

Simulation framework for

oneM2M standard*

Marie-Agnès Peraldi-Frati Associate professor – University Côte d'Azur

* Joint work with **Gregory Jeanin** Computer science Student at UCA

Agenda

- \circ Context and objectives of the work
 - **# world # preocupations**
- Filling the gap between standard & implementation
 - OneM2M initiative
 - Rapid prototyping of oneM2M applications
- OneM2M Plateform simulation
 - Definition & code generation
 - OneM2M Domain Specific Language
 - OneM2M Simulation in OMNeT++
- Summary & Next steps

In the world of standards oneM2M's area of expertise

• Standardized model and specifications :

- IoT system infrastructure
- **o** Distributed IoT nodes
- Interoperability capabilities between nodes
- Model of Data (data formats)

• Collection of multi-domain expertise and requirements

- Industrial uses cases
- Elicitation of requirements

• Supports for development of oneM2M standardized objects

- Device
- Plateform
- Applications
- Supports for integration & testing of full oneM2M solution

In the world of IoT system engineering IoT system implementation

- o Effective IoT system infrastructure
 - Decentralized nodes
 - Gateways (edge computing, semi-local constraints)
 - o Server on the cloud
 - Applications : apps, servers, objects
- o loT behaviours
 - Sensing and actioning on real-time information / physical environment
 - Embedded sensing, computing,
 - Decentralized and static/mobile services
 - Data integrations over different environments
- Heterogeneous constraints on deployment
 - functionnal : functionnal description, Privacy and Security Challenge
 - Non-functionnal : power consumption, time , memory, processing resources

Filling the gap between standards and SE **IOT Systems challenges**

- Needs for a high-level modeling of devices/systems in the design cycle
 - Specification and modeling of OneM2M Logical architecture
 - o Efficient deployment wrt performances (KPIs),
 - Simulation & Verification at model level
 - From model to Implementation
- oneM2M standard evaluation and evolutions
 - Specification -> coverage
 - Implementation of the standard

How to fill the gap : OneM2M initiative

Testing Task Force T019 on Performance Evaluation and Analysis for oneM2M Planning and Deployment

- Develop POC allowing to simulate / emulate a oneM2M platform within a targeted ecosystem
- Provide an adequate quality of service metrics to evaluate standard and implementation
- Introduction of methodological guidelines to drive the planning of an efficient deployment of oneM2M-based IoT solutions
- Testing Task Force T019
 - Starting: September 2022
 - Duration 3 years

How to fill the gap : our approach*

Model Driven Engineering approach for Rapid prototyping of IoT systems and applications

• **Development of a DSL (Domain Specific Language)** for oneM2M to define:

- High level modeling of IoT application -> the logical infrastructure of the system
- Compliance with oneM2M Standard -> The oneM2M nodes & services (CRUD)
- Performance Evaluation -> object and communications behaviors
- Scalable modeling -> programmatic definition of the infrastructure
- Evaluation of a oneM2M system By simulation
 - Automatic Generation of executable models (Omnet++ simulator)
 - Application behavior (periodic sporadic calls to services)
 - Communication latencies
 - Effective Performances of oneM2M platform implementations

oneM2M executable specifications

* INRIA Kairos team as TTF019 partner

OneM2M Domain Specific Language definition & code generation

OneM2M Domain Specific Language

OneM2M Domain Specific Language

Francialit

OneM2M Domain Specific Language System specification

oneM2M concrete syntax definition

```
Xte 🔀 t
Xtend
```

```
Package exemple {
    Network Petit {
        standard Mobius
        ApplicationEntity ael {
            Sensor [2] {
                unit "%"
                value 5
                production Sporadic {
                     period lus..10ms
                 }
            }
        }
        CommonServiceEntity IN cin {
            location "INRIA"
        }
        Connection {
            protocol curl
            from ae ael
            to cse cin
        }
    }
```


3

OneM2M Simulation in OMNeT++

Automatic generation

Generation of Ned and Ini and files for OMNeT++

Sensor.ned

12

}

S	et Up Inifile Configuratio	on (
Set up one of	the configurations defined ir	omnetpp.in
Config name:	Moyen	~
Run number:	0 (\$repetition=0)	V
	- Court	014

Simulation in OMNeT++ (2)

• Execution traces and scenario validation

X

Summary

- Modeling and simulation of CPS & IoT systems
- Preliminary results on oneM2M systems evaluation
 - Specification of oneM2M infrastructure & application
 - Deployment platform characteristics
 - Hypothetic CRUD response time of platforms
 - Targets : ACME, om2m, Mobius, ...
 - Simulation & Validation
 - Automatic generation
 - OMNeT ++ discret event simulation

Next Steps

- Follow-up of this preliminary work
 - Evaluation of extended services from CRUD
 - discovery services
 - Access Control Policy
 - Notification
 - Definition of KPI (key performance Indicators)

Thank you for your attention Questions ?

