Welcome to the World of Standards

ETSI TC Cyber Working Group for Quantum Safe Cryptography

Chairman’s report, September 2017
Mark Pecen, chairman
1. About the working group QSC
2. Recent organisational changes
3. Summary of published work items
4. Technology roadmap introduction
Technical Committee Cyber, Working Group Quantum Safe Cryptography (QSC)

- Founded March 2015 as Industry Specification Group (ISG) QSC
- Our focus is on the practical implementation of quantum safe primitives, including performance considerations, implementation capabilities, benchmarking and practical architectural considerations for specific applications
- Our work may feed into other ETSI groups and projects as 3GPP and other standards bodies such as International Telecommunication Union (ITU), e.g. SG-17 or ISO/IEC JTC1 SC27
- Our objectives DON’T include the development of cryptographic primitives or focus on QKD
 - These are propositions best left to academia and other groups who specialise in the area
ISG QSC becomes TC Cyber QSC

In order to produce normative ETSI specifications, such as Technical Reports (TR) or Technical Specifications (TS), it was necessary to promote the group to become a Working Group (WG) of a ETSI Technical Committee (TC)

After 2 years of operating as an Industry Specification Group (ISG), the QSC became part of a larger Technical Committee (TC), TC Cyber Working Group for Quantum Safe Cryptography (WG-QSC) in March 2017

Existing QSC officers were re-elected to continue serving in TC Cyber WG-QSC and maintain its working pace and environment

TC Cyber WG-QSC chairman regularly reports to TC Cyber

All WG approved output documents flow into TC Cyber plenary for final approval
• Provides an overview and best practices by industry and academia for assessing cryptographic primitives that have been proposed for key establishment and authentication applications, and which may be suitable for standardization by ETSI and subsequent use by industry to develop quantum-safe solutions for real-world applications

• Primitive families under consideration
 • **Lattice-based** primitives where the security depends on the difficulty of solving a short or close vector problem in a lattice
 • **Multivariate-based** primitives where the security depends on the difficulty of solving a system of multivariate polynomial equations
 • **Code-based** primitives where the security depends on the difficulty of solving a decoding problem in a linear code
 • **Hash-based** primitives where the security depends on the difficulty of finding collisions or preimages in cryptographic hash functions
 • **Isogeny-based** key primitives where the security depends on the difficulty of finding an unknown isogeny between a pair of supersingular elliptic curves
Summary GROUP REPORT (GR) QSC-003 “Case studies and deployment scenarios”

- Examines a number of real-world uses cases for the deployment of quantum-safe cryptography (QSC)
 - Typical applications where cryptographic primitives are deployed today
 - Identifies some of the consequences of adapting services and applications to quantum safe equivalents, along with features that may need change to accommodate quantum-safe cryptography
 - Options for upgrading public-key primitives for key establishment and authentication, although several alternative, non public-key options are also discussed

- Cases include
 - Network security services, including TLS, where design choices such as drop-in replacement, hybrid approaches and re-engineering are considered
 - Potential integration issues for deploying quantum safe equivalents into existing protocol stacks, including the handling of large key sizes
 - Offline services, such as e-mail, and credentials for offline services
 - Internet of Things (IoT) aspects, including processor, bandwidth, power consumption and size limitations and impact on cryptosystems
 - Satellite communications, and associated limitations
 - Also key distribution centres, authentication and certain exotic applications for cryptosystems
• Simplified threat assessment following the guidelines of ETSI Technical Specification (TS) 102 165-1 for a number of use cases

• Identification of required capabilities for certain algorithms
 • Grover’s algorithm
 • Shor’s algorithm
 • Further implications

• Threat assessment for various aspects of security
 • Symmetric key algorithms
 • Public key algorithms
 • Random number generation
 • Security protocols like TLS, IPsec, IKE, S/MIME and PKI

• Industry-specific issues are identified
 • Banking and e-commerce
 • Intelligent transportation systems
 • eHealth
Analysis of quantum computing capabilities is presented within the context of solving symmetric key cryptographic problems.

Evolution of quantum computing is discussed:
- Learning curves, such as Moore’s law
- Commercial quantum computers
- “worst-case” quantum computing
- Upper-bounds to quantum computing

Assumptions regarding keys and parameter sizes, symmetric keys and output lengths.

Some conclusions are made – although speculative, this analysis suggests that symmetric key crypto AES-256 may still be used in the year 2050 based on the assumed power of future quantum computers.
Three new work items created recently

Created Two New Work Items of major interest at QSC#7, September 2016

- QSC-008: Quantum-Safe Cryptographic Signature assessment: proposed by INRIA, supported by Phillips International, Thales U.K. limited, CESG, Queens University Belfast and Security Innovation Inc., Belfast proposed in QSC#7, September 2016

New Work Item created at QSC#1, March 2017 (Note the numbering scheme starts at #1 again after promoting the group to a TC)

- QSC-009: Quantum Safe Virtual Private Network (VPN): proposed by ISARA Corporation, supported by NCSC, Phillips, Amazon, Qunion, PIDS, Thales UK Ltd.
Extended roadmapping: 10+ years

- Gaps are difficult to identify in the longer term...
- Unless we search together

We have begun roadmapping activities in QSC#9 and plan roadmapping workshops for future QSC meetings.
Picture of a superconducting qubit from labs of the Institute for Quantum Computing, CANADA

Contact Details:
Mark PECEN, Chairman QSC
mpecen@approachinfinity.ca