Towards Semantic IoT, oneM2M Base Ontology

Dr. Mahdi Ben Alaya
Founder & CEO, Sensinov

benalaya@sensinov.com
www.sensinov.com

October 23, 2017
Do we really need semantic?

- oneM2M Release-1 ensure interoperability at the level of communications.
- Data is treated as black boxes. The content is opaque and applications have to a-priori know how to interpret the data.
- The consumer is programmed or configured for certain consumers. No data interoperability.
Beforehand agreement required

- It is required to learn information model of each device before using it.
- Beforehand agreement on the data representation is needed between applications and devices.
- Hard to integrate and deal with existing legacy devices.
- Can work in small and closed environment. But does not scale!
Can XML/JSON do the job?

• Human can understand XML-Documents.
 • Intuitively clear for human.
 • Tag names provide semantic meaning since they are domain-terms.

• Machines do not have intuition.
 • Tag names do not provide semantics for machines.
 • XML defines the structure and lacks of semantic model.

<measurement>
 <device>TEMP-AZ1299B</device>
 <value>17</value>
 <unit>C</unit>
 <time>20160116T192030</time>
</measurement>
Semantic gap between machines

• Which words shall we use to describe a given set of concepts?
• A common vocabulary is required for IoT to bridge the semantic gap between machines.
• Semantic technologies must be used to solve these issues.
From data to decision

• Collecting data is not sufficient, only your ability to convert data into decisions that gives you the edge.

Source: Curt Swindoll, Persuant 2011
Levels of meaningfulness

- There is not just one single level of semantics that could be attached to a raw data element.
- Different levels of meaningfulness can be identified to describe data and device descriptions.
The cost of semantic clarity

- Ontologies provides the highest level of semantic clarity however they are costly in terms of time and money.
- Is it reasonable to use ontologies?

Source: Mike Pergman
The cost of data integration

- Ontology-driven approaches provides a lower costs when dealing with high number of data sources.
- It ensure interoperability for open and big environments.

Source: Price Waterhouse Cooper
Semantic web and ontologies

• “The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in co-operation.” -Tim Berners-Lee et al, 2001

• The term ontology is originated from philosophy. It is a formal specification of a domain including concepts and their relationships, attributes and some logical restrictions.

• Example:
Semantic web building blocs

- **URI/IRI**: Almost everything is a URI.
- **RDFS/OWL**: Describe taxonomies and classification networks.
- **SPARQL**: Ontology querying: Select, Update, Construct, etc.)
Semantic IoT vs Semantic Web

• Semantic Web:
 – Relatively static content.
 – E.g. Semantic Wikipedia (dbpedia), annotated pages, etc.

• Seamantic IoT
 – Highly dynamic environment.
 – the meaning of data and the annotations can change frequently over time/space.
 – E.g. fleet tracking, patient monitoring, etc.

• The semantic IoT is more complex to manage than semantic web. It requires continuous monitoring, pre-processing, filtering, aggregation, annotation and integration.
Semantic IoT goals

• Effective data interoperability between devices and applications. Communication without any prior agreement.
• Generic interworking and automated management of resources.
• Semantic discovery and data querying.
• Semantic matching and binding of devices and applications.
• Semantic reasoning to infer new knowledge from a set of asserted facts.
• Better monitoring and understanding of the surrounding environment.
• Make smart decisions and dynamically adapt to environments changes.
Towards semantic IoT model

• We have good models and description frameworks. RDF, OWL, SPARQL
• Having good models and developing ontologies is not enough. Think of the applications and use-cases before starting to annotate the data.
• Semantic descriptions are intermediary solutions, not the end product.
• We should provide machine-interpretable but not machine-untreatable. Think of constrained devices in IoT.
• We should accept the fact that sometimes we do not need full semantic descriptions.
Semantic in oneM2M

- oneM2M offered minor semantic enhancement in release-1 and aims to provide full semantic support in the next releases.
Evolution of semantic in oneM2M

1. **Attributes**
 - **App-ID**
 - **appName**
 - **label**
 - **ontologyRef**

2. **Child Resources**
 - **<container>**
 - **<semanticDescriptor>**

Release-1:
- Resource Names (Text) can be defined by the client and so have some meaning. E.g. « Temperature-AE »
- A set of labels (keywords) can be defined for each resource. E.g. « temperature », « luminosity »
- Each resource can be linked to an ontology reference (description). E.g. « http://ontology.tno.nl/saref#Device »

Release-2:
A complete semantic description can be added to a resource (Ontology). E.g.<RDF>...</RDF>
oneM2M base ontology model
oneM2M base ontology instance

- **Device** #1234AB
 - **AreaNetwork** #WIFI-1
 - **Service** #TempServ
 - **Operation** #RetrieveTempOp
 - **Method** #Retrieve
 - **hasOutput** #Temp
 - **hasService**
 - **hasFunctionality**
 - **Measuring** #TempFunction
 - **Target** #/MN-CSE/AE-123/CNT-TEMP
 - **hasTarget**
 - **Value** #17
 - **Aspect** #Temperature
 - **isExposedBy**
 - **isPartOf**
 - **hasThingProperty**
 - **concerns**
 - **refersTo**
 - **describes**
Mapping to vertical ontologies

onem2m:Service isExposedBy onem2m:Device hasService

onem2m:Device

Onem2m:Functionality

represents

saref:Device

saref:Service

saref:TemperatureSensor

saref:Fonction

saref:Temperature

renders

Aspect

Verical
domain

Saref
 Ontology

oneM2M
base
ontology
Semantic oneM2M architecture
Generic data modeling for interworking

- Common abstract data model for non oneM2M devices.
Generic interworking using semantic

• Non oneM2M devices are described using the oneM2M base ontology + domain specific extensions.
• The Interworking Proxy Entity translates the ontology instance to resources on the CSE based on pre-defined instantiation rules.
oneM2M semantic challenges

- Access Rights management of semantic data
 - How to protect non open data in oneM2M?
 - Include Access Control Policy in the oneM2M base ontology?
- Semantic querying and discovery
 - SPARQL through « mca » interface?
- Semantic reasoning
 - Infer new knowledge for dynamic reconfiguration.
- Distributed triple store
 - How to connect remote triple store together. Via « mcc » oneM2M interface?
- Performance and support of constrained environments
Thank you for your Attention

benalaya@sensinov.com
www.sensinov.com