LW}(l,w) \\
f(I,w) & = \sum \left(\left(\frac{d_{rw}(p,l,w)}{d_{rw}(p,l,w)} \right) \right) Y_p(p) = 1 \\
B_S(s) & = \sum_p r_{SP}(s,p) \cdot Y_{SP}(s,p) \\
Y_P(p) & = \left(\sum_s Y_{SP}(s,p) \right) > 0 \\
\sum_s r_{SP}(s,p) \cdot Y_{SP}(s,p) & = \sum_l \sum_w d_{LW}(l,w) \\
\sum_l \sum_w Y_{LW}(l,w) \cdot C_{AR}(w) & \geq \sum_l \sum_w d_{LW}(l,w) \cdot Y_{LW}(l,w) \\
d_{LW}(l,w) \cdot Y_{LW}(l,w) & = \sum_p d_{PLW}(p,l,w) \cdot Y_P(p) \\
Y_L(l) & = \left(\sum_w Y_{LW}(l,w) \right) > 0 \\
d_{PLW}(p,l,w) & \leq r_{SP}(s,p) \cdot Y_{SP}(s,p) \\
\forall s \in S, p \in P, l \in L, w \in W, s, p \in SP(s,p), p, l \in PL(p,l), l, w \in LW(l,w)
\end{align*}
\]
Energy-aware Traffic Allocation to Optical Lightpaths [5|8]

State Of The Art (energy efficiency)
- Selectively turning off (sleep mode) idle network elements
- Green architecture directly during the network design stage
- Energy efficient IP packet forwarding
- Green routing (traditional routing protocols updated)
- Two techniques:
 - Traffic grooming
 - Optical bypass

Energy-aware Traffic Allocation to optical Lightpaths (ETAL) algorithm:
- Allocation of traffic demands to the optimal lightpath(s), in terms of consumed energy
- Exploitation of the optical bypass technique
Evaluation: comparisons with energy-efficient routing schemes and other common routing protocols.

- OPTIMAL: Optimal routing configuration derived as the output of the mathematic formulation
- ETAL: Routing configuration derived from ETAL algorithm
- OSPF: OSPF routing configuration
- MIN-FIBERS: Minimum number of activated fibers in the network
- MIN-WAVELENGTHS: Minimum number of activated wavelengths in the network
Minimum consumed power, independently of traffic fluctuations, due to minimum OEO conversions.

Running Times for the accommodation of the overall traffic demands

- **ILOG**: Hundreds (even thousands) of seconds depending on the size of the problem
- **ETAL**: 1 or 2 seconds
Exploitation of available wavelengths for minimizing and stabilizing the consumed power.

Conclusions
- Due to time constraints, solving the mathematic formulation is inefficient and cannot be applied for online decisions.
- **ETAL** establishes lightpaths with minimum number of OEO conversions and minimum number of activated transponders.
- **ETAL** exploits the available resources.
- **ETAL** achieves near to optimal decisions in minimum time.
- **ETAL** is an acceptable energy-efficient solution for online traffic engineering.
Autonomic Management Framework for Core Networks

- Autonomic network management is based on the design and deployment of multiple, autonomic MAPE-K loops in the network.
- A framework for the plug n’ play deployment and unified management of these loops is required: **Unified Management Framework (UMF)**
 - **UMF Core services:** govern (policies) these loops, coordinate their autonomic behavior and provision them with always up-to-date knowledge; all these in a unified manner, independently of their method, scope and domain.
 - **NEMs:** to encapsulate the loops’ logic and provide them with the interface needed to render them manageable by the UMF core services.

- The presented algorithms are MAPE-K loops acting in the core network.
- Core TE NEMs are developed to render them manageable in the UMF context.
- UMF drives their behavior by expressing and propagating goals such as “Energy Efficiency”
 - Respected by TE decisions/Translated into actions in the network.

Future plans

- More Traffic Engineering algorithms (centralized, distributed) and their evaluation (simulation + emulation)

- Traffic Engineering in Software Defined Networks (SDNs)

- Traffic Engineering in Data Center networks
Acknowledgement

- The research leading to these results has been performed within the UniverSelf project (www.univerself-project.eu) and received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257513.

- This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

- This work is partially supported by the ARTEMIS project (A cognitive ecosystem for smART Energy Management of wIreless technologieS and mobile applications) funded by the General Secretariat of Research and Technology (GSRT) of the Greek Ministry of Development. The views expressed in this document do not necessarily represent the views of the complete consortium. The Community is not liable for any use that may be made of the information contained herein.