

Dependence of EER and MOS in the context of automatic speaker recognition and adverse conditions

Maroš Jakubec

22/11/2022

Content

- Introduction
- Speaker embeddings
- Proposed DNN architecture and experiment setup
- Results
- Conclusion

Introduction

Speaker Recognition:

- Humans have the innate ability to recognize familiar voices within seconds of hearing a person speak.
 - How do we teach a machine to do the same?

Biometrics based on voice recognition:

- Harder to fake than other forms of authentication
- Contactless login
- Accessible and convenient on a variety of devices

- Tremendous application spike in the field of DNN, including increasing interest in the development of speaker recognition systems.
- DNN-based speaker embeddings, such as x-vectors or d-vectors, have begun to replace standard i-vectors based on factor analysis.

Overview of speaker embedding-based speaker verification system

November 21-22, 2022

Comparison of DNN architectures based on speaker embeddings

November 21-22, 2022

Proposed speaker embedding

each utterance or recording is compressed into a unique **embedding** or a **"voiceprint**" of the same length. This **"voiceprint**" becomes a high-level feature for further classification.

Our proposal is based on the basic **x-vector embedding**

- Time-Delayed Neural Network (TDNN)
- fixed-length embeddings or features are extracted from the layers located after the pooling layer.

We modified the system topology by including components of the popular ResNet architecture (denoted as **r-vectors**)

- Res2Net, a novel building component for CNNs that seeks to enhance multiscale representation by expanding the number of possible receptive fields.
- Squeeze excitation (SE) block

The configurations of the proposed network

• Our design is fully implemented in Pytorch

Layer Name	Module	Output Size	
Input	-	$80 \times T \times 1$	
Conv2D-1	(3 × 3, 2)	$80 \times T/2 \times 64$	
SE-Res2NetBlock-1	$\begin{bmatrix} 3 \times 3, & 64 \\ 3 \times 3, & 64 \end{bmatrix} \times 2$	$40 \times T/2 \times 64$	
SE-Res2NetBlock-2	$\begin{bmatrix} 3 \times 3, & 64 \\ 3 \times 3, & 64 \end{bmatrix} \times 2$	$40 \times T/4 \times 128$	
SE-Res2NetBlock-3	$\begin{bmatrix} 3 \times 3, & 128 \\ 3 \times 3, & 128 \end{bmatrix} \times 2$	$20 \times T/4 \times 128$	
SE-Res2NetBlock-4	$\begin{bmatrix} 3 \times 3, & 256 \\ 3 \times 3, & 256 \end{bmatrix} \times 2$	$10 \times T/8 \times 256$	
MHA Pooling Layer	-	1×256	
Dense-ReLU (r-vector)	-	256	
AM-Softmax	-	N	

TABLE SPEAKER EMBEDDING ARCHITECTURE BASED ON RES2NET

- Multi-head Attention (MHA)
- Additive Marginal Softmax (AM-Softmax)

Experimental setup

• Librabry: Pytorch, Librosa

Datasets:

- experiments were performed on the <u>VoxCeleb1</u>
- consisting of short videos extracted from videos uploaded to YouTube.

Working environment:

PC:

- Ubuntu 20.04 LTS
- Pycharm Community
- Intel[®] Core ™ i9-7900X
- NVIDIA GeForce 980ti

12	ABLE I.	VOXCELEBI DA	TASETS DETA	ILS
Dataset	#	Dev	Test	Total
VoxCeleb1	POIs	1 211	40	1 251
	utterances	148 642	4 874	153 516
	hours	~ 335h	~ 17h	352

Experiment setup

Acoustic Features:

- 80-dimensional FB (logarithm of the signal energies in the frequency sub-bands)
- 25ms duration and 10ms shift.
- mean normalization

DNN Setup:

- trained on 20 epochs with a batch size of 128.
- SGD optimizer together with $\beta 1 = 0.9$, $\beta 2 = 0.98$, $\epsilon = 10-9$.
- Iearning rate 0.01

Evaluation Metrics:

- EER (Equal Error Rate)
- MinDCF (Minimum Normalized Decision Cost Function)

Experiment results

- We investigated the effectiveness of the proposed system based on the speaker embeddings extracted using deep CNN.
- Aside from the accuracy of the speaker embedding system, we took into account the computing needs as well.

	#Parameters	Training Time	EER (%)	DCF 10 ⁻²
x-vector (baseline)	8.5M	~ 30h	4.22	0.4011
ResNet-34	9M	~ 32h	3.18	0.2768
SE-Res2Net	8.5M	~ 35h	2.71	0.2482

TABLE	COMPARISON OF SPEAKER EMBEDDING RESULTS WITH THE
	PROPOSED MODEL.

NISQA: Speech Quality and Naturalness Assessment

- is a deep learning model/framework for speech quality prediction
 - focused on distortions occurring in communication networks.
- besides overall speech quality, NISQA also provides predictions for the quality dimensions **Noisiness**, **Coloration**, **Discontinuity**, **and Loudness**.
- The NISQA Corpus includes **more than 14,000 speech samples** with simulated (e.g. codecs, packet-loss, background noise) and live (e.g. mobile phone, Zoom, Skype, WhatsApp) conditions.

Figure : NISQA neural network architecture.

Dependency between the accuracy of the designed speaker voiceprints and the quality of the speech recordings.

ETS

ETSI STQ Workshop - <u>Quality</u> of <u>Emerging Services for Speech</u> and Audio: A user-<u>centred perspective</u> November 21-22, 2022

12

Conclusion

- In this work, we investigated the effectiveness of systems based on the r-vector embedding of the speaker's voice, which was obtained using CNN.
- The deep residual based CNNs represent the best option for speaker embeddings learning and can provide robustness in SV tasks.
- The NISQA model can be used to tune the transmission system
 - With the help of quality assessment, we retrospectively determined how the speaker recognition system behaved in real conditions.
 - The system can be tuned and optimized to cope with real/adverse conditions according to obtained characteristics.

Thank you for your attention!