

Auditory and Instrumental Listening Effort – Recent Work in ETSI STQ

Jan Reimes, HEAD acoustics GmbH

21/11/2022

Motivation

The world is getting louder ... which has impacts on our way to communicate:

Modern devices provide (at least a bit) remedy for the listener:

- Improving speech \rightarrow enhancement algorithms
- Reducing noise \rightarrow ANC Headsets

... but how to adequately evaluate and qualify such systems?

Motivation

- Just measure speech intelligibility (SI)!
 - It's complicated ...
 - \rightarrow Lack of clear definitions/standardization
- Instead, listening effort (LE) became more popular:
 - "opinion test" vs "measuring a subject"
 - Evaluation of wider SNR range (SI saturates at average SNRs)
 - Simultaneous assessment of other attributes (e.g., speech quality, loudness)

Listening Effort – Auditory Testing

- Repetitions of test stimuli do not (much) impact the test results
- Number of test conditions can be much higher than the number of available speech sequences
- Can be combined with, e.g., "classical" speech quality assessment:

Score	1	2	3	4	5	
Listening Effort	No meaning understood with any feasible effort	Considerable effort required	Attention necessary; Moderate effort required	No appreciable effort required	Complete relaxation possible; No effort required	
Speech Quality	Bad	Poor	Fair	Good	Excellent	
© HEAD acoustics GmbH Au		litory and Instrumental Listening Effort – Recent Work in ETSI STQ				

ETSI TS 103 558

- Includes definition / description of...
 - Prediction model for binaural listening effort
 - Underlying listening test design (based on Rec. ITU-T P.800/P.835, Handbooks, etc.)
 - Underlying listening test databases used for training and validation

© HEAD acoustics GmbH

• Just a brief overview and key features (details → ETSI TS 103 558) ...

• Just a brief overview and key features (details → ETSI TS 103 558) ...

• Just a brief overview and key features (details \rightarrow ETSI TS 103 558) ...

Auditory Databases

- Prediction model replaces auditory testing ...
 - ... but needs (a lot!) of data for training.
- As many aspects as possible has to be considered:
 - Speech samples/languages
 - Noise/reverb conditions
 - Applications/device
 - Acoustic paths (send/receive, near/distant, ...)
 - Linear/Non-linear distortions, artifacts, ...
- A long "wish list" ... but also expensive/time-consuming!
 Funding via Specialist Task Forces (STF) in ETSI STQ

ETSI STF Project 575 – Databases for receive path (RCV)

Recordings & auditory tests for:

- Handset (HS) & Hands-free (HF) telephony scenarios
- ANC headsets (internal/external speech source)
- In-car communication (ICC)

© HEAD acoustics GmbH

ETSI STF Project 590 – Databases for send path (SND)

Recordings & auditory tests for:

- DB01: Acoustic impairments (noise, reverberation...)
- DB02: linear & non-linear processing in terminals
- DB03: network-related processing like transcoding, packet loss, packet loss concealment, etc.

Playback via HATS
\bigcap
└ {++ →
Acoustic path
(handset, hands-free)
Source speech signal

Prediction performance – Validation results

- Languages considered:
 - Mandarin/Chinese (MAN)
 - American English (ENG)
 - German (GER)

Prediction performance metrics

		Application	Language	RMSE*	MAXABS*
	5	ANC	ENG	0.19	0.71
	RC	HF	MAN	0.07	0.22
		HS	GER	0.09	0.17
		ICC	MAN	0.07	0.32
		Application	Language	RMSE*	MAXABS*
<i>(</i>	٩D	Application DB01	Language MAN	RMSE* 0.20	MAXABS* 0.84
)	SND	Application DB01 DB02	Language MAN GER	RMSE* 0.20 0.20	MAXABS* 0.84 0.87
)	SND	Application DB01 DB02 DB03	Language MAN GER ENG	RMSE* 0.20 0.20 0.09	MAXABS* 0.84 0.87 0.25

© HEAD acoustics GmbH

Auditory and Instrumental Listening Effort - Recent Work in ETSI STQ

Summary & Conclusion

- Comprehensive work on perceived listening effort!
 - → 14 databases, ~570 test conditions, ~5000/~2700 for training/validation
- ETSI TS 103 558 bundles:
 - Prediction model
 - Underlying listening test design
 - Description of databases used for training/validation
 - → Clear scope
- Validation proved high prediction accuracy
- Your application is not included?
 → Join STQ and collaborate on further extensions! ☺

HEAD acoustics GmbH Ebertstraße 30a 52134 Herzogenrath Germany

info@head-acoustics.de www.head-acoustics.com

Follow us on

