Debugging Machine Learning Models

Emmanuel Charleson Dapaah
Prof. Jens Grabowski

14/09/2022
Outline

- Motivation
- Proposed Framework
- Future Works
- Conclusion
Motivation

Testing of Trustworthy Systems

Motivation

Debugging hyperparameter misconfigurations of an ML model using causal reasoning

https://towardsdatascience.com/the-ultimate-guide-to-debugging-your-machine-learning-models-103dc0f9e421
Motivating Example

Misconfiguration

```python
model = RandomForestClassifier(bootstrap=True,
max_depth=2,
max_features='auto',
min_samples_leaf=1,
min_samples_split=2,
n_estimators=30,
criterion='gini',
random_state=42)
```

Accuracy: 0.60

Hyperparameter Optimization

```python
model = RandomForestClassifier(bootstrap=False,
max_depth=10,
max_features='auto',
min_samples_leaf=1,
min_samples_split=2,
n_estimators=400,
criterion='gini',
random_state=42)
```

Accuracy: 0.88

Can be costly/time-consuming

Debugging

- Root cause
- Reduce the search space
- Interpretability/Explainability

User Hyperparameter Grid

New User Hyperparameter Grid

- Reduce the search space
- Interpretability/Explainability
Proposed Framework (Overview)

Input → Data Generation Process → Root Cause Analysis → Optimization
Proposed Framework (Data Generation Process)

Input
- Dataset
- Learning Algorithm
- User Hyperparameter Grid
- Number of Iterations

Generate Observational data

Causality & ML Knowledge

Generate Causal Graph

<table>
<thead>
<tr>
<th>bootstrap</th>
<th>criterion</th>
<th>max_depth</th>
<th>max_features</th>
<th>min_samples_leaf</th>
<th>min_samples_split</th>
<th>n_estimators</th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>entropy</td>
<td>20</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>470</td>
<td>84</td>
</tr>
<tr>
<td>TRUE</td>
<td>entropy</td>
<td>40</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>150</td>
<td>62</td>
</tr>
<tr>
<td>FALSE</td>
<td>gini</td>
<td>50</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>180</td>
<td>85</td>
</tr>
<tr>
<td>TRUE</td>
<td>entropy</td>
<td>30</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>250</td>
<td>73</td>
</tr>
</tbody>
</table>
Proposed Framework

- Input
 - Observational data
 - Causal graph

Data Generation Process → Root Cause Analysis → Optimization

Testing of Trustworthy Systems #UCAAT
Proposed Framework (Root Cause Analysis)

Average Causal Effect (ACE)

\[dE(Y|do(X=u))/du \]

1. **Compute ACE**
 - \(h_1 \)
 - \(h_2 \)
 - \(h_3 \)
 - \(h_4 \)
 - \(h_5 \)
 - \(h_6 \)
 - \(-0.5\)
 - \(0.2\)
 - \(0.8\)
 - \(-0.04\)
 - \(0.1\)

2. **ACE > threshold**
 - \(h_1 \)
 - \(h_2 \)
 - \(h_3 \)
 - \(h_4 \)
 - \(h_5 \)
 - \(h_6 \)
 - \(-0.5\)
 - \(0.8\)

TAKE-AWAY
- Identify the root causes
- Infer the tuning direction

Observational Data → Causal Graph → Average Causal Effect (ACE) → Compute ACE → ACE > threshold → Root Cause
Proposed Framework

Input

Data Generation Process

Root Cause Analysis

Optimization

- List of Root Causes

Testing of Trustworthy Systems

#UCAAT
Proposed Framework (Optimization)

List of Root Causes

Optimization

STEPS
- Reduce search space to the identified Root Causes
- Explore a new range of values for user hyperparameter grid
- Perform N iterations and return the best hyperparameter values
Future Works

- Investigate efficient ways of selecting a new range of hyperparameter values
- Evaluate the performance of our framework against existing approaches
- Extend our framework to include data debugging using causal reasoning
Conclusion

- We argued that debugging should be performed before optimization.

- Our framework can help in:
 - Identifying the root cause of a hyperparameter misconfiguration.
 - Reducing the cost involved in hyperparameter optimization and improve on its result.
 - Making the performance of an ML model interpretable/explainable.
Any questions?

(dapaah@cs-goettingen.de)