

The ISG PDL Approach to Auditability and Automated Enforcement

Diego López, Telefónica (ISG PDL Chair)

Some Rationale

- ICT evolution calls for automated management of Service Level Agreements (SLAs)
 - XaaS, public-private integration, multi-provider environments...
 - Enforcement of supply chain policies
 - The intent aspiration
- All parties interested
 - Providers, in improving service and infrastructure usage (and billing!)
 - Customers, in optimizing service usage and planning (and billing!)
- SLAs must be transparent to all stakeholders
 - Trustworthiness of networked services
 - Base for enhanced service consumption patterns, based on reputation and trust assessment
- A method for standardized SLA transparent recording and auditing
 - The ISG PDL proposal based on smart contracts
 - And some steps beyond

Zero-touch security and trust for ubiquitous computing and connectivity in 5G networks

- 1 Zero Touch Resource Discovery relying on DLTs [for trust&security]
- 2 Intelligent 3rd party resource selection, request and access/use
- 3 Trust establishment among multiple parties

The ISG PDL Goals and Scope

- Provide the foundations for the operation of (permissioned) distributed ledgers
 - Create an open ecosystem of industrial solutions
 - Deployable by different sectors
- Foster the application of the technology
 - Start from already available experiences
 - Coordinate with existing initiatives
- Define a set of well-known open operational mechanisms
 - Support their demonstration
 - Facilitate interoperability assessment
- Focus on permissioned ledgers
 - Several advantages (legal, fairness, resource consumption...)
 for actual industrial applications
 - But not exclusively

Introducing Smart Contracts

- Software code fragments installed on Distributed Ledgers (DLs)
 - Different storage modes
 - A defined lifecycle
- Immutable
 - Once recorded cannot be changed or amended
- Auto-executable
 - Triggered by software condition(s)
- Transparent
 - All the participants of the ledger keep the same copy
- Activates

 continues executing until the contract expiration time

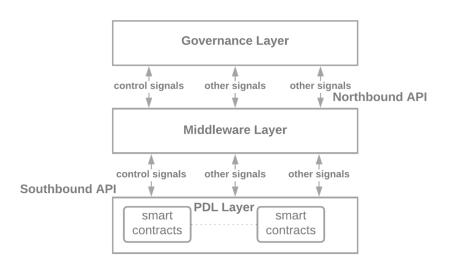
 Smart Contract

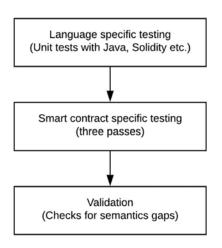
 Logic

 Terminate

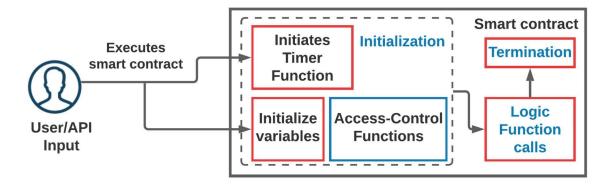
 Contract expiration time

 elapsed

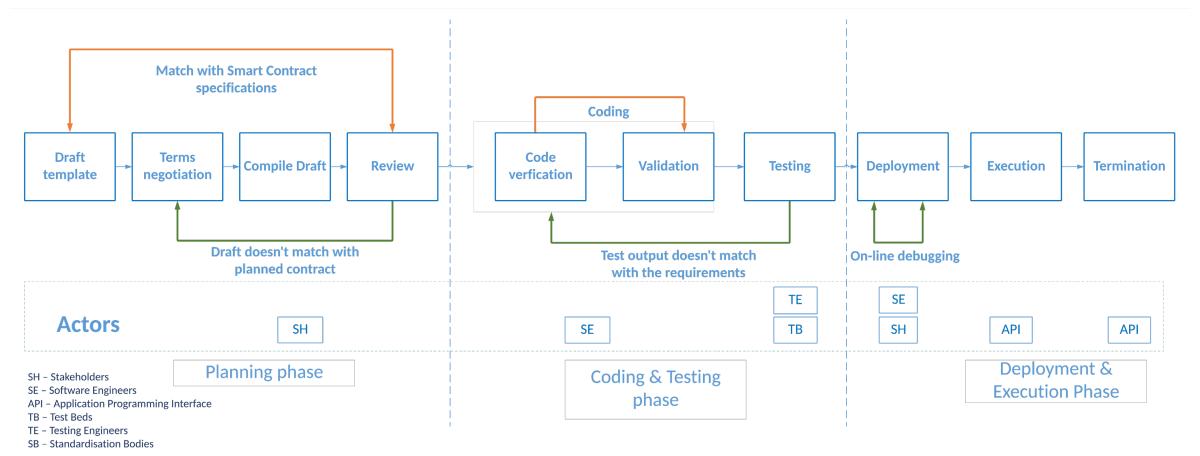

 Destruction


- PDL 004 provides a base architecture
- PDL 011 defines requirements on architecture and security

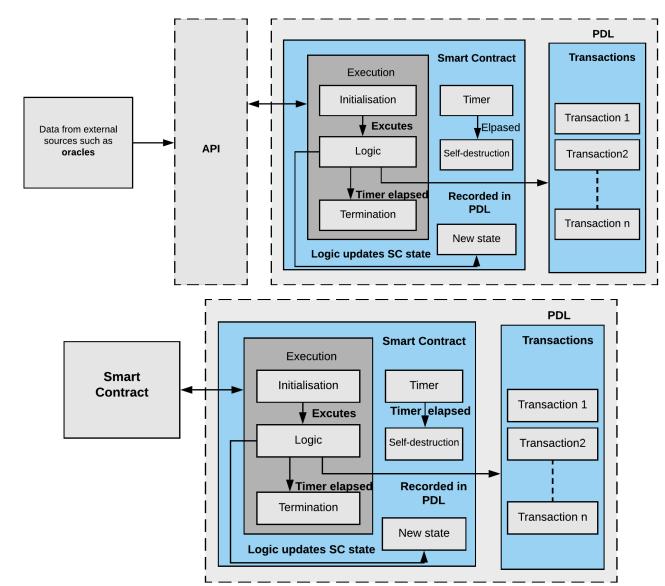
- Smart contracts are immutable Cannot be changed or amended (as the DL itself)
 - Old and dormant contracts may extend the threat surface
 - Unattended back doors open: Calls by unauthorized contracts/actors
- Smart contracts are self-executable Pre-programmed conditions trigger them
 - Erroneous code can trigger unwanted function
- Smart contracts are transparent Visible to all parties
 - A visibility domain has to be specified
 - More natural in permissioned approaches
- Define specific governance layering and verification mechanisms



Specific Requirements


As described and analyzed in PDL 011

- Watertight Security
 - Only authorized users can access smart contracts (and specific functions only)
- Terminatable
 - Ensure that smart contracts are terminated after certain time to avoid eternal contracts.
- Auditable
 - The stakeholders should always be able to audit smart contracts' code and their libraries
 - An argument for open-source
- Upgradable
 - Follow precise versioning and safely deactivate older contracts
- Reusability
 - Cope with scalability


An E2E Development Lifecycle (PDL 004)

- Three main phases: planning, coding and testing, and deployment and execution
- Actors in each phase
- Explicit termination

Two Execution Models (PDL 004 & PDL 011)

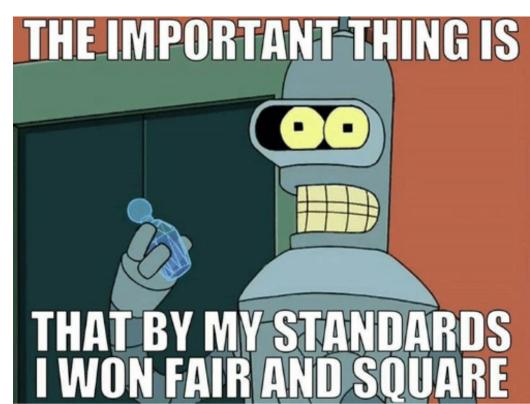
Data input exclusively by external oracles

• Smart contract composition

Related and Ongoing Work

In ISG PDL (and beyond)

- PDL 006 Inter-ledger interoperability
 - Code access models and contract interaction
- PDL 010 Operations in offline mode and PDL 020 – Wireless consensus
 - Common situations in many industrial application scenarios
- PDL 014 Non-repudiation techniques
 - Enabling full and transparent auditability
- PDL 016 Smart contracts and oracles
 - Issues pertaining data flows
- PDL 018 Redactable ledgers
 - Dealing with mutability
- PDL 019 Trust management
 - At the base of contract lifecycle
- Proposal for an EN on smart contracts
 - Joint work between ETSI (TC ESI) and CEN/CENELEC
 - Using PDL 011 as foundation



To Conclude

ISG PDL is actively working in standardizing smart contracts to address

- Inherent immutability, auto-execution and transparency
 - Well-known and open methods for verification
 - Well-established governance practices
 - Well-defined data conduits and triggers
 - Considering redactable approaches
- Their application for transparent and autonomous contracting in next-generation ICT services
- Their use to provide traceable audit mechanisms
- The assessment of the impact of ledger characteristics: consensus protocol, APIs...
- The necessary alignment of ancillary elements

