

Recent Advances in Non-Intrusive Speech Quality Prediction

Wafaa Wardah

21/11/2022

Quality Prediction

ML Model NISQA

Standardization

Ongoing Work

Highlights

- Clean reference signal is sent over networks via equipment that inevitably leads to degradation.
- A good way to measure the quality of the transmitted speech is in terms of how humans on the receiving perceive it.
- Non-intrusive (single-ended) quality assessment means using only the degraded signal for monitoring the quality, whereas an intrusive (double-ended) approach is having access to the clean reference signal as well.

Standard-

ization

Ongoing

Work

Highlights

- Traditionally, we derive this perceived quality from subjective listening tests.
 - ITU-T Recommendation P.800 Methods for subjective determination of transmission quality carried out in a controlled lab environment.
 - ITU-T Recommendation P.808 Subjective evaluation of speech quality with a crowdsourcing approach (Toolkit)
- Unfortunately, listening tests are costly, time-consuming, inconvenient, and not portable, so instrumental models that can automatically predict speech quality have been developed.

10-second speech signal = 250 segments with 73% overlap

- The input to the model is a speech signal.
- The output is the predicted ratings for:
 - overall quality MOS
 - noisiness
 - loudness
 - coloration
 - discontinuity

Quality Prediction •

ML Model NISQA

Standardization

Ongoing Work

Highlights

CNNs are most commonly used in the field of image classification and have the ability to learn a suitable set of features

- While an RGB image has three channels

 one for each color the Mel-spec
 input has only one channel, representing
 the spectrogram's amplitude.
- convolutional neural network
- 6 convolutional layers
- 3 max-pooling layers
- Flattened output of length 384

Framewise model

Time-dependency model

Quality Prediction

Speech

Quality

- ML Model NISQA
- Standardization
- Ongoing Work

Highlights

- Self-Attention network
- Based on the transformer encoder
- Single head, depth of 2 blocks
- The input to the Transformer block is the sequence of framewise features produced by the framewise model.
- It learns the temporal dependencies in the framewise features.

Quality

Prediction

ML Model

NISQA

Standard-

ization

Ongoing Work

Highlights

Pooling model

- Attention-pooling
- The input to the Attention-pooling block is the output matrix containing time domain information produced by the Self-Attention model.
- The final output produced by this Attention-pooling model is the predicted overall quality MOS, noisiness, loudness, coloration, and discontinuity scores.

Quality Prediction

ML Model NISQA

Standardization

Ongoing Work

Highlights

• Multitask problem – five scores to predict

 Mel-spec features are calculated by the same CNN and Self-Attention network for each dimension

• CNN and Self-Attention network is shared across all tasks

Outputs of each Self-Attention time-step are then the input for five individual pooling blocks that predict the overall MOS and the dimension scores.

Dataset

NISQA_TEST_LIVETALK FB

Quality Prediction

ML Model NISQA

Standardization

Ongoing Work

Highlights

Scale	NISQA	P563	ANIQUE+	WEnets
	r RMSE RMSE*	r RMSE RMSE*	r RMSE RMSE*	r RMSE RMSE*

0.90 0.35

0.24

Test set results for speech quality dimensions

0.70 0.58

0.48

0.56 0.68

0.53

0.66 0.61

0.50

Dataset	Scale	NOI		COL		DIS		LOUD					
		r	RMSE I	RMSE*	r	RMSE	RMSE*	r	RMSE	RMSE*	r	RMSE	RMSE*
NISQA_TEST_LIVETALK	FB	0.76	0.47	0.20	0.87	0.31	0.17	0.83	0.40	0.25	0.71	0.36	0.17

The model is evaluated on the test set that was not used during the training or selection of the model, and that contains live-talking conditions, which are independent of the conditions and talkers contained in the other datasets.

Quality Prediction

ML Model NISQA

Standardization

Ongoing Work

Highlights

NISQA model

[Non-intrusive speech quality assessment] by Gabriel Mittag, Ph.D.

Open sourced Python - PyTorch Trained weights Various versions Several datasets

https://github.com/gabrielmittag/NISQA.git

G. Mittag, B. Naderi, A. Chehadi, and S. Möller "NISQA: A Deep CNN-Self-Attention Model for Multidimensional Speech Quality Prediction with Crowdsourced Datasets," in Proc. Interspeech 2021, 2021.

Wafaa Wardah, Quality & Usability Lab, Technische Universität Berlin 14