2016 ITS Plugtests Campaign: Towards the Integration of M2M Technologies in ITS

Paolo Pagano, Sebastian Müller, Mariano Falcitelli, Michele Carignani, Fabrizio Paoletti, Michelle Wetterwald, Lorenzo Maraia, Matteo Petracca

2016 ITS Plugtests Team
Intelligent Transportation Systems

User perspective:
- Better mobility experience
 - Multimodal journey planning
 - Real-time travel information
 - Electronic road tolling
- Higher safety levels
- Reduce pollution

Technological perspective:
- Complex system based on multiple technologies
 - Vehicular communications
 - Wireless connectivity
 - IoT objects
- Interoperability issues to be solved through standards
The ITS Plugtests is basically a test event:

- Organized and run by ETSI (as neutral body) in collaboration with academic and industrial partners
- Scope, test infrastructure and test plan based on standards
- Feedback to the ETSI technical group
- A tool for the ETSI technical group to validate and enhance the quality of their standards

An opportunity for implementers and for the community:

- To validate their understanding of the standard
- To demonstrate end-to-end interoperability
ITS Plugtests 2016 overview:

- From 7 – 18 November 2016 at the Port of Livorno, Italy
- Host: CNIT, AVR, Livorno Port Authority
- Organized by ETSI with ERTICO
- More than 20 vendors from worldwide

Main objectives and novelties:

- Past Plugtests events were focused on Car2Car communications
- *This Plugtests edition is the first ETSI ITS CMS event testing infrastructure services (based on draft ETSI TS 103 301) with:*
 - integration of Motorways network;
 - integration with IoT technologies.
ITS Plugtests 2016: use cases

Motorways network Integration

Internet of Things Integration

- UC-01 - Road Hazard Signalling
- UC-02 - Distribution of Road Hazard Signals
- UC-03 - Time To Green / Traffic Sign Violation
- UC-04 - Vehicle Data Aggregation
- UC-05 - In-Vehicle Signage
- UC-06 - Intersection Collision Risk Warning
- UC-07 - Longitudinal Collision Risk Warning
- UC-08 - Loading Zone Management
- UC-09 - Tolling
- UC-10 - Authorization Tickets Reloading
Motorways network integration: advantages

- Events notification (e.g., dangerous situations) from CMS to RSUs and from RSUs to CMS;
- CMS is able to connect directly RSUs for possible coordinated actions.
• On board data collection (e.g., detection of pollutants);
• Pervasive monitoring in the road side segment (e.g., parking slot occupancy detection, vehicle flow analysis).
ITS Plugtests 2016: final service architecture

![Diagram of service architecture]

- **Central Management System**
- **TCC**
- **DATEX Node**
- **DATEX 2 C-ITS Adapter**
- **DENM XER / HTTP**
- **RSU Supplier C**
- **RSU Supplier B**
- **RSU Suppl. A**
- **C-ITS**
- **Extended DATEX / SOAP**
- **DATEX / HTTP**
- **CoAP**
- **Road Side IoT Segment**
- **On Board IoT Segment**
- **Any OBU Supplier**
- **CoAP**

Matteo Petracca -- © CNIT
1. C-ITS to CMS integration based on DATEX and SOAP
2. RSU to CMS through DATEX/HTTP
3. RSU to CMS through DENM XER/HTTP
ITS Plugtests 2016: final service architecture

1. Sensors to RSU through CoAP transactions
2. Sensors to OBU through CoAP transactions
ITS Plugtests 2016: M2M oriented architecture

Central Management System

DATEX Node

DATEX 2 C-ITS Adapter

RSU Supplier A

RSU Supplier B

RSU Supplier C

RSU Suppl. A

C-ITS

HTTP / IPv4

HTTP / IPv4

CoAP / 6LoWPAN

CoAP / 6LoWPAN

Road Side IoT Segment

On Board IoT Segment

Any OBU Supplier

AutostradeTech

Matteo Petracca -- © CNIT
Conclusions

• In ITS Plugtests 2016 an M2M oriented architecture has been designed and developed
 – M2M transport protocols are supported both in the Infrastructure and IoT segments;
 – RESTful capabilities are partially supported.

• M2M capabilities in ITS are necessary to have a meaningful Infrastructure and IoT interoperability;

• For future ITS Plugtests a further step towards the integration with oneM2M is something to consider;

• Joint Plugtests initiatives between ETSI ITS and oneM2M are desirable to foster the standardization in both domains.
thank you!

matteo.petracca@cnit.it
Use Case #1 Road Hazard Signalling

1. [0] Input for message generation from AVR

2. [0] C-ITS sends hazard warning to RSU

3. RSU sends DENM to OBU

4. The driver receives the information on the display of his on-board unit or an additional smart device.

- Standard IoT Protocols
- Central ITS-S [optional]

- RSU queries the sensor network and detects the road conditions. Sends DENMs to the relevant zones.
- C2I Road Side Unit

- 5.9 GHz Air Link
- On-Board display Driver Information

- Sensors on the road side perceive a danger on the road surface (water, ice, oil, pollutants / pedestrian).
- On-Board Unit

Matteo Petracca -- © CNIT
Use Case #2
Distribution of locally detected Hazard Warning

1. Vehicle sends hazard warning.
 - a. On board wireless sensors send information about dangerous goods.

2. RSU receives hazard warning and informs C-ITS station.

3. C-ITS distributes IVS (e.g. speed limitations) and DENMs to the relevant zones.

4. The driver receives the information instantly on the Display of his on-board unit or an additional smart device.

C2X
On-Board Unit

5.9 GHz Air Link
On-Board display
Driver Information

Central ITS-S

5.9 GHz Air Link
On-Board display
Driver Information
Use Case #8
Monitored loading/unloading zone

1. The smart camera signals an empty slot in the loading unloading zone.
2. RSU receives the occupancy status of a set of parking slots and propagates a Point of Interest notification with all empty slots.
3. The vehicle shows the information to the driver.
4. RSU forwards the information to the C-ITS Station which monitors the occupancy of parking lots.

Central ITS-S [optional]

Standard IoT protocols

On-Board display

Driver Information

5.9 GHz Air Link

C2X On-Board Unit