Energy Storage Solutions Panorama for Telecom Stand-By applications

ETSI – 2015 Energy Workshop

By Claude Campion
3C Projects
3C Projects founded in 2011 by Claude Campion coming from large battery industry, is a unipersonal independent company located in Clichy nearby Paris.

Main Activities are:
- Technical support: Test lab or field investigation, storage energy solutions selection analysis, training course, test or maintenance procedure update, battery monitoring specifications
- Marketing support: Promotion of R&D license for use in industry, Specific Technology and Market development surveys

Main References are:
- Orange; EDF (French Utility); SNCF (French Railways); Electrabel (Belgium); BAE (Germany); ForseePower (France); Albioma (France)...

More information at www.3cprojects.eu
Batteries & Energy Storage Solutions

Long Storage (day to year) Medium Storage (sec to week) Short Storage (µs to min)

Telecom Opportunities

3C Projects

ETSJ – June 4th 2015 - Claude Campion
Electrical Energy Storage

Mechanical
- Pump Hydro
- Compressed Air
- Flywheels

Electro-Magnetic
- Supercapacitor
- SMES DSMES

Chemical
- Hydrogen
- SNG

Electro-Chemical
- Flow Batteries
- Rechargeable Batteries

Thermal
- Sensible Heat
- Latent Heat
- PHES

Classification according IEC ESS WP 12/2011

- Long Storage (day to year)
- Medium Storage (sec to week)
- Short Storage (µs to min)

Telecom Opportunities
Lead Acid Batteries Flooded

| Strengths | Mature Technology - Cell Cost of 80 € - 150 €/kWh
| | Good extreme temperature acceptance - Convenient cycling performance for tubular variant |
| Weaknesses | Limited cycle life for flat plate variant - Water topping up
| | Efficiency of 80-85% |
| Opportunities | Large global production capacities
| | Large capacities range from 10Ah to 4000 Ah |
| Threats | Competition with Li-Ion |

Main Technologies
- PbSb (flat or tubular) ; PbCa (Flat) ; Plante ; PbC

Telecom Opportunities
- Large central office back-up
- Wireless outdoor and Off-Grid BTS (PbSb Tubular)
- Starting Engine (PbSb or PbCa flat)
- Microwave Antenna
Lead Acid Batteries AGM

| Strengths | Mature Technology - Cell Cost of 100 - 130 €/kWh
Good Power Performances - Balancing and Maintenance free |
|-----------|--|
| Weaknesses | Limited cycle life
Reduced life operation at high temperature |
| Opportunities | Large global production capacities
Standard format |
| Threats | Competition with Li-Ion |

Main Technologies
- PbCa (flat thin / thick) ; Pure Lead

Telecom Opportunities
- UPS – Data Center
- Large or district office back-up
- Wireless outdoor or indoor BTS
- Starting Engine
- Microwave Antenna – PABX - DSL

ETSİ – June 4th 2015 - Claude Campion
Lead Acid Batteries Gel

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengths</td>
<td>Mature Technology - Cell Cost of 120 - 180 €/kWh - Good cycling ability</td>
</tr>
<tr>
<td></td>
<td>Balancing and Maintenance free</td>
</tr>
<tr>
<td>Weaknesses</td>
<td>Poor Power Performance</td>
</tr>
<tr>
<td></td>
<td>Life time affected at high temperature operation</td>
</tr>
<tr>
<td>Opportunities</td>
<td>Large global production capacities</td>
</tr>
<tr>
<td></td>
<td>High reliability and safety reputation</td>
</tr>
<tr>
<td>Threats</td>
<td>Competition with Li-Ion</td>
</tr>
</tbody>
</table>

Main Technologies
- PbCa (flat or tubular)

Telecom Opportunities
- Large or district central office back-up
- Wireless outdoor, indoor and off-grid BTS
- Microwave Antenna – PABX - DSL

ETS1 – June 4th 2015 - Claude Campion
Large Differences in Term of Battery Choice

- kWh Cost varies from 1 to 3 according types
- Life operation can be from 3 years to 25 years according type and temperature operation
- Cycling performances are quite different from type to type

- Today Lead Acid battery is the largest player for stand-by applications
- IEC/EN 60896-1 & 2 ruled the type test performances (float & cycling)
- IEC/EN 61427 provides recommendations for PV applications

Performances Cycles. 20°C
Indicative values issued from 3C Projects analysis for Orange Telecom
NiCd Batteries

Strengths
- Mature Technology - Extreme low temperature performances
- Robust reliability - Good energy density

Weaknesses
- Cost around 400 €/kWh
- Recycling process of Cadmium

Opportunities
- Engine starting at low temperature
- On board rail application & extreme temperature PV applications

Threats
- Competition with Li-Ion - Cadmium ban

Main Technologies
- Pocket plates (flooded or sealed) & Sintered plates

Telecom Opportunities
- Wireless outdoor and off-grid BTS
- Microwave Antenna
- Engine starting

ETSI – June 4th 2015 - Claude Campion
NiMH Batteries

| Strengths | Mature Technology - Extreme low temperature performances
| | Robust reliability - Good energy density - |
| Weaknesses | Cost around 450 €/kWh |
| Opportunities | Hybrid Vehicle (Toyota Prius)
| | Portable applications |
| Threats | Competition with Li-Ion |

Main Technologies
- Flat or Cylindrical

Telecom Opportunities
- Handy terminal
- PABX

ETSI – June 4th 2015 - Claude Campion
NiZn Batteries

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengths</td>
<td>Cycling performance - Wide temperature range operation -</td>
</tr>
<tr>
<td></td>
<td>No electronic balancing - Recyclability - Energy density</td>
</tr>
<tr>
<td>Weaknesses</td>
<td>No long field experience feedback</td>
</tr>
<tr>
<td>Opportunities</td>
<td>Abondance of material New jocker for extreme temperature cycling operation</td>
</tr>
<tr>
<td>Threats</td>
<td>Competition with Li-Ion & Lead Acid</td>
</tr>
</tbody>
</table>

Main Technologies
- SCPS License or Powergenix License

Telecom Opportunities
- Wireless outdoor and off-grid BTS
- Microwave antenna
- Engine starting

ETSJ – June 4th 2015 - Claude Campion
NiFe Batteries

Strengths
- Mature technology - Very long life operation up to 25 years
- No electronic balancing - Recyclability

Weaknesses
- High maintenance cost due to high rate of water consumption

Opportunities
- Abondance of material

Threats
- Competition with Li-Ion & Lead Acid

Main Technologies
- Edison type

Telecom Opportunities
- Wireless outdoor and off-grid BTS
- Microwave Antenna
Niche Applications and New Players

- Nickel Cadmium keeps strong positions on railways and cold starting engine due to safety maturity
- NiMH keeps market shares in HEV and portable tools due to its safety operation, maturity, as well as good energy density
- NiZn is a new player and can afford right opportunities for cycling operations at extreme temperature operations with expected reasonable cost
- NiFe is coming back and field experiences are looking with great attention
- Competition with lithium based batteries is tough (Battle is lost for portable except for power-tool)
- IEC/EN 61434, 60623, 62259, 60622, 61951 provides major information for type test performances
- IEC/EN 61427 is the reference for PV applications
Lithium LiFePo4 Batteries

| Strengths | High Cycling Performances - Partial State of Charge Capability
| | Good safety operation |
| Weaknesses | Cell cost about 320 €/kWh & Pack cost around 450 €/kWh
| | Need electronic pack balancing - Low & High temp. operation |
| Opportunities | Renewable energy storage applications
| | Bus & Commercial EV |
| Threats | Competition with Li-Ion Titanate anode batteries & Flow batteries |

Main Technologies
- Cylindrical, Pouch (Polymer), Large prismatic

Telecom Opportunities
- Wireless outdoor and off-grid BTS
- Microwave antenna

ETSİ – June 4th 2015 - Claude Campion
Lithium Ion Batteries (LCO, LMO, NCA, NMC)

| Strengths | High Cycling Performance - Partial State of Charge Capability
| | High Energy & Power Density
| Weaknesses | Cell cost from 250 €/kWh to 600 €/kWh
| | Need electronic pack balancing - Limited low & high temp. operation
| Opportunities | Portable equipment - EV Batteries
| | Grid support
| Threats | Limited supply in Lithium

Main Technologies
- Cylindrical – Prismatic Pouch (Polymer)

Telecom Opportunities
- Terminal (Phone, Tablets, Laptop...)
- NCA, NMC, LMO can play for off-grid applications, Antenna and BTS equipment
Lithium Ion Batteries (LTO anode)

| Strengths | Very High Cycling operation > 10,000 Cycles
| | Good safety operation and good charging suitability at low temp. |
| Weaknesses | Cell cost over 450 €/kWh - Lower energy density
| | Need electronic balancing - Limited high temp. operation |
| Opportunities | Renewable energy storage Grid support - UPS short backup |
| Threats | Limited supply in Lithium
| | Few suppliers |

Main Technologies
- Prismatic & Pouch

Telecom Opportunities
- Wireless outdoor and off-grid BTS
- UPS Short Backup
Lithium Metal Polymer Batteries (LMP)

Strengths
- Very High Cycling Performance > 5000 Cycles
- Can work at extreme temperature

Weaknesses
- Pack cost over 700 €/kWh - lower efficiency
- Need electronic cell balancing and thermal management

Opportunities
- Renewable energy storage
- EV batteries

Threats
- Limited supply in Lithium
- Limited supplier

Main Technologies
- Prismatic Pack

Telecom Opportunities
- Wireless outdoor and off-grid Antenna or BTS

ETS1 – June 4th 2015 - Claude Campion
Lithium based Batteries Summary

Large difference in term of battery choice

- Cycling performances vary from 1 to 30 according, shape, size, cathode and anode material as well as supplier manufacturing process.

Example of announced performances: (Here below extract from Lishen datasheets)

<table>
<thead>
<tr>
<th>P/N</th>
<th>Cathode</th>
<th>Capacity (mAh)</th>
<th>Life Cycles</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR1865BI</td>
<td>NMC</td>
<td>1500</td>
<td>300/75%</td>
<td>Cyl.</td>
</tr>
<tr>
<td>LR1865LA</td>
<td>NMC</td>
<td>2000</td>
<td>300/75%</td>
<td>Cyl.</td>
</tr>
<tr>
<td>LR1865SK</td>
<td>LCO/NCM</td>
<td>2600</td>
<td>300/80%</td>
<td>Cyl.</td>
</tr>
<tr>
<td>LR1865SA</td>
<td>LCO</td>
<td>2800</td>
<td>300/80%</td>
<td>Cyl.</td>
</tr>
<tr>
<td>LR1865SC</td>
<td>LCO</td>
<td>3000</td>
<td>300/80%</td>
<td>Cyl.</td>
</tr>
<tr>
<td>LR1015AB</td>
<td>LCO</td>
<td>60</td>
<td>500/80%</td>
<td>Cyl.</td>
</tr>
<tr>
<td>LR1865SD</td>
<td>LCO/NCM</td>
<td>2200</td>
<td>1000/80%</td>
<td>Cyl.</td>
</tr>
<tr>
<td>LR1865EC</td>
<td>LFP</td>
<td>1350</td>
<td>1000/80%</td>
<td>Cyl.</td>
</tr>
<tr>
<td>LP2714897</td>
<td>LFP</td>
<td>20000</td>
<td>2000/80%</td>
<td>Prism.</td>
</tr>
</tbody>
</table>

- Up to now very few long period field experiences, project sizing and economics are mainly based on data-sheet.

- Standards for safety are fixed, concerning stand-by type test the standard processes are on going.
Sodium Batteries (NaNiCl - NaS)

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High Cycling Performances</td>
<td>Pack cost over 700 €/kWh</td>
</tr>
<tr>
<td>5 000 - 10 000 Cycles</td>
<td>Need thermal management - Thermal losses - Low efficiency</td>
</tr>
<tr>
<td>Can work at extreme temperature</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable energy storage</td>
<td>Lack of safety confidence - Competition with lithium</td>
</tr>
<tr>
<td>Grid support</td>
<td></td>
</tr>
</tbody>
</table>

Main Technologies
- Fiamm, GE for NaNiCl & NGK for NaS

Telecom Opportunities
- Wireless outdoor and off-grid BTS at extreme temperature with NaNiCl

Standards
- No specific type test standard up to now
Redox-Flow Batteries

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Energy and Power are Independently scalable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cyclic lifetime > 10 000 Cycles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weaknesses</th>
<th>Low efficiency of 60 - 74%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lack of long field experience. Cost still at about 500 € / kWh at scale</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Expiration of patent protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cheap raw materials are available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Threats</th>
<th>Only few manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wrong field experiments results</td>
</tr>
</tbody>
</table>

Main Technologies

- VFRB (Vanadium) – ZnBr – FeCr – H₂Br

Telecom Opportunities

- Large central office connected to Renewable Energy supply source and operating at extreme temperature
TES – Thermal Energy Storage (Hot or Cold)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengths</td>
<td>Scalable Size. Mature</td>
</tr>
<tr>
<td></td>
<td>Cyclic lifetime > 10 000 Cycles</td>
</tr>
<tr>
<td>Weaknesses</td>
<td>Low efficiency of 60 - 70 %</td>
</tr>
<tr>
<td></td>
<td>Not adapted for electricity recovery</td>
</tr>
<tr>
<td>Opportunities</td>
<td>Extreme temperature operation</td>
</tr>
<tr>
<td></td>
<td>micro-grid systems</td>
</tr>
<tr>
<td>Threats</td>
<td>Not considered as inovative</td>
</tr>
</tbody>
</table>

Telecom Opportunities

As an improvement of renewable energy integration Cold TES can be part of energy efficiency approach for systems and Hot TES with associated applications can be explore.
Hydrogen and Regenerative Fuel Cell (RFC)

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Autonomous concept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excellent cycling performance</td>
</tr>
<tr>
<td></td>
<td>Scalable</td>
</tr>
<tr>
<td>Weaknesses</td>
<td>Low efficiency around 50% total</td>
</tr>
<tr>
<td></td>
<td>Lack of long field experience.</td>
</tr>
<tr>
<td></td>
<td>CAPEX Cost 600 € - 1000 €/kWh</td>
</tr>
<tr>
<td>Opportunities</td>
<td>Seasonal storage for Renewable Energy</td>
</tr>
<tr>
<td></td>
<td>Combination with EV propulsion</td>
</tr>
<tr>
<td>Threats</td>
<td>Safety regulation</td>
</tr>
<tr>
<td></td>
<td>Electrolyser and fuel cell membrane reliability</td>
</tr>
</tbody>
</table>

Technologies
- Electrolyser PEM + Fuel Cell + Solid, Liquid or Compressed Hydrogen Storage

Telecom Opportunities
- Seasonal storage for antenna or off-grid BTS

ETSİ – June 4th 2015 - Claude Campion
Energy storage solutions are multiple

Operation conditions have to be well set to ensure the right choice

LCOE (Life Cost of Energy) linked to CAPEX, OPEX and service life is a good approach to set the cost effective choice

Dual or Hybrid solutions are more and more considered:
- Power + Energy or Cycling + Floating
 - Lithium + Lead
 - Lithium NMC + Lithium LTO
 - Supercapacitor + lead
 - Supercapacitor + lithium
 - Electrochemical + Thermal
 - Electrochemical + Chemical

New developments are on the way:
- LiS: Lithium Sulfur
- Metal Air: Zn-Air, Li-Air,
No one energy storage solution is predominant

each one has its adapted fitment

Thank You