The H2020 PQCRYPTO project, an update

Andreas Hülsing, TU/e

14 September 2017

5th ETSI/IQC Workshop on Quantum-Safe Cryptography
Post-Quantum Cryptography for Long-term Security

- Project funded by EU in Horizon 2020.
- Starting date 1 March 2015, runs for 3 years.
- 11 partners from academia and industry, TU/e is coordinator
What does PQCRYPTO mean for you?

- Expert recommendations for post-quantum secure cryptosystems.
- Recommended systems will get faster/smaller as result of PQCRYPTO research.
- More benchmarking to compare cryptosystems.
- Cryptographic libraries will be made freely available for several computer architectures.
- Find more information online at http://pqcrypto.eu.org/.
- Final reports next summer.
- Follow us on twitter https://twitter.com/pqc_eu.
Initial recommendations (September 2015)

- **Symmetric encryption** Thoroughly analyzed, 256-bit keys:
 - AES-256
 - Salsa20 with a 256-bit key

Evaluating: Serpent-256, ...

- **Symmetric authentication** Information-theoretic MACs:
 - GCM using a 96-bit nonce and a 128-bit authenticator
 - Poly1305

- **Public-key encryption** McEliece with binary Goppa codes:
 - length \(n = 6960 \), dimension \(k = 5413 \), \(t = 119 \) errors

Evaluating: QC-MDPC, Stehlé-Steinfeld NTRU, ...

- **Public-key signatures** Hash-based (minimal assumptions):
 - XMSS with any of the parameters specified in CFRG draft
 - SPHINCS-256

Evaluating: HFEv-, ...
The last year

- ECRYPT-CSA executive school in Eindhoven, ~ 40 people.
- PQCRYPTO school in Eindhoven (at TU/e)
 120 Participants, 21 lectures, videos & slides online:
 https://2017.pqcrypto.org/school/schedule.html
- PQCrypto 2017, Utrecht
 67 submissions, 23 papers accepted;
 226 participants; videos to come.
 https://2017.pqcrypto.org/conf
Selected research results

(only minimally subjective)
Post-quantum signatures with formal security arguments

The quantum accessible ROM

- ROM: every party gets access to *ideal* hash function.
- Hash-function has public description.
- Assuming quantum adversaries we need to give quantum access!

Results

- Picnic: Signatures from symmetric key primitives.\(^1\)
- SOFIA: Signatures based on MQ-based identification.\(^2\)

\(^1\)Chase, Derler, Goldfeder, Orlandi, Ramacher, Rechberger, Slamanig, Zaverucha. Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. ia.cr/2017/279

Hash function security

Common belief
- Grover is provably optimal \Rightarrow Attacks gain at most a square-root factor.
- Only in the worst case if function is random!

Constructive results
- Also only square-root speed-up in average case (for random function).\(^3\)
- Sponges are collapsing, CR, SPR, OW, if block function is random function or OW-permutation.\(^4\)

Destructive result
- Can parallelize Grover search for 1 out of t images on p small cores to achieve $\sqrt{\frac{N}{pt^{1/2}}}$ runtime.\(^5\)

\(^3\) Hülsing, Rijneveld, Song. Mitigating Multi-Target Attacks in Hash-based Signatures. PKC’16. (OW / SPR, CR was shown by Zhandry)

\(^4\) Czajkowski, Groot Bruinderink, Hülsing, Schaffner, Unruh. Post-quantum security of the sponge construction. QCRYPT’17.

\(^5\) Banegas, Bernstein. Low-communication parallel quantum multi-target preimage search SAC’17
Lattice-based KEMs

<table>
<thead>
<tr>
<th>Scheme</th>
<th>PQ sec.</th>
<th>ct?</th>
<th>Cycles</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCA2-secure KEMs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamlined NTRU Prime</td>
<td>4591761</td>
<td>137</td>
<td>yes</td>
<td>K: 6115384 sk: 1600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E: 59600 pk: 1218</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D: 97452 c: 1047</td>
</tr>
<tr>
<td>spLWE-KEM (128-bit PQ parameters)</td>
<td>128</td>
<td>?</td>
<td></td>
<td>K: ≈ 336700 sk: ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E: ≈ 813800 pk: ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D: ≈ 785200 c: 804</td>
</tr>
<tr>
<td>Kyber (AVX2 optimized)</td>
<td></td>
<td>161</td>
<td>yes</td>
<td>K: 77892 sk: 2400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E: 119652 pk: 1088</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D: 125736 c: 1184</td>
</tr>
<tr>
<td>NTRU-KEM</td>
<td></td>
<td>123</td>
<td>yes</td>
<td>K: 307914 sk: 1422</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E: 48646 pk: 1140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D: 67338 c: 1281</td>
</tr>
<tr>
<td>CCA2-secure public-key encryption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTRU ees743ep1</td>
<td></td>
<td>159</td>
<td>no</td>
<td>K: 1194816 sk: 1120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E: 57440 pk: 1027</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D: 110604 c: 980</td>
</tr>
<tr>
<td>Lizard (recommended parameters)</td>
<td>128</td>
<td>no</td>
<td></td>
<td>K: ≈ 97573000 sk: 466944</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E: ≈ 35000 pk: 2031616</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D: ≈ 80800 c: 1072</td>
</tr>
</tbody>
</table>

Table: Source: Hülsing, Rijneveld, Schanck, Schwabe. High-speed key encapsulation from NTRU. CHES 2017. (See source for references and more details)
Finding short vectors

Not enough study in literature

- SVP: find shortest nonzero vector in a lattice.
- Big improvements in attack speed in last several years.
- Breaking SVP breaks lattice-based crypto.
- Lattice-based crypto uses additional structure: ideal lattices, approximation vectors, FHE.
- Fast quantum attack recently developed against Gentry’s original FHE system.\(^6\)

Destructive results

- Fast non-quantum attack against a reasonable FHE system.\(^7\)

\(^6\) Eisenträger, Kitaev, Hallgren, Song, STOC’14; Campbell, Groves, Shepherd, 2014; Biasse, Song, SODA’16.

\(^7\) Bauch, Bernstein, de Valence, Lange, van Vredendaal, Short generators without quantum computers: the case of multiquadratics. Eurocrypt’17.
Discrete Gaussian sampling

- Important building block in lattice-based crypto.
- Used to “hide” secrets.
- Hard to do fast, constant-time implementation.

Destructive results

- Many existing samplers vulnerable to side-channel attacks.\(^8\)

Constructive results

- Can switch to rounded Gaussians for signatures.
- Sample continuous Gaussian and round to nearest Integer.
- *Rounded Gaussians* can be sampled efficiently in constant-time.

\(^8\)Pessl, Groot Bruinderink, Yarom. To BLISS-B or not to be – Attacking strongSwan’s Implementation of Post-Quantum Signatures. CCS’17
Coming soon

- **NIST (Not-)Competition**
 - Several submissions in progress.
 - Signatures, KEX and KEM.
 - Not just plain published schemes but optimized variants.

- **Nature article on post-quantum crypto**
 - Really soon: today’s issue

- **XMSS RFC**
Thank you

- All papers can be found online at http://pqcrypto.eu.org/papers.html.
- For previous works, author lists etc.pp. see papers.
- Find more information online at http://pqcrypto.eu.org/.
- Follow us on twitter https://twitter.com/pqc_eu.