Networking & Transport Protocols for Release One and Future Directions

Dr. Andreas Festag
NEC Laboratories Europe & Technical University Dresden
ETSI TC ITS WG3 Chairman
Outline

Release 1

Release 2
Published WG3 base & test standards for Release 1

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 302 636-1</td>
<td>Requirements for GeoNetworking</td>
</tr>
<tr>
<td>EN 302 636-2</td>
<td>Scenarios for GeoNetworking</td>
</tr>
<tr>
<td>EN 302 636-3</td>
<td>Network architecture</td>
</tr>
<tr>
<td>EN 302 636-4-1 /TS 102 636-4-2</td>
<td>GeoNetworking media-independent, GeoNetworking for ITS-G5</td>
</tr>
<tr>
<td>EN 302 636-5-1</td>
<td>Basic Transport Protocol (BTP)</td>
</tr>
<tr>
<td>EN 302 636-6-1</td>
<td>Transmission of IPv6 packets over GeoNetworking</td>
</tr>
<tr>
<td>EN 302 931</td>
<td>Definition of geographical areas</td>
</tr>
<tr>
<td>TS 102 871 – 1/2/3</td>
<td>Test specifications for GeoNetworking (PICS, TSS/TP, ATS/PIXIT)</td>
</tr>
<tr>
<td>TS 102 870 – 1/2/3</td>
<td>Test specifications for Basic Transport Protocol (PICS, TSS/TP, ATS/PIXIT)</td>
</tr>
<tr>
<td>TS 102 850 – 1/2/3</td>
<td>Test specifications for IPv6 over GeoNetworking (PICS, TSS/TP, ATS/PIXIT)</td>
</tr>
</tbody>
</table>
GeoNetworking key features

- Network beacons
- Location table
- Basic & extended header
- Geo-addressing
- Location service
- Store-carry & forward
- Packet repetition
- Security support
- Privacy support
- Dup-packet detection
GeoNetworking performance (1)

Smart forwarding algorithms in EN 302 636-4-1

- **Scenario**
 - Circular bidirectional freeway with three lanes per direction
 - Car Following-Krauss model
 - CAM rate 2Hz
 - DENM rate 1Hz
 - GeoArea size 100x500m
 - 500 vehicles uniformly distr.

- **Metrics**
 - Node Coverage Ratio (NCR)
 - End-to-End Delay (E2ED)
 - Data Traffic Overhead (DTO)

GeoNetworking performance (2)

Node coverage ratio (NCR) over vehicle density

- CBF and GFC – perfect NCR up to 30 veh/km/lane
- For higher density, NCR degrades → Congestion control
End-to-end delay (E2ED) over vehicle density

- CBF and GFC – Delay below 100 ms
 30 veh/km/lane
- For higher density, E2ED grows due to MAC queues
 → Congestion control
CBF and GFC – DTO shows reasonable increase

Beyond 30 veh/km/lane CBF DTO grows
GeoNetworking key facts

GeoNetworking related standards

- published as European norm
- test specifications developed
- all specifications publically available
- platform for conformance tests in place
- implementations from different vendors exist
- plugtests well-established
- part of C2C-CC profile for deployment
- validated in field trials & good performance

© ETSI 2015. All rights reserved
Key question

- To what extend can we reuse existing protocols from Release 1 for Release 2 use cases?
GeoNetworking with modified forwarding algorithms

- Designed for information exchange in groups of autonomous vehicles
- Main features: low latency and high reliability
- Minimal changes in protocol specification

Example scenario

See R&D project „AutoNet 2030 Co-operative Systems in Support of Networked Automated Driving by 2030”
URL: http://www.autonet2030.eu/
Node coverage ratio and end-to-end delay over number of vehicles

Summary

WG3 Release 1 completed

Maintenance of release 1 standards

• Corrections
• Alignment with updates from DCC and security
• No new protocol features

Release 2 standards

• No open work item yet
• Follow closely WG1 pre-standardization activities to derive requirements for networking and transport
• Initial studies in R&D projects, such as AutoNet 2030, propose to enhance release 1 protocols for release 2 use cases
Fires destroy 3G infrastructure and V2X communication takes over for Emergency Calls and "Dad, I am OK!"

V2X interfaces to the User Calendar + Navigation so SmartGrid + Billing function at Office, Shops, Home, everywhere ...

V2X comm. of passing cars collect data and send later to M2M application.

Wind/Solar + E-Cars need SmartCharging

Agriculture Sensors need uplink

V2x is ubiquitous, robust, cheap ... what next !?

Taken from : L. Frost, A. Festag: "ETSI ITS Standardization: Focused or Visionary?", ETSI ITS Workshop, Venice, Italy, 2011