

The Standards People

The Future of the telecom companies business with AI: Challenges & Opportunities

Session 2 "AI in the Telecommunications Industry", Panel

Presented by: Henning Sanneck Nokia Bell Labs Research Munich, Germany For: ETSI Summit on Artificial Intelligence

04.04.2019

1. Use cases	Why: no a priori known rules → in-situ learned knowledge What: joint resource optimization radio PNF/VNF, sliced network operation, anomaly detection / diagnosis in <i>complex, dynamic</i> networks (5G)
2. Data & context availability	amount / quality, (un)structure, privacy, operator / (multi-)vendor cooperation
3. AI/ML technology	many different ML algorithm types for Closed-Loop Automation
4. Spatial distribution	distributed vs. centralized learning (delay requirements) → coordination, transfer of data / knowledge
5. Legacy NM (silos)	 architecture: legacy interfaces, policy implementation with rules platform: diversity of SW platforms and silo'ed SW components
6. Human / machine interface	 domain (telco expert) & AI/ML (data scientist) knowledge man / machine worksplit → traceability, controllability & education → trust

1. New use cases (e.g. IIOT)	 deployment scenarios: application & network data fusion → mutual influence application ← → network service scenarios: 1 application using eMBB & cMTC
2. Data & context availability	network functions as high quality probes (multi-vendor)
3. AI/ML technology	telco-adaptated ML algorithms → multi-vendor target setting & pipelining
4. Spatial distribution	(AI/ML-specific) processing capabilities (ultra far edge, (far) edge, central cloud) → multi-vendor abstractions (APIs)
5. "AI/ML-friendly" NM	 AI/ML-adapted interfaces (e.g., qualitative assessment / network states, training mode, model / knowledge sharing, intent) unified Analytics / ML "engine", ML libraries
6. Human / machine interface	Symbiosis <i>human</i> (domain knowledge, intuition; knowledge transfer) ← → <i>machine</i> (parallelized processing; trending): augmented intelligence, transfer learning, intent

5G Slice Analytics & Diagnostics @ 5G-MON/RCH Hamburg seaport testbed

- ♥ Problem statement

 - For resource allocation optimization and SLA assurance, slicing-aware prediction methods are required
 - Hamburg seaport testbed: evaluate concepts in a controlled environment (ground truth available; closed-loop automation possible)
- - Slice-aware Network Element (NE) state model: quantization of NE KPIs into a selected number of states
 - States → Long-Short Term Memory (LSTM) Recurrent Neural Network (RNN) → State Prediction

State A: eMBB (UL, DL) + IoT (UL, DL)
State B: eMBB (DL) + IoT (DL)
State C: eMBB
State D: eMBB + IoT (UL)
State E: URLLC (UL, DL)
State F: URLLC (DL)

NOKIA Bell Labs

NE state prediction and validation

