

New Horizons for practical metrics on speech intelligibility

Dr. Wolfgang Balzer Joachim Pomy

17/11/2022

The QoE perspective – get the ball rolling

- We are not going to present solutions in the field of SpQ algorithms and models – there are people who are very good at that.
- Our perspective is that of a designer of metrics, testing strategies, and testing tools, with a focus on end to end, i.e. QoE perspective. The task is to translate strategic goals and requirements into methodologies which can produce the input needed for fact-based decisions.
- These methodologies need subsystems and we are offering functional goals and assessment criteria for them.

Today...

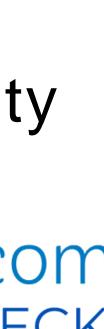
- (e.g. ITU-T P.863)
- These may however be called only the "low-hanging fruits".
 - Speech lab-calibrated assessment of audio quality under ideal conditions
 - Deliberately avoiding emotional elements or even "meaning"

• There are well-working tools for subjective assessment of speech quality

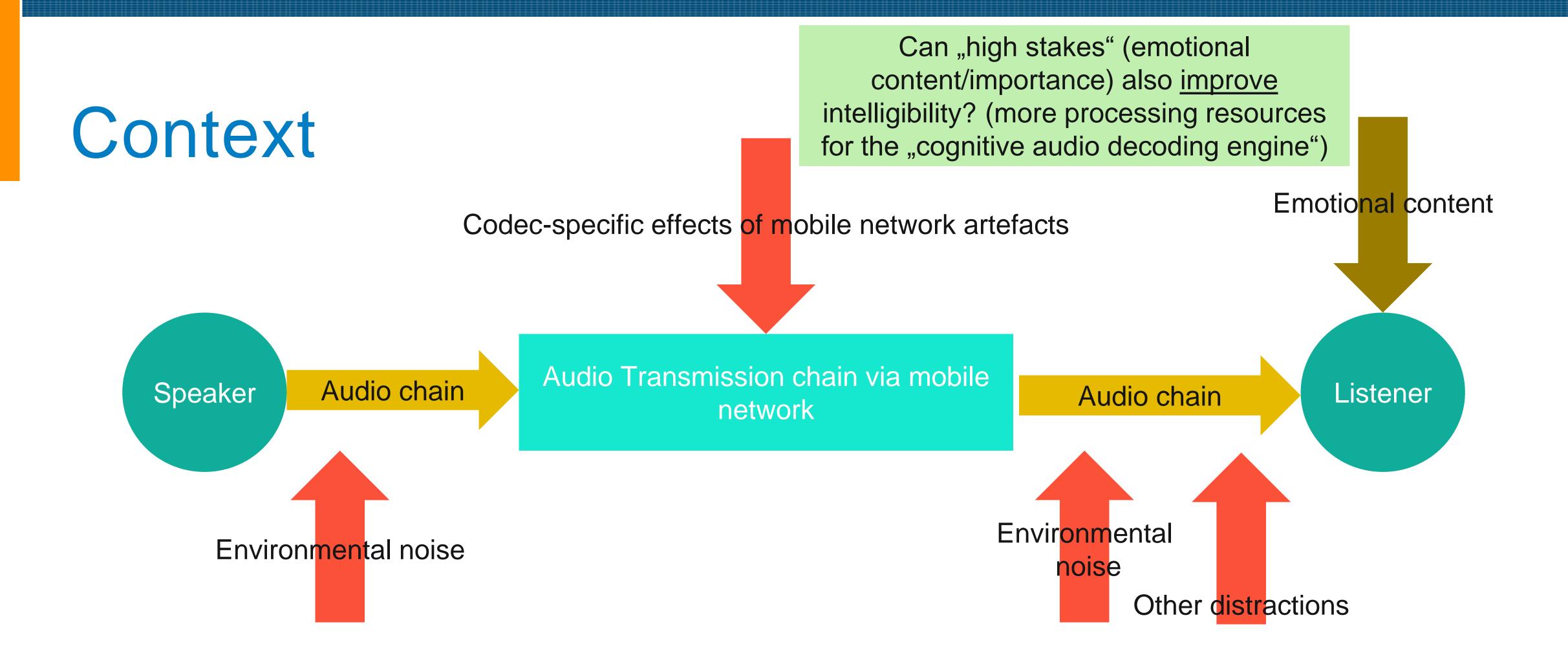
First set of questions

- parties agree to end the call
 - Today: assessment of "soft drops" via MOS values of subsequent samples
 - Does the MOS scale really reflect the "annoyingness" of audio artefacts? •
- How do isolated "unpleasant" artefacts affect the listening experience?
 - Frequency and severity (beyond a fixed-time sampling interval); are there build-up effects?
 - "Stressful" listening experience: nonlinear effects across longer periods of time
- Even with the modest level of "non-emotional" content: how about non-native **listeners?** (courtesy Christian Schmidmer, Opticom)

Soft drop: technically the connection still exists, but audio is so poor that call


Time for higher-hanging fruits

- True speech intelligibility
- Realistic conditions
 - Environmental noise and other distractions
 - Emotional involvement
- of available elements?
- vs. intensity) in conversational situations?


• Yes, there has been and still is research, but is it using the full spectrum

How about the effect of "clustered" impairments (bursty artifacts: density

- A codec "translates" effects of mobility/inadequate coverage into audio artefacts

Essentially packet loss/packet retransmission due to insufficient RF level, plus effects of handover/reconfiguration (peaks in latency)

Value of audio quality

- some purpose in mind
 - QoE: how stressful is the conversation?
 - Intelligibility: How hard is it to extract the correct information from incoming audio? Or worse – can errors go unnoticed?
 - How much secondary communication is needed to transfer the intended content?
 - "Can you repeat"; meta communication about poor quality

• The actual use of an audio interaction is to exchange information, with

The building blocks and tools should be there

- Sensors present in today's smartphones
 - Environmental noise, light, acceleration (indicators of current environment)
- "Crowdworking" to access actual user experience
- Pattern recognition (machine-learning) technologies
 - Classification as well as data cleansing/detection of unreliable samples
- Modern concepts to create deeper involvement of subjects, e.g. gamification

- lacksquarethe listener." (Section 4, first paragraph)
 - \bullet missing own voice (that's why such headphones use sidetone functions when in a call)
- scores instead of "measuring" the word error rate of multiple test subjects." (Section 4, third paragraph)
 - Does this consider the effect of accelerated learning by professional subjects? \bullet
 - Cross-validation against crowdsourcing/crowdworking with real situations ullet
 - Is the effect of a real environment equivalent/calibratable? ullet
- Annex D (D.5) show considerable spread of correlation (0.5 1.0 MOS) •
- Does TS 103 558 have a "takeway"? (conclusion/result in a nutshell)

Critical assessment – TS 103 558 (2021-07)

"Communication in noisy environments may be extremely stressful for the person located at the near-end side. Since the background noise is originated from the natural environment, it can usually not be reduced for

Annex D presents also ANC headphones. In practice, phone calls over fully isolating ANC are unpleasant due to

"In contrast to "classical" intelligibility tests, the auditory assessment of listening effort collects opinion

Looking at labs

- Can a lab actually create the full extent of a target situation?
 - How do we create an emotionally stressful situation?
 - How do we create conditions beyond ambient noise (i.e. beyond audio channel only)?
- → Gamification/reward/loss situations; How can we determine when the goal is reached?
- How can e measure when a test user is "used up" (listening experience >> "normal listener")?

Speech quality vs speech intelligibility

- Speech quality: looking from the outside how does it sound?
- Speech intelligibility: looking at the inside
 - Listening effort: how easy or difficult is it to get at the information content?
 - How high is the risk of information loss or distortion of information?
 - How difficult/tiring/emotionally draining is it to listen to audio?
- Evolved time scales
 - Is it possible to leave the strict "fixed sample length" pattern? E.g. find "audio events" which significantly impact perceived quality

Speech Intelligibility

- Subjective: ask people how hard or easy is it to understand the content? lacksquare
 - Problem: Subjects get used (or "professional") in listening; scales are changing \bullet
 - Better to have some objective indicators \bullet
 - Physiological indicators: Brainwave patterns, Eye movement, Blood pressure, Heart rate,...
 - Cognitive indicators, e.g. Answer delay (in a challenge/response situation), audio instruction to do something on the device; Quality of response (e.g. a "dictation" scenario)
- Objective: correlate measurable quantities to actual listening effort even if it is "subconscious"
- Pattern recognition: Find correlation between audio patterns and subjective indicators for stress/high listening effort

Some work has been done...

- (by TU Berlin)
 - Effect of external stimuli (environmental noise) on perceived audio quality
 - Extend to evolved listening effort/speech intelligibility indicators
- There is various research work on speech intelligibility and listening effort (see e.g. <u>McGarrigle-et-al-2014-Listening-effort-and-fatigue-</u> <u>discussion.pdf</u>)
- There are also products claiming to deliver Listening Effort scores. However, it appears that nothing is in sight which is comparable to P.863/POLQA in terms of widespread acceptance and/or usability.

... but there is some way to go

- Look at new methodologies
 - ulletmeanings)
- And some even more ambitious goals
 - measurements
- And of course translate academia results into actual fieldworthy products

Objective/quantitative measurement of delay effects in conversational situations

(courtesy Christian Schmidmer, Opticom): Using minimal pairs to construct testing situations (Minimal pairs: words which differ in only one phonological element and have distinct

• Further bio- and cognitive indicators for listening effort/audio degradation-induced stress

• Is 100% audio quality really the limit? E.g. some kind of "forward shaping" to improve intelligibility in noisy environments – characterization of respective methods by objective

Thank you for your attention!

Contact:

Dr. Wolfgang Balzer wfk@focus-infocom.de

Dipl. Ing. Joachim Pomy consultant@joachimpomy.de

✗ focusinfocom Member of **NET** CHECK

