Misbehavior detection in C-ITS

Secure Cooperative Autonomous systems (SCA) project approach

Arnaud Kaiser (arnaud.kaiser@irt-systemx.fr)
ETSI ITS Workshop – 4-6 March 2019 – Sophia Antipolis
SCA project overview

Misbehavior detection
 • Overview
 • 3-steps process
 o Local detection
 o Reporting
 o Global detection

SCA project current status and next-steps
SCA project overview

- **SCA Start**: July 1, 2017
- **SCA End**: July 1, 2020

Timeline:
- **2017**
 - T1
 - T2
 - T3
 - T4
 - **SCA Start**

- **2018**
 - T1
 - T2
 - T3
 - T4
 - **Protection Profiles**

- **2019**
 - T1
 - T2
 - T3
 - T4
 - **Use Cases**

- **2020**
 - T1
 - T2
 - T3
 - T4
 - **Tests and Evaluation**

- **Today**

Use Cases, V2X stack, PKI, Authority, Demonstrator, Risk analysis, Architecture, Misbehavior Authority, Demonstrator, Tests and Evaluation.
SCA key challenges

Use cases cooperative autonomous vehicle
- Use cases C-ITS
- Risk analysis
- Performance criteria
- C-ITS privacy
- Evaluation

Crypto-agility & Business continuity
- Misbehaviour detection
- Crypto-agility
- Updates over-the-air

Compliance assessment & Penetration tests
- Test tools development
 - Security conformity
 - Penetration testing
- Dimensioning evaluation in a real case

Interoperability & Scalability
- End-to-end hybrid networks security
- Interoperability with C-ITS entities (IoT-like)
- PKI scalability and dynamic dimensioning
C-ITS privacy
- Pseudonym change policies / lifecycle
- Privacy threats: social & legal issues
- Security performance, privacy technology assessment

Misbehaviour detection
- Embedded side (OBU) and infrastructure side (MA)

PKI dynamic dimensioning
- On-demand dimensioning
- Impact of pseudonym change policies (pseudonym reload)

E2E security for hybrid networks
- Multiple connectivity in ITS-S: ITS-G5, LTE, Wi-Fi, etc.
- Multiple patterns to support application requirements
- Fulfill security requirements

Crypto-agility
- Design of crypto-agile security protocols
- Fulfill performance requirements especially for embedded systems
Current C-ITS system:
- RSUs and OBUs
- Communication based on:
 - ITS-G5
 - 5G
- Messages:
 - Beacon (CAM)
 - Warning (DENM)
- A Backend
 - PKI, MA
- PKI infrastructure:
 - Long- and short-term certificates

C-ITS System overview
Misbehavior detection

Objective: Reliable identification of bad actors

Two different levels:

- **Local MBD**: The process of identifying misbehavior at the device level
- **Global MBD**: The process of identifying misbehavior at a backend
Step 0: State-of-the-art analysis (1)

- **MBD largely studied in the scientific literature (2006 -> present)**
 - Some of the proposed solutions may not be appropriate

- **Classification & evaluation of state-of-the-art solutions**
 - Evaluation criteria:
 - Regulations/privacy compliance
 - Compatibility with what had been standardized
 - Requires specific HW equipments
 - Detected attacks:
 - Sybil
 - Bogus info

'Misbehavior detection’ trend according to google scholar
Summary of the feasibility challenges

<table>
<thead>
<tr>
<th>Detection Method</th>
<th>Current feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Path History</td>
<td></td>
</tr>
<tr>
<td>RSU linkability</td>
<td>+</td>
</tr>
<tr>
<td>Neighbor List</td>
<td>+</td>
</tr>
</tbody>
</table>

Beacon Messages

<table>
<thead>
<tr>
<th>Sybil & Bogus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RSU triangulation</td>
<td>✓</td>
</tr>
<tr>
<td>Signal Properties</td>
<td>✓</td>
</tr>
<tr>
<td>Data-Centric</td>
<td>✓</td>
</tr>
<tr>
<td>Info Exchange</td>
<td>✓</td>
</tr>
</tbody>
</table>

Warning Messages

<table>
<thead>
<tr>
<th>Bogus Info</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reputation-Based</td>
<td>×</td>
</tr>
<tr>
<td>Cooperative</td>
<td>×</td>
</tr>
<tr>
<td>Data-Centric</td>
<td>×</td>
</tr>
<tr>
<td>Pseudonym Linking</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓: Compatible, -: Requires Adjustment/Study, ×: Incompatible

- **Regulations/Privacy requirements**
 Most difficult to adopt even if they present big advantages.

- **Standard incompatibilities**
 Changes in standards could be committed if the advantages are significant.

- **Equipment**
 Subject to the tradeoff between equipment costs and provided benefits.

Publication: J. Kamel, A. Kaiser, I. B. Jemaa, P. Cincilla and P. Urien, “Feasibility study of misbehavior detection mechanisms in cooperative intelligent transport systems (c-its)”, IEEE VTC Spring, 2018
CAM-based local checks (Speed, Position, Range, …)

- **Plausibility checks**: Verification on the data accuracy based on a CAM
- **Consistency checks**: Verification of the data accuracy based on two consecutive CAMs

Step 1: Local detection (2)

<table>
<thead>
<tr>
<th>App</th>
<th>Scenario Detectors</th>
<th>Evaluation Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recall</td>
<td>Precision</td>
</tr>
<tr>
<td>Threshold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legacy</td>
<td>0.3976</td>
<td>0.9504</td>
</tr>
<tr>
<td>CaTch</td>
<td>0.4203</td>
<td>0.9457</td>
</tr>
<tr>
<td></td>
<td>△5.7%</td>
<td>△-0.5%</td>
</tr>
<tr>
<td>F₁ Score</td>
<td>BM</td>
<td>MCC</td>
</tr>
<tr>
<td>Legacy</td>
<td>0.5607</td>
<td>0.3834</td>
</tr>
<tr>
<td>CaTch</td>
<td>0.5819</td>
<td>0.4038</td>
</tr>
<tr>
<td></td>
<td>△3.8%</td>
<td>△5.3%</td>
</tr>
<tr>
<td>Machine Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legacy</td>
<td>0.3928</td>
<td>0.9498</td>
</tr>
<tr>
<td>CaTch</td>
<td>0.7961</td>
<td>0.9102</td>
</tr>
<tr>
<td></td>
<td>△102.7%</td>
<td>△-4.2%</td>
</tr>
<tr>
<td>F₁ Score</td>
<td>BM</td>
<td>MCC</td>
</tr>
<tr>
<td>Legacy</td>
<td>0.5556</td>
<td>0.3783</td>
</tr>
<tr>
<td>CaTch</td>
<td>0.8494</td>
<td>0.7424</td>
</tr>
<tr>
<td></td>
<td>△52.9%</td>
<td>△96.2%</td>
</tr>
</tbody>
</table>

(b) Sybil Attack Scenario
Security layer local checks, based on TS 103 096-2 and TS 103 097

Security profile
- **Version**
- **Signer**
 - Certificate
 - The certificate is an AT
 - The parent certificate is known
 - The parent certificate is an AA
 - Region
 - Certificate validity
 - Ascending order of header fields
 - Presence of aid ssp list
 - No duplicate AID
 - AID in certificate are also in the parent certificate
 - Certificate chain
- **Digest**
 - The corresponding certificate is known
- **Verification depending of the type**
 - **CAM security profile**
 - signer_info, generation_time and its_aid are not duplicated
 - Ascending order of header fields
 - No Forbidden header fields
 - The payload is present and its length is not null
 - The trailer is present and contains only the signature
- **DENM security profile**
 - signer_info, generation_time, generation_location and its_aid are not duplicated
 - Ascending order of header fields
 - No Forbidden header fields
 - The signer is a certificate
 - Location
 - The payload is present and its length is not null
 - The trailer is present and contains only the signature
- **Generic**
 - idem ci-dessus

Step 1: Local detection (3)

- **Structure (deserialization)**
- **Time stamp (generation_time)**
- **Security profile**
 - **Digest**
 - The corresponding certificate is known
 - **Verification depending of the type**
 - **CAM security profile**
 - signer_info, generation_time and its_aid are not duplicated
 - Ascending order of header fields
 - No Forbidden header fields
 - The payload is present and its length is not null
 - The trailer is present and contains only the signature
 - **DENM security profile**
 - signer_info, generation_time, generation_location and its_aid are not duplicated
 - Ascending order of header fields
 - No Forbidden header fields
 - The signer is a certificate
 - Location
 - The payload is present and its length is not null
 - The trailer is present and contains only the signature
 - **Generic**
 - idem ci-dessus

- **Signature**
 - Structure of the signature
Step 2: Reporting (1)

Our initial requirements:

1. Specify the sender and the reported identities
2. Specify the type of misbehavior
3. Specify the evidence
4. Reduce overhead
The proposed report protocol includes multiple key features:

1. Reducing overhead by linking reports
2. Authenticating the sender and reported ITS-S with a pseudonym certificate
3. Specifying the type of the detection
4. Specifying the evidence required by misbehavior type

Misbehavior report key information:
- Security header,
- Report ID,
- Related Report ID,
- Generation Time,
- Report Metadata,
- Reporter Information,
- Reported Message,
- Detection Type,
- Evidence

Level 1:
- One message

Level 2:
- N inconsistent messages

Level 3:
- Map of the Area
- Neighbors Messages

Level 4:
- One reported Message
- Sender sensor information (using the same objects as CPM)
Step 2: Reporting (4)

ASN.1 format

```
BEGIN
IMPORTS
TimestampTs, StationType, ReferencePosition, Heading, Speed, DriveDirection, VehicleLength, VehicleWidth, Curvature, LongitudinalAcceleration, CurvatureCalculationMode, YawRate, PerceivedObjectContainer, FieldOfViewContainer FROM ITS-Container { itu-t (0) identified-organization (4) etsi (9) itsDomain (5) wgl (1) ts (102894) cdd (2) version (1) }

EtsiTs10397Data, EtsiTs10397Certificate FROM EtsiTs10397Module { itu-t (0) identified-organization (4) etsi (0) itsDomain (5) wgs (5) ts (10397) v1 (0) }

-- The root data frame for report messages
Report ::= SEQUENCE {
  reportMetadataContainer ReportMetadataContainer, reportContainer ReportContainer
}

ReportMetadataContainer ::= SEQUENCE {
  reportID IASString, generationTime TimestampTs, relatedReportContainer RelatedReportContainer OPTIONAL
}

RelatedReportContainer ::= SEQUENCE {
  relatedReportID IASString, omittedReportsNumber OmittedReportsNumber
}

ReportContainer ::= SEQUENCE {
  reportedMessageContainer ReportedMessageContainer, detectionTypeContainer DetectionTypeContainer, evidenceContainer EvidenceContainer OPTIONAL
}

ReportedMessageContainer ::= CHOICE { certificateIncludedContainer CertificateIncludedContainer, certificateAddedContainer CertificateAddedContainer
```
Step 3: Global detection (1)

Some examples of use cases

Reporting ITS-S

Misbehaving ITS-S

Falsified CAM
MB Report

Falsified AT requests
MB Report

Reporting PKI
The global misbehavior detection is performed by the MA and consists of the following steps:

- **Correlation**: Cross-reporting and validation of reports structure
- **Decision**: Misbehavior accuracy and classification
- **Reaction**: Response to the misbehaving ITS station (Revocation, Suspension, Notification, ...)

Misbehavior authority process

Incoming MB Reports → Correlation → Decision → Reaction
Step 3: Global detection (3)

- **Correlation / Decision**
 - Artificial Intelligence (AI) techniques.
 - Machine Learning algorithms for misbehavior classification.

- **Reaction:**
 - **Long-term reaction:** Revocation of misbehaving ITS stations by notifying the PKI (EA) to reject all their new authorization requests. This is also called *passive revocation*.
 - **Short-term reaction:** Revocation of pseudonyms (ATs) at the level of ITS stations by providing a CRL with a list of certificates to be ignored during V2X communications. This is also called *active revocation*.
Framework For Misbehavior Detection (F²MD)

- F²MD is a VEINS Module. (Omnet++, Sumo)
- This project is open source and available at:
 - https://github.com/josephkamel/F2MD
 - https://www.irt-systemx.fr/f2md/
 - https://veins.car2x.org/documentation/modules/#f2md
Misbehavior detection & PKI V2 evaluation

<table>
<thead>
<tr>
<th>Current status</th>
<th>PKI V2</th>
<th>Misbehavior Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>PoC implemented (on-table)</td>
<td>First tests by simulation</td>
<td></td>
</tr>
<tr>
<td>PKI V2 deployed</td>
<td>Contributions to TR 103 460 (State of art, MBR)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TODO</th>
<th>PKI V2</th>
<th>Misbehavior Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation at ETSI plugtests 2019</td>
<td>PoC implementation (on-table)</td>
<td></td>
</tr>
<tr>
<td>Evaluation in real experimentations</td>
<td>Evaluation in real experimentations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real experim.</th>
<th>PKI V2</th>
<th>Misbehavior Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance evaluation</td>
<td>Performance evaluation</td>
<td></td>
</tr>
<tr>
<td>Logs generation for privacy evaluation (AT change policies)</td>
<td>Logs generation to improve ML algorithms (training)</td>
<td></td>
</tr>
</tbody>
</table>

Timeline

- **2017**: SCA Start, July 1, 2017
- **2018**: Use Cases, Protection Profiles
- **2019**: V2X stack, PKI v2, Risk analysis, Misbehavior Authority, Demonstrator
- **2020**: Tests and Evaluation, SCA End, July 1, 2020