Realistic testing of operational radio communications from and to vehicles in virtual electromagnetic environments

OTA in VEE

Wim Kotterman, Markus Landmann, Horst Heringklee, Rainer Perthold, Matthias Hein, Reiner Thomä, Giovanni Del Galdo

TU Ilmenau Institute of Information Technology
Fraunhofer Institute for Integrated Circuits
IZT Innovationszentrum für Telekommunikationstechnik
Thüringer Innovationszentrum Mobilität

Wim Kotterman
ETSI 6th WS ITS, Berlin 2014
Challenges of real-life testing C2X

Propagation environment
- Multipath
- Delay-, angular-, and Doppler-spread
- Large-scale and small-scale effects
- Interaction of EM field and antennas

Radio environment
- Variety of transmission standards frequencies, modulation, coding, access scheme
- Multiple users, interference

• Performance depends on dynamically changing, complex scenarios in terms of traffic and radio environment
• Mixture of infrastructure and ad-hoc based access
• System level performance assessment
• Holistic approach: including both vehicle and driver response (“driver in the loop”)
Test Drives vs. Virtual Reality

“Virtual reality” is a computer generated environment that emulates reality

- Acoustics, music and noise
- Visual representation
- Human interaction

Radio drive tests comprise:

- Installed performance (system level test)
- Driver in the loop
- Realistic and live environment

Radio drive tests:

- Likely too expensive and not reproducible
- Depend on existing infrastructure and existing standards
- Insufficient for certification
- Restrictions of ethical and legal extent
Radio drive test goes virtual

Emulating multipath, multiple users, and interference in a shielded environment

Model of vehicular radio environment

Wave field generation in anechoic chamber (stationary vehicle)
OTA\textsubscript{in}VEE
Over-The-Air testing in Virtual Electromagnetic Environments

- EM field emulation in anechoic chamber
- System level test, installed performance of antennas and vehicle
- Controllable and reproducible
- No interference to and from deployed systems (shielded environment)
- Testing vehicles in new, prospective, or foreign radio access networks
- Arbitrary scenarios: ”radio crash test”/critical interference, dynamics, ”what if”
- OTA\textsubscript{in}VEE transparent for radio access technology
- Closed-loop: dual directional

Example: OTA\textsubscript{in}VEE set-up for LTE/LTE$^+$

source: Fraunhofer IIS FORTE
OTA

Balance of effort: realism vs. complexity

- Realistic emulation of radio wave fields (w.r.t. use of resources)
- Closed-loop performance (up- and down-link, e.g. for protocol or multi-hop)
- Multiuser scenarios (ad hoc!)
- (Massive) Interference

Minimum requirements for emulation realism:

- Dynamics of time variance, incl. large-scale fading (“road movie”)
- Balancing RF environment complexity with test scenarios on higher layers
Accurate Wave Field Synthesis (WFS) requires huge resources:
- Any field linearly decomposed into plane wave components
- 5 m class vehicles @6 GHz and 3-D: thousands of antenna ports
- High connectivity: many user/interference sources
- One multi-input channel emulator per antenna port: costs ~20-40 T€
- Closed-loop: additionally, the same in reception (“reciprocal” process)
OTA_inVEE: Balance of effort

Two implementation options

Discriminate between coherent and power/signature transmissions, with different emulation strategies

• Coherent
 – phase of incident fields important
 – direction of incident fields important
 – related to antenna performance w.r.t. MIMO, diversity
 – transmitted information important

• Power/signature (representation of increasing sophistication)
 – "best bang for bucks"
 – in-band angular spectral density (spatially coloured noise)
 – system mimicking:
 temporal (frame) structure
 modulation characteristics (nonsense bits allowed)
 – user activity pattern, etcera

• In both cases, still scenario-specific, with multi-user influence
OTA\textit{in}VEE: Balance of effort

Coherent emulation: Two-stage or hybrid OTA

- Devices-under-Test exceeding sweet spot size
- Combining synthesis with reception/transmission through antenna patterns, in real-time
- Test on bench over cables connected to system I/O
- Requirements
 - antenna patterns known (not just 2D cuts)
 - antennas separable: access to connectors loading/matching
 - still sufficient signal processing power
- Disadvantages
 - EMC issues: e.g. self-interference locked out
 - tricked out by antenna adaptivity: tuning, matching
OTA\textit{in}VEE: Balance of effort

Power spectrum/signature emulation

- In anechoic chamber
- System and scenario dependent sophistication
- Split fields into
 - Communication transmissions (multi-user)
 - Interference
 - Noise
- Discretise angular power spectrum:
 - No synthesis, fixed radiation directions
 - Multipath instead of angular spread
 - Hope for wide antenna patterns 😊
- Temporal, spectral signature emulation
 - Communications: transparent, with fading
 - Interference: depends on sophistication of System-under-Test
 - Noise: spectrally and angularly coloured noise

Wim Kotterman
ETSI 6th WS ITS, Berlin 2014
OTA in VEE Lab at TU Ilmenau

TU Ilmenau VISTA
Virtual road project

2014
Anechoic room
Turntable
Dynamometer/
per wheel drive
Measurements C2X
Channel models C2X
FhG FORTE: 2-stage

2015
Antenna patterns
Emulation
FhG FORTE:
WFS@6GHz
Conclusions

OTAinVEE:

- **System level test: antennas, vehicle, and environment:**
 - Alternative to drive tests
 - Controllable and reproducible
 - No interference from and to outside world
 - Transparent to radio access technology
 - Emulation of arbitrary scenario dynamics, incl. “what if”

- **Two implementations envisaged**
 - Two-stage for accurate wave fields, but vehicle is modelled
 - Power/signature emulation for large DuT, but simplified wave fields

- **Test scenarios**
 - Channel dynamics (large-scale effects included)
 - Balanced over layers, crowded when needed