

A View on ML for Performance, QoS, and QoE Evaluation

Presented by: Dr. Irina Cotanis, Technology Director, Office of the CTO, PM

22/11/2022 Infovista

Agenda

- 1.5G call to action on using ML/AI techniques
- 2. ML algorithms and best practices for ITU-T SG12 use cases
- 3. Aspects of ML optimization: learning and validation
- 4. A glimpse to ML/AI standardization work within the context of mobile networks
- 5. Take away

5G call to action on using ML/AI techniques

KNOW YOUR NETWORK

The new mobile networks

New emerging testing requirements and their derived trends

infovista

KNOW YOUR NETWORK™

ITU-T SG 12 call to action on ML based testing techniques

ITU-T P.1402: Guide for Development of Machine Learning Based Solutions

infovista

ML algorithms and best practices for ITU-T SG12 use cases

KNOW YOUR NETWORK™

Most used ML algorithms applied within SG12 context

infovista

Applied ML for SG12 use cases

Performance, QoS (PM, FM, CM, CS, CRM data sources)	QoE modeling (device/clients/network data sources)
RCA/anomalies, performance trends detection	Conversational voice/video (OTT, carrier)
Performance prediction	Multimedia streaming (OTT video, gaming/VR)
e.g. ITU-T E series	e.g. ITU-T P.565, P.1200 series

Rules of thumb for ML applicability

Training/learning database integrity and validity (data cleansing) - sML vs. uML controllability Training /validation database split process

- (x,y)% data split (e.g. 50-50%)

 z-fold cross validation, CV (higher z>> increased robustness, min.
bias towards a specific use case) Machine learning feature selection

- Significance of features' content and count (too many >>overfitting; too few >> underfitting)

Algorithms' accuracy / suitability for a specific application - evaluation based on stats (e.g., RMSE, MAE, percentage of false positives/negatives) or

representative (e.g., recall and precision charts).

ML overfitting/underfitting test

infovista

Main phases of ML based solutions development

Aspects of ML optimization: learning and validation

KNOW YOUR NETWORK™

Aspects of ML optimization: learning and validation

infovista

- N is the total number of observations in the learning set,

- *L* is the "loss function" (e.g. mean squared error, MSE) over each one of the learning observations

 $-f_w$ is the "fit function" (estimated values) using the learning/training data. The validation error is defined as the average loss over an independent test sample

infovista

infovista

• EXAMPLE: Decisions trees (#sample,#features, # trees, #leaves, bootstrap)

5-CV; random samples for each of the training sizes are taken five times, a prediction is determined and the results are averaged

Trend of V_er suggests that overall accuracy can be improved by increasing the number of samples, but only very slightly.

infovista

Using 47 instead of 40 features slightly increases the variance, meaning that the model performed slightly worse when the trees had to include the artificially injected redundant feature.

When 40 features are used, the model selects the best ranked features, but with increased training time.

When 46 feature are used >> minimal L_er, V_er >> no overfitting at a fairly good training time of less than 15 min.

• EXAMPLE Decisions trees (#sample,#features, # trees, #leaves, bootstrap)

#100 trees optimal for no overfitting at a fairly good time for training, below 7 min. >#100 trees V_er remains rather constant, but increased risk of biasing the algorithm towards the training data as the complexity of the model increases

infovista

Large # leaves ("large tree") usually fits the training data too well, but performs poorly on an unknown dataset >> high (L_er -V_er) >> overfitting

Small # leaves ("shallow tree") typically performs poorly during the training process, high L_er

Tree size shrinks >> L-er, V_er increase, while the training time decreases as the model becomes less complex. The smallest variance is generated with a minimum leaf size of 5, with a fairly good training time of around 7 min.

A glimpse at ML/AI standardization work

infovista

KNOW YOUR NETWORK

A glimpse at ML/AI main standardization work

https://www.5gamericas.org/wp-content/uploads/2019/11/Management-Orchestration-and-Automation clean.pdf

Take away

infovista

KNOW YOUR NETWORK™

Technology revolution

- ML embedded: intelligent wireless communications, AI-closed optimi loop, data driven performance management
- ML based testing
- ML applied to SG12 work item call to action for guidance for applied ML

At a glance on ML technology

- sML / uML techniques for mobile networks
- ITU-T SG 12 uses cases (QoE modelling, QoS performance) and common algorithms (e.g. DT, LinRgr, LogRgr, PCA, K-means, NN)
- Best practices: data validity, cleaning, data split, feature selection, modelling accuracy and bias

ML optimization: leaning and validation

- Cost function: "loss" expressed through L_er and V_er,
- Tradeoff: accuracy vs. bias
 - Learning curves-based optimization: ML technique and algorithm dependent to be applied for model's "hyperparameters" (nr. samples, nr. features, Parameters_k)

infovista

Thank you!

www.infovista.com