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Motivation
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▪ Growing need for evaluating the speech output of smart 

speakers

▪ Current standardization specifications (ETSI TS 103 504) do not 

yet comprise assessments of quality, intelligibility, or listening 

effort of the (synthetic) speech output

▪ Recent studies have presented promising approaches of speech 

quality and naturalness of synthesized voices using single-ended 

(„non-intrusive“) models (NISQA, NISQA-TTS; Mittag & Möller)

▪ Our goal: Develop an instrumental, single-ended tool to measure listening effort for smart speaker speech 

output under realistic acoustic conditions
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Why listening effort?
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▪ Listening effort can still be affected by changes in noise levels at realistic SNRs, where speech 

intelligibility is already close to 100%

▪ Such conditions are often more representative of everyday-life listening conditions than very low SNRs 

(Smeds et al., 2015)

Klink et al. (2012)



Approach
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▪ Generate an audio database of simulated smart speaker 

voice output under realistic acoustic conditions

▪ Conduct listening tests to obtain ground truth date of 

subjectively perceived listening effort

▪ Validate and develop instrumental measures 



Listening effort prediction from acoustic parameters
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▪ Employs a DNN-based automatic speech recognition engine, but does not evaluate the transcript of the voice 

recording, but instead an interim quantity, the so-called phoneme-posterior-probability (“posteriorgrams”)

LEAP model (Huber et al., 2018a,b; Rennies et al., 2022)



Listening effort prediction from acoustic parameters
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▪ Quantifies the degree of posteriorgram “smearing” by noise and/or other distortions by computing the „Mean 

Temporal Distance” („M-Measure”; Hermansky et al., 2013):

LEAP model (Huber et al., 2018a,b; Rennies et al., 2022)
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Listening effort prediction from acoustic parameters
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▪ Final predictor from obtained by averaging across 

multiple time-shifts 

▪ Can be mapped onto scales as used in subjective 

listening tests

LEAP model (Huber et al., 2018a,b; Rennies et al., 2022)
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Listening effort prediction from acoustic parameters
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▪ High agreement between ഥ𝑀 and subjectively 

assessed listening effort of 450 TV audio clips 

(≈10s) with various backgrounds and SNRs

Earlier validations using natural speech
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Dataset I

Dataset II

▪ Also high agreement between ഥ𝑀 and subjectively 

assessed listening effort for noisy speech 

processed by non-linear speech enhancement

Huber et al. (2020) Huber et al. (2018)



Listening effort prediction from acoustic parameters

16.11.2022 © Fraunhofer IDMTSeite 9

▪ High agreement between ഥ𝑀 and subjectively 

assessed listening effort of 450 TV audio clips 

(≈10s) with various backgrounds and SNRs

Earlier validations using natural speech

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

M

L
E

-M
O

S

r = 0.92

rs = 0.92

 

 

Dataset I

Dataset II

▪ Also high agreement between ഥ𝑀 and subjectively 

assessed listening effort for noisy speech 

processed by non-linear speech enhancement

Huber et al. (2020) Huber et al. (2018)

How does this model cope with synthetic speech in realistic listening conditions?



Subjective listening effort assessment
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▪ Natural (standardized) speech stimuli from ETSI TS 103 281 and ITU-T 

Rec. P.501

▪ Synthetic speech stimuli

▪ Exp 1: high-quality TTS systems, same sentences

▪ Exp 2: TTS systems of different quality

▪ Standardized and combined reproduction of …

▪ Noise → ETSI TS 103 224

▪ Reverberation → ETSI TS 103 557

▪ Artificial head recordings with different simulated distances by project 

partner HEAD acoustics: 

1m (real), 3m (DRR ~ -10 dB), 10m (DRR ~ -20 dB), ∞ (only reverb)

▪ Separate recordings of direct sound, reverb, and noise for later mixing

Methods
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▪ Assessment of subjectively perceived listening effort on 14-

point categorical scale (Krüger et al., 2017)

▪ 18 normal-hearing listeners (31,8±8 years)

▪ Headphone presentation

Methode

no effort

very little effort

little effort

moderate effort

considerable effort

very high effort

extreme effort

Subjective listening effort assessment
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▪ Subjects made use of entire rating scale

▪ No apparent difference between natural (ITU-T P.501) 

and synthetic (TTS) talkers

▪ Different noise types and reverb produce different 

(mean) listening effort ratings at the same SNR

Exp 1: Results
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Comparison of subjective and predicted listening effort
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▪ Mapping of M-Measure → listening effort scale taken 

from earlier studies, not adapted to current data

▪ Very high agreement between model predictions and 

mean subjective ratings

▪ So far, LEAP does not comprise an explicit binaural 

processing stage, binaural effects simplified by „better 

ear listening“ Li
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▪ Larger variety in TTS quality, from very unnatural to very 

natural

▪ 20 normal-hearing listeners (21-30 years)

▪ Different sentences uttered by 20 different artificial talkers: 

Anna, Birgit_low, Conrad, Dieter_high, Dieter_normal, Google_basic_A_pitch, 

Google_basic_B_pitch, Google_basic_E_norm, Google_Basic_E_speed_mod, 

Google_Basic_E_speed_pitch_mod, Google_WaveNet_E_normal, 

Google_WaveNet_F_speed_pitch_mod, Hans, Hedda, iSpeech_female, iSpeech_male, 

Petra, Siri_female, Siri_male, Vicki

▪ Different noise types, different SNRs

▪ Part A: sink, office

▪ Part B: train, sink, train, cafeteria, metal grinder, different 

lateral positions relative to target speech

Exp 2: Methods

Subjective listening effort assessment
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▪ Good general agreement between model and experiment in both parts, slight overestimation of listening 

effort on average

▪ „Better-ear“ model seems sufficient also for strongly lateralized noise sources

Exp 2: Results

Subjective listening effort assessment
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Conclusions 
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▪ Prediction model based on ASR technology procudes accurate listening effort predictions for 

a variety of listening conditions

▪ No adaptation of mapping function to new data

▪ No strong differences between natural speech and high-quality synthetic speech

▪ Very low-quality TTS likely requires other assessment methods

▪ Additional binaural processing stage probably not required / additional complexity not 

justified 

▪ Promising approach as single-ended assessment tool for smart speaker voice output under 

realistic acoustic conditions including noise and reverb



Thank you very much!
—

Funded by the German Federal Ministry for Economic Affairs and Climate Action
Project BASS, FKZ: KK5048502GR0
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