

mioty® - the future of sustainable wireless IOT communication

Josef Bernhard Fraunhofer Institute for Integrated Circuits IIS

12/10/2022

mioty® - the future of sustainable wireless IOT communication Outline

- Low Power Wide Area Networks Overview
- mioty[®] Technical Overview
- Smart metering as most demanding application example
- Summary & Outlook

Introduction LPWAN Overview

Low Power Wide Area Networks (LPWAN) - a new class of radio communications for the Internet of Things (IoT)

LPWAN are characterized by

- Star topology network with long communication range and distances of several kilometers
 - Alternatives are 'Walk by' or 'Drive by' or Meshed Networks
- Operation mainly in unlicensed spectrum for cost saving
 - but also solutions from cellular network operators
- Energy autarkic sensor nodes
 - with small amount of data
 - several years of autarkic operation from a battery

Challenges

- Keep the energy consumption low even at long communication range
- Handle the increased number of interfering signals and the massive number of network devices in a large coverage area

Standardized

LPWAN Solutions Categorization of technologies

Low Power Wide Area Networks

Growing number of connections

Up to 3 Bn LPWAN Connections in 2026

Worldwide LPWAN connections by verticals (in millions)

Implications for LPWAN

Situation in 2026

- Billions of devices will send data in parallel
- High density of devices

Impact

- Frequency spectrum will become crowded
 - Licensed spectrum shared between different services \rightarrow service priorities
 - Unlicensed spectrum shared between technologies \rightarrow interference problems will become worse
- Loss of information and data

Market Demand

Reliable and robust communication solution that can handle the future growth of IOT devices

mioty®

A new approach for wireless data transmission

- The whole data packet is affected by interferer
- Lack of scalability due to Interference issues and coexistence problems with other radio networks
- Packet Error Rates (PER) over 10% are common
- Battery life is severely limited due to inefficient transmission methods

Limited suitability for massive IoT-deployments

- Only sub-packets affected by interferer
- Forward error correction affords up to 50% loss
- Telegram Splitting Multiple Access (TSMA) scheme with random subpacket distribution for high network capacity
- Transmission free periods allow battery recovery

Achievement of unrivaled scale, density & reliability

The mioty[®] technology

What makes it sustainable?

Ultra Low Power

- Efficient modulation & coding for short transmission time
- Lightweight radio protocol
- Only 1,2 mJ per radio burst, 35 mJ for 10 Byte data (3x lower than other LPWAN)
- Transmission free period for battery recovery

Superior Coexistence

- Efficient modulation & coding for low spectrum occupancy
- Short radio bursts of 15 ms with transmission free periods for polite spectrum access
- Robustness against any type of interferer for improved coexistence with growing number of inband radio services

Network Capacity

- TSMA random channel access with very high throughput even in interfered and crowded bands
- Increased network capacity of 3,5 million connections per day in a 200 kHz Band

Standardized Ecosystem

- TS-UNB invented by Fraunhofer IIS and specified by a group of radio experts within ETSI LTN
- mioty alliance, a group of industrial companies driving the technology for different markets

Hardware Agnostic

- Use of standard MSK modulation supported by most commercial Sub-GHz chipset
- Software defined solution with small footprint on processing power and memory size
- Currently implementations for chipsets of four different semiconductors vendors available, more will come

The mioty[®] technology

ETSI Low Throughput Networks as baseline

Low Throughput Networks (LTN) is the LPWAN standardization framework within ETSI

- First standardization activity on low power wide area networks starting in 2013
- Future oriented machine to machine communication where data volume is limited and low latency is not a strong requirement

The LTN specification consists of three documents

- 1. TR 103 249: LTN use cases and system characteristics published 2017-10
- 2. TS 103 358: LTN architecture published 2018-06
- 3. TS 103 357: LTN protocols for radio interface published 2018-06 Part "TS-UNB radio protocol" of this document is the baseline for mioty[®]

ETSI IPR policy ensures technology access

 Patent licenses for TS-UNB are available from patent pool managed by SISVEL INTERNATIONAL S.A. (https://www.sisvel.com/licensingprograms/wireless-communications/mioty/introduction)

ETSI TS 103 357 V1.1.1 (2018-06)

Short Range Devices; Low Throughput Networks (LTN); Protocols for radio interface A

The mioty alliance e.V.

Overview

Association of industrial companies and research organizations to promote mioty® as the global standard for massive IoT

Goals:

- Create an interoperable ecosystem along the entire IoT value chain based on ETSI Low Throughput Networks specification
- Product certification for usage of mioty[®] logo
- Enhancing the technology towards new verticals and applications
 Members:
- Research and technology leaders driving an open, interoperable and standardized ecosystem
- Leveraging leading edge technologies e. g. in the field of AI, Energy Harvesting or Localization

https://mioty-alliance.com/

Full Members			
	Fraunhofer	TEXAS INSTRUMENTS	STACKFORCE
WIKA	RAGSOL		
WEPTECH	्र ¹ ् lorio t		
Associated M	embers		
AST-X	Friendcom	Radiocrafts Intention Windows Solutions	@codecentric
com·t·ac Let things talk	LANSEN	SILICON LABS	() ?
round Solutions	Ancud	AGVOLUTION	FAU
tecnun Universidad de Navarra		GARBSEN	www.iot-shop.de
SAF	life.augmented	PAESSLER THE MONITORING EXPERTS	ツ ResIOT
safectory	LZ	RELISTE Wir liefern Lösungen	ex Xcellent
BEHRTECH	EasyMeter		miromico

Smart Metering / Smart City

The most demanding application

Exemplary Projects in Europe

Requirements

- High number of meter devices in dense urban area
- Robust radio transmission for high quality of service
- Long battery lifetime of 10+ years
- Integration of devices from different vendors
 - standardized solution
 - support of different hardware platforms
- Long range and scalability for optimized network infrastructure

Perfect fit for mioty®

Long Range and Scalability

With a high density of devices mioty achieves a significantly higher range compared to existing LPWAN

OMS

Existing LPWAN

Scalability (Network Capacity)

between 5,000 to 150,000 messages per day per base station

Scalability (Network Capacity)

mioty

3.5 Mio. messages per day per base station

Cost Efficency

CAPEX and OPEX can be drastically reduced through lower installation and maintenance costs

Existing LPWAN

mioty

50% less base stations needed
Beduced total cast of expension

Reduced total cost of ownership

Source: Diehl Metering, Location: Rheinland Pfalz; Population: 110 000, Area 11,7 km²

mioty® Summary & Outlook

With the innovative Telegram splitting approach mioty[®] builds a real sustainable solution with

- Efficient use of spectrum
- Superior coexistence with other services
- High network capacity
- Support of many available chipset platforms
- Ultra low power operation enabling energy harvesting solution

It also allows backward compatible enhancements to expand use cases by new features

- Latency constraint downlink communication (mioty Class B/C) for e.g. building automation
- Multicast / Broadcast communication for e.g. alarm
- Localization for e.g. asset tracking
- mioty is ready for satellite IOT

Smart Screw Q-Bo: Energy-self-sufficient sensor for monitoring of assets such as wind turbines

Fraunhofer Institute for Integrated Circuits IIS

Contact

Josef Bernhard Self Powered Radio Systems Phone +49 911 58061-3300 Josef.bernhard@iis.fraunhofer.de

THANK YOU